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ABSTRACT 
Processor specialization through application-specific instruction 
set customization can significantly improve performance while 
reducing energy. Due to the costs associated with semiconductor 
fabrication, specialized processors are only viable for products 
with high production volumes. The emergence of low-cost sensor-
based computing products in recent years has created an urgent 
need to process time-series data with the utmost efficiency. 
Although most sensor data is fixed-point, the normalization 
process—an absolute necessity for highly accurate similarity 
search of time-series data—converts the data to floating-point in 
order to avoid a loss in precision. The sensors that collect time-
series data are typically connected to low-power microcontrollers 
or RISC processors sans floating point units. The computational 
requirements of real-time similarity search would overwhelm such 
processors. To address this concern, we introduce a specialized 
instruction set for time-series data mining applications to a 32-bit 
embedded processor, yielding a 4.87x performance improvement 
and a 78% reduction in energy consumption compared to a highly 
optimized software implementation. 

Categories and Subject Descriptors 
C.3 [Computer Systems Organization]: Special-purpose and 
Application-based Systems–real-time and embedded systems. 
H.2.8 [Information Systems]: Database Application – Data 
Mining. 

General Terms 
Algorithms, Design, Experimentation, Performance 

Keywords 
Time-series, Similarity Search, Dynamic Time Warping (DTW), 
Instruction Set Extension (ISE) 

1. INTRODUCTION 
Sensor-based embedded systems generate tremendous quantities 
of time-series data. Mining large time-series data sets to extract 
useful information is one of the foremost challenges falling under 
the umbrella term “Big Data.” Although some time-series data can 
be collected and stored onto a server, other data must be mined in 
real-time, as the value of the data rapidly degrades otherwise. 
Real-time time-series data mining applications include speech 
recognition [10, 19, 20, 22], activity recognition [17, 18], robotics, 
financial markets, user interfaces, and many others [23].  

 
The Cisco Internet Business Solutions Group (IBSG) predicts that 
25 billion devices will connect to the Internet by 2015 [6], and 
that this number will double by 2020. The vast majority of these 
devices are projected to be sensor-based embedded systems, i.e., 
the so-called “Internet of Things.” In principle, many of these 
devices could and should be able to mine the time-series data 
produced by their sensors in real-time; however, the cost of doing 
so, both in terms of computation and energy, may be prohibitive. 
Similarity search is the computational bottleneck in time-series 
data mining. One recent empirical study compared twelve widely 
cited time-series classification algorithms and showed that one in 
particular, Dynamic Time Warping (DTW), performed the best 
across forty-four data sets, including several based on human 
physiological data such as gestures and heartbeats [5]. 

At its core, DTW is a dynamic programming algorithm with a 
quadratic time complexity; as such, it has historically been too 
computationally demanding for deployment in a real-time, low-
power, cost-constrained embedded system. Optimized software 
DWT implementations quickly discard unlikely matches, thereby 
eliminating the need to resort to the full-blown similarity search in 
the vast majority of queries. The most advanced DTW 
implementation published to date achieved an amortized constant 
time complexity per data point [23]. When tested on a data set 
comprising approximately 8.5 trillion electrocardiogram (ECG) 
data points, the optimized implementation ran in 18.0 minutes, 
while the prior state-of-the-art implementation took 49.2 hours.  

This was a significant breakthrough, suggesting that DTW, in fact, 
could perform similarity search on time-series data in real-time. 
The experiment was performed using one core of a 2x Intel Xeon 
Quad-Core E5620 2.40GHz with 12GB 1333MHz DDR3 ECC 
unbuffered RAM, far from a cost-constrained embedded processor 
with limited battery lifetime. Such a platform is certainly not 
representative of the semiconductor devices that will provide the 
computational core of the “Internet of Things.” 

A typical “Internet of Things” device will run on a system-on-a-
chip (SoC), that integrates all of its computational needs. The SoC 
will include some amount of specialized hardware for common 
functions that are performance and/or energy critical, while all 
other applications run in software. Prior work has shown that 
application-specific processors with specialized instruction sets 
(ASIPs) can almost equal the energy efficiency of application-
specific integrated circuits (ASICs) [8], without sacrificing 
general-purpose functionality to support other applications.  

Our opinion is that DTW falls into the category of functions that 
justify hardware acceleration: it is computationally demanding 
and applicable to a wide variety of SoC-based products, thereby 
justifying the cost of dedicated silicon; an ASIP specialized for 
DTW is therefore an attractive component for SoC integration.  

This paper presents the design and evaluation of an ASIP 
specialized for DTW. Our objective in designing this ASIP was to 
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make it as low cost as possible, so that it could be deployed across 
a wide variety of SoC products, from low-end to high-end, in 
order to maximize market penetration. The simplest such product 
would be a simple sensor+ASIP, and should not cost more than a 
low-end microcontroller or RISC processor. On the high-end, the 
processor should be capable enough for integration into the 
semiconductor industry’s most advanced SoC products, such as 
smart phones, tablet PCs, and SSD controllers. 

We started with an extensible 32-bit RISC processor and source 
code for a highly tuned DTW implementation written in C [23]. 
We identified four computational bottlenecks, each of which 
could be replaced with an instruction set extension (ISE). 
Empirically, we observed that introduction of further ISEs did 
little to improve the performance or energy efficiency of the 
ASIP, so we stopped with four. Compared to the baseline, the 
ISEs increased performance by a factor of 4.87x while reducing 
energy consumption by 78%, when prototyped on an FPGA.  

2. TIME-SERIES SIMILARITY SEARCH 
2.1 Definition 
Let T = t1, t2, …, tm be a time-series, i.e., an ordered list of 
numbers; in principle these numbers can be integer or real-valued, 
fixed- or floating-point. In many cases, we consider only a shorter 
region of T called a subsequence: Ti,k = ti, ti+1, …, ti+k. If there is 
no ambiguity, we refer to a subsequence Ti,k as a candidate, C, 
which eliminates unnecessary subscripting. The general objective 
is to match a candidate C against a query Q.  

In a real-time context, similarity search is performed periodically 
(e.g., after a fixed number of sensor readings), over a relatively 
recent window of activity. For example, when determining if a 
patient is experiencing a heart attack right now, then the query 
should focus on a recent window of candidate points; yesterday’s 
data points will provide minimal information regarding today’s 
heart attack, and querying them would drain the battery and 
potentially divert computational resources that could be used for a 
more prescient purpose. 

2.2 Euclidean Distance 
Let |C| = |Q| = n, the Euclidean Distance (ED) between C and Q, 
denoted ED(Q, C), is 

 
,ܳ)ܦܧ (ܥ = ඥ∑ ௜ݍ) − ܿ௜)ଶ௡

௜ୀଵ .   (1) 

 
If |C| = n, |Q| = m, and m < n, then ED can be computed over a 
sliding window, as discussed above; requiring ED to be computed 
n - m times to be exhaustive. The smallest ED computed over the 
sliding window would be returned as the result.  

As shown in Fig. 1(a), ED considers a one-to-one mapping in time 
between the points on the two curves. Fig. 1(b) highlights ED’s 
biggest weakness; it may miss time series that are similar to one 
another, but with minor offsets in time. DTW, introduced next, 
corrects this weakness. 

2.3 Dynamic Time Warping 
DTW is a quadratic-time dynamic programming algorithm: If 
|C|=n and |Q|=m, then its time complexity is O(mn). In practice, 
m << n, as the query is a relatively short pattern (e.g., a motif 
representing a heart attack), while n is a much longer time series 
(e.g., a human heartbeat over time). By considering multiple 
alignments in context, DTW effectively generalizes ED; however, 
this generalization comes at a significant cost in terms of runtime. 
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Figure 1. (a) ED (b) and DTW are similarity search metrics; 
DTW enables realignment in time, while ED does not.  
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Figure 2. (a) Query (Q, red) and Candidate (C, blue) (b) DTW 
warping path for alignment between Q and C. 
DTW creates an n-by-n matrix M, where Mi,j = d(qi, cj) = |qi − cj| 
is the distance between points qi and cj. DTW permits a one-to-
many alignment, which allows query point qi to align with one or 
more candidate points, ci-k, ci-k+1, … ci+k-1, ci+k, as shown in Fig. 
2.A warping path P is a contiguous set of matrix elements that 
establishes a mapping between Q and C. The kth element of P is 
denoted Pk = (i, j)k; a warping path has the form  

P = p1, p2, …, pk, …, pK    (2) 

max(m,n) < K < m+n-1. 

A warping path is subject to the following constraints: 

 Boundary conditions: p1 = (1,1) and pK = (m,n); W starts and 
finishes at diagonally opposite corners of the matrix. 

 Continuity and Monotonocity: If pk =(x,y), then pk-1 = (x’,y’) 
where 0 < x – x’ <1 and 0 < y – y’< 1; this restricts W to 
(diagonally) adjacent cells, monotonically spaced in time. 

The optimal warping path minimizes the warping cost 

,ܳ)ܹܶܦ (ܥ = ݉݅݊ ቐ
ට∑ ெ(௣ೖ)಼

ೖసభ

௄
;   (3) 

the denominator compensates for paths having different lengths. 

Let γ(i,j) denote the cumulative distance w1 to matrix element (i,j), 
computed recursively, as follows: 

,݅)ߛ  ݆) = ݀൫ݍ௜ , ௝ܿ൯    (4) 

݅)ߛ}݊݅݉	+ − 1, ݆ − 1), ݅)ߛ − 1, ݆), ,݅)ߛ ݆ − 1)}. 

γ(i,j) is computed in terms of the cumulative distances of its 
adjacent neighbors, preceding it on the  warping path. The optimal 
warping path is thereby computed using dynamic programming.  

In many practical applications, the issue goes beyond finding the 
best DTW alignment. For example, finding the best match of an 
ECG motif representing a heart attack does not mean that a heart 
attack is occurring; the quality of the match must be assessed. 



2.4 Z-Normalization 
The time series being compared need to be normalized; this 
addresses the situation where the time-series are similar, but differ 
in terms of amplitude, as shown in Fig. 2. The candidate and 
query have near-identical shapes, but differ by approximately a 
constant, i.e., qi = ci + k. If k is large then the ED metric will 
suggest a large distance (and this will manifest itself in the DTW 
calculation as well), even though the series have otherwise-
identical shapes. Z-Normalization addresses this issue, and is 
applied to the time series prior to classification. 

Without loss of generality, we will Z-normalize C. The arithmetic 
mean and standard deviation of C are: 

஼ߤ  = ଵ
௡
∑ ܿ௜௡
௜ୀଵ , and    (5) 

஼ߪ = ට ଵ
௡ିଵ

∑ (ܿ௜ − ஼)ଶ௡ߤ
௜ୀଵ .   (6) 

Each data point ci is then replaced with a normalized counterpart 

ܿ௜′ = ௖೔ିఓ಴
ఙ಴

     (7) 

Prior work has shown that normalization is necessary to make 
meaningful comparisons between time series, and failure to do so 
can lead to erroneous results (i.e., false negatives) [11]. Each 
subsequence must be normalized before making a comparison; it 
is insufficient to normalize an entire dataset. When a sliding 
window is used, the window itself must be re-normalized as as it 
slides! We revisit this issue later in Section 3.1. 

Even if the time series data are integers, Z-normalization yields 
real values because of the division and square root operations in 
Eqs. (5)-(7). Embedded microcontrollers and RISC processors 
without floating-point units must execute Z-normalization and 
subsequent DTW operations in software, as they generally do not 
have integrated floating-point hardware; thus, the performance 
and energy overheads become significant. Even with floating-
point units in-place, specializing the hardware implementation of 
these calculations can result in significant improvements.  

3. OPTIMIZED DTW IMPLEMENTATION 
We assume a candidate window of size W, meaning that the query 
is matched against the W most recent time series data points. Each 
new sensor reading shifts the window by 1. Let R be the similarity 
search interval, meaning that DTW is performed after every R 
sensor readings, meaning we discard the R oldest data points to 
make room in the window for the newly read data point.  
In practice, most queries do not yield positive matches; numerous 
enhancements have been published that quickly abandon DTW 
before or during the dynamic programming phase. Our ASIP is 
based on a recent software implementation of DTW that performs 
many of these optimizations, which are described next. 

 
 (a) (b) 

Figure 3. (a) Un-normalized and (a) Z-normalized time series. 
Z-normalization noticeably reduces the ED and DTW metrics.  

3.1 Using the Squared Distance 
ED and DTW compute square roots; however, this computation 
does not alter the rankings of nearest neighbors relative to one 
another because the functions are monotonic and concave. 
Eliminating it improves performance and enables subsequent 
optimizations; the square root from Z-Normalization, Eq. (6), 
unfortunately, is still required. The Squared Distance (SD) refers 
to the ED (Eq. (1)), with the square root removed.  

3.2 Lower Bounds 
Computationally efficient lower bounds that recognize non-
matching queries can preempt the full DTW computation. At least 
18 lower bounds have been reported in past literature [23], three 
of which are relevant to our implementation:  

LBKim [14] shown in Fig. 4(a), computes the SD between the two 
sequences first (A), minimum (B), maximum (C), and last (D) 
points as the lower bound. The time complexity of LBKim is O(n) 
because the query and candidate must be searched to find the 
minimum and maximum values. 

LBKimFL [14, 23] is a variant of LBKim that computes the SD 
between the first (A) and last (D) points as a lower bound, 
omitting the minimum and maximum points (B and C). This 
reduces the time complexity to O(1). Z-normalization tends to 
reduce the SD of the minimum and maximum points, so the loss 
in terms of the tightness of the bound is minimal. 

 LBKeogh [5, 7, 12], shown in Fig. 4(b) and below in Eq. (8), takes a 
query Q and creates two other curves, L and U, that envelope Q. 

௄௘௢௚௛(ொ,஼)ܤܮ = ∑ ቐ
(ܿ௜ − ௜ܷ)ଶ				݂݅	ܿ௜ > ௜ܷ
(ܿ௜ − ݂݅ܿ௜				௜)ଶܮ < ௜ܮ

݁ݏ݅ݓݎℎ݁ݐ݋					0

௡
௜ୀଵ  (8) 

The ED between C and the closest part of the envelope, rather 
than the corresponding point of Q, is taken as a tight lower bound. 
If the current sum of the SDs exceeds a threshold, indicating that a 
match will not occur, then the similarity search between C and Q 
can be abandoned early. The time complexity of LBKeogh is O(n).   

3.3 Early Abandoning ED and LBKeogh 
When computing the ED or LBKeogh, the current sum of the 
squared differences can be compared to the best DTW value 
computed thus far. If the computation exceeds the lower bound, 
then the calculation can be stopped, knowing that there is no 
possible way that the current match could. improve upon it, as 
shown in Fig. 5. 
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Figure 4. (a) LBKim [14] and (b) LBKeogh [5, 7, 12]. 

 
Figure 5. ED early abandoning; in this example, we abandon 
after summing the SD of 9 out of 32 pairs of data points [23]. 

CQ

We can early abandon at this point 
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Figure 6. (a) The DTW computation starts with LBKeogh 
computed up-front. (b) As DTW completes from from K-1 to 
K, the dashed line moves right; combining the contribution of 
LBKeogh from the right of the dashed line (top) with the partial 
DTW from the left of the dashed line (bottom), tightens the 
bound as exact DTW values replace LBKeogh estimates [23]. 

3.4  Early Abandoning DTW 
A full LBKeogh lower bound that does not prune the query does not 
guarantee that the full DTW guarantees a match; however, the 
LBKeogh result does not need to be discarded. As shown in Fig. 6, 
the basic idea here is to incrementally compute DTW in the range 
1…K, and add the partial accumulation to the LBKeogh contribution 
from K+1 to n. In other words 

(ଵ:௄ܥଵ:௄ܳ)ܹܶܦ +  (9)  (௄ାଵ:௡ܥ௄ାଵ:௡ܳ)௄௘௢௚௛ܤܮ

≤  ,(ଵ:௡ܥଵ:௡ܳ)ܹܶܦ

and the bound becomes tighter as K increases. If this lower bound 
exceeds the best DTW value computed thus far, the calculation is 
pruned and DTW can be abandoned [23]. 

3.5 Early Abandoning Z-Normalization 
Early abandoning Z-normalization [23] incrementally computes a 
lower bound such as ED or LBKeogh for each data point while that 
point is being normalized. This enables the normalization step to 
benefit from early abandonment as well. Since every subsequence 
of a candidate must be normalized before comparing it to query, it 
is possible to quickly compute the mean by keeping two running 
sums with a lag of m values; the variance is computed similarly: 

஼ߤ  = ଵ
௠
൫∑ ܿ௜௞

௜ୀଵ − ∑ ܿ௜௞ି௠
௜ୀଵ ൯, and   (10) 

௖ଶߪ = ଵ
௠
൫∑ ܿ௜ଶ௞

௜ୀଵ −∑ ܿ௜ଶ௞ି௠
௜ୀଵ ൯ −  ௖ଶ.  (11)ߤ

Fig. 7 shows pseudocode that describes the early abandoning 
process. A circular buffer X stores the candidate, C, which is 
compared with the query, Q. The current window is an m-element 
contiguous sub-array of the circular buffer. Each new sensor 
reading (line 5) overwrites a value in the buffer and shifts the 
window by one. In the previous iteration (lines 15, 16), the 
running sums for the average (ex) and standard deviation (ex2) 
were updated to remove the value that will be shifted out of the 
window during the current iteration. ex and ex2 are then updated 
to account for the new sensor value (line 6), and the mean and 
standard deviation are updated incrementally (line 8).  

Next, the ED for the current window is computed (lines 10-12) 
including the possibility of early abandonment. Each data point in 
the current window is normalized on-the-fly (line 11), but the 
normalized value is not retained; since each new sensor reading 
changes the average and standard deviation, the normalized value 
of each data point changes as the window shifts. The process then 
repeats as the next time series data point is read. 

Algorithm   Similarity Search 
Procedure  [L] = similaritySearch (T,Q) 
1 best-so-far ← ∞,count← 0 
2 Q ← z-normalize(Q) 
3 while !next(T)  
4  i← mod(count,m) 
5  X[i] ←next(T) 
6  ex← ex+ X[i], ex2← ex2+X[i]2  

7  if count ≥ m-1 
8   µ← mean(ex,ex2,m),σ← stdv(ex,ex2,m) 
9   j← 0, dist← 0 
10   while j < m and dist < bsf 
11    dist← dist+Q[j]-(X[mod(i+1+j,m)]-µ)/σ 
12    j← j+1 
13   ex← ex-X[mod(i+1,m)] 
14   ex2← ex2-X[mod(i+1,m)]2 
15  count← count+1 
Figure 7. Pseudocode for similarity search with early 
abandoning Z-normalization [23]. 

One concern regarding this approach is the accumulation of 
floating-point error, as time-series values are added and subtracted 
from ex and ex2; to mitigate this factor, the Z-normalization resets 
after one million subsequences, and renormalizes the window. It 
is important to note that Eqs. (5) and (6) are rarely computed 
outright, but are updated, for the current window, on-the-fly. 

3.6 Reordering Early Abandoning 
In Figs. 5 and 6, ED and/or SD are computed from left to right; in 
principle, the distances between pairs of points can be computed 
in any order. Empirically, it has been shown that sorting the data 
points based on the absolute values of the Z-normalized query 
values qi’, and processing them in that order, tends to reduce the 
number of data points processed when early abandonment occurs. 
This is not an absolute rule, and offers no theoretical guarantees of 
improvement. Fig. 8 shows an example. 

3.7 Reversing the Query/Data Role in LBKeogh 
In Section 3.2 and Eq. (7), LBKeogh(Q,C) builds an envelope every 
around the query. This is done once, as the query never changes. 
In principle, we can build an envelope around the candidate, 
rather than the query; however, the candidate is not fixed, as new 
data points are added and removed with each new sensor reading. 
The overhead of building the envelope, however, is quite high. If 
all other lower bounds fail, we can build the envelope around the 
sliding window and compute a lower bound LBKeogh(C,Q) as well, 
as shown in Fig. 9, possibly pruning the query. 

3.8 Cascading Lower Bounds 
Cascading lower bounds, shown in Fig. 10, refers to the process 
of trying all known lower bounds, one after another, sorted by 
time complexity, hoping to achieve early abandonment; a pruning 
rate of 99.9999% is reported using this approach [23].  
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Figure 8. (a) Standard early abandoning starts from the 
leftmost data point and works to the right; (b) changing the 
order in which data points are processed can lead to faster 
and more effective pruning [23]. 
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Figure 9. (a) LBKeogh(Q, C) and (b) LBKeogh(C, Q). 

 

Figure 10. Cascading lower bounds; the tightness of each 
bound is plotted as a function of its time complexity. Note that 
LBKeoghEQ refers to Eq. (8), and max(LBKeoghEQ, LBKeoghEC) 
refers to reversing the query role (Section 3.7) [23].  
The overhead of applying all known lower bounds for DTW is 
significant; Fig. 10 shows a representation of the lower bounds 
that the authors of ref. [23] considered to be Pareto optimal based 
on a ranking of their tightness as a function of time complexity; 
only four lower bounds plus early-abandoning techniques are 
considered to be Pareto optimal.  

3.9 Sakoe-Chiba Band 
The Sakoe-Chiba Band [24] (Fig. 11) limits the space of the DTW 
computation to a narrow band in the matrix, guaranteeing that the 
warping path deviates by at most R cells from the diagonal: 

ℎܾ݅ܽܥ_݁݋݇ܽܵ ൜ ௜ܷ = :௜ି௥ݍ)ݔܽ݉ (௜ା௥ݍ
௜ܮ = :௜ି௥ݍ)݊݅݉ (௜ା௥ݍ .  (12) 

It reduces the computational cost of the computation, but 
eliminates many warping paths from consideration, thereby 
sacrificing the theoretical optimality of the DTW computation.  

4. APPLICATION ANALYSIS 
We started with a publicly available implementation of DTW, as 
described in Section 3, written in C [23], and a publicly available 
data set [13]. Figs. 12(a) and (b) show a call graph of the DTW 
application, and its workflow; modules shown in color represent 
subroutines that we accelerated with instruction set extensions. 

4.1 Data Precision Analysis 
Both the DTW source code and publicly available data set were in 
double-precision (64-bit) floating-point format. Looking at the 
data values, we realized that it could be converted to fixed-point 
and/or lower-precision floating-point formats with no loss in 
precision. We converted the data set and rewrote the source code 
to use several different fixed-point (Q8.8, Q16.16, Q32.32) and 
floating-point (half, single, and double precision) formats and ran 
the application on a modern desktop PC; we observed erroneous 
operation (e.g., no query matches) at the reduced precision levels.  

     
 
Figure 11. The Sakoe-Chiba band [24] creates a tighter bound 
around the query and prevents pathological warp patterns. 
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Figure. 12. (a) A call graph (b) and high-level control flow 
graph illustrate the basic workflow of the DTW application. 
Modules shown in color are computationally intensive, as 
determined by profiling.   
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We modified the source code to track the arithmetic precision of 
the data on an operator-by-operator basis. We observed that the Z-
normalized values of the candidate and query quickly approached 
zero, within one hundred iterations. The primary culprits were the 
floating-point multiplication, division, and square root operations. 

To further understand the loss in precision, we implemented our 
own floating-point operators and traced the intermediate values 
after each sub-step. The normalization and rounding steps at the 
end of the multiplication and division operators were the primary 
loss cause for the loss in precision; the precision loss during 
mantissa alignment for addition and subtraction was negligible. 
Our square root operator used the Newton-Raphson method, 
which repeatedly performs division, so all of the aforementioned 
issues affected this operation as well. Reducing the precision of 
the floating-point operations from double to single and half 
yielded similar results, but with different rates of decay.  

With a more restrictive dynamic range, the fixed-point operators 
were thoroughly erroneous. Z-normalization rapidly zeroed out 
most values leading to incorrect query matches. 

For these reasons, we reverted back to the original C language 
implementation with double-precision operations. At this point, 
we were confident that fixed-point and lower-precision floating-
point operators introduce excessive error into the calculations, and 
that double precision was the most appropriate choice.  

4.2 Supporting Floating-point in Hardware 
As discussed in Section 5, our target processor is an extensible 5-
stage RISC pipeline that does not natively support double-
precision floating-point instructions; however, we can introduce 
them by extending the instruction set and integrating a double-
precision floating-point unit (FPU) into the architecture.  
We started with a software floating-point library in C. In software, 
floating-point operations are variable-latency; to estimate the 
average latency, we executed each operation 100 times in a loop, 
based on input data obtained from our DTW application, and 
averaged the latencies. We did this twice: first, with low compiler 
optimization levels (e.g., gcc -O0 and -O1), and then with higher 
optimization levels (e.g., gcc -O2 and –O3); in the latter case, the 
compiler fully unrolled the loops and software-pipelined the 
operations, in order to achieve higher overall performance.  

We also designed and implemented our own double-precision 
floating-point operators in VHDL and synthesized them on our 
target platform (a Xilinx EK-V6-ML605-G Virtex 6 FPGA) with 
a target frequency of 100 MHz.  

Table I reports the latencies of the operators. 

4.3 Application Profiling  
We profiled the software using one million data points of the data 
suite and a query size of 128. Since we are optimizing the DTW 
implementation for a specific query length, as determined by our 
medical application, we know that loops will be unrolled by a 
factor that does not exceed the query size (128 in our case). If we 
are running a multi-query instance of DTW, the unroll factor will 
be the least common multiple (LCM) of the query sizes.  

We identified several critical code regions, which are highlighted 
in Fig. 12(b). Based on our estimates, LBKeogh consumes 84.63% 
of computation cycles; the dynamic programming DTW 
computation consumes 12.44%; and Z-normalization consumes 
2.2%. The exact percentages vary with the loop unroll factor, but 
the general trend remains consistent. 

Table I. Latencies of double-precision floating-point operators 
in software (with and without pipelining) and hardware. 

4.4 Instruction Set Extension (ISEs)  
We tried to run a standard ISE identification and selection 
algorithm [21] on the critical kernels of the DTW code; 
unfortunately, it does not support floating-point ISEs. Instead, we 
identified and selected ISEs manually, rather than automatically; 
automating the identification and selection process for floating-
point ISEs is left open for future work.  

The four ISE candidates that we selected manually are: 

ISE-Norm: Main and LBKeogh perform Z-normalization, e.g., Eq. 
(7), accounting for 81.3% of total execution time. In Fig. 7, the 
average and standard deviation are updated on-the-fly for each 
new time-series datum, so the sums shown in Eqs. (5) and (6) are 
not computed outright, and are not part of this ISE.   

ISE-DTW: The recurrence relation at the core of the DTW 
dynamic programming algorithm (Eq. (4)) accounts for 12.44% of 
total computation cycles. 

ISE-Accum: In LBKeogh floating-point accumulation (a = a + b) 
accounts for 5.52% of the total computation cycles. The overhead 
of transmitting data to an ISE can impact performance. Compared 
to standard floating-point adder (a = b + c), the accumulator 
transmits one value (b) rather than two (b and c).  

ISE-SD: The SD function (Eq. (1) without the square root) 
accounts for 0.72% of computation cycles.  

4.5 ISE Synthesis 
We used the FloPoCo arithmetic core generator to convert each 
ISE to VHDL [4], which we then synthesized on our target FPGA 
platform. After synthesizing each operator, we can estimate the 
speedup attained through the ISEs. FloPoCo performs many 
optimizations on compound operators, for example, by 
eliminating internally redundant normalizations between operators 
[15, 26]; as well as other FPGA-specific optimizations [15].  

We enhanced FloPoCo in several respects. We introduced 
operator matching in floating-point pipelines; for example, 
consider (a+b)/(c*d); since the latencies of the floating-point 
adder and multiplier differ, registers are inserted to ensure that the 
resulting operations arrive at the divider at the same time. We also 
introduced ‘valid’ bit propagation, which allows unused stages of 
arithmetic operators to switch into a low-power mode, conserving 
energy. Lastly, we introduced a new floating-point comparator 
that selects the minimum of three values in ISE-DTW (Eq. (4)).  

Table II reports the latencies of the ISEs in software (pipelined 
and non-pipelined), with floating-point operators, and ISEs. In 
two cases (ISE-Norm and ISE-Accum), the ISE logic has a higher 
latency than the FPU-based implementation; this is because the 
ISE logic must wait for all data to arrive before the pipeline can 
start. The ISE logic is designed to enable software pipelining, 
where the objective is to maximize throughput, rather than to 
minimize latency.  

Operator 

Software 

FPU 
Non-pipelined 
(gcc -O0/O1) 

Pipelined 
(gcc -O2/O3) 

Add 
Sub 
Mul 
Div 

433 
488 
516 
498 

285 
345 
394 
360 

6 
6 
7 
19 

 



Table II. Latencies of ISEs in software (with and without 
pipelining), using floating-point operators, and specialized 
hardware ISE logic generated by FloPoCo. 

4.6 Performance Estimation 
We used standard profiling techniques to identify the performance 
bottlenecks in the DTW software [1]; profiling weights are 
assigned to control flow edges, and memory access latencies are 
based on coarse-grained estimates.  

We compiled the DTW software using a query length of 128 
using gcc 4.1.2 at optimization level –O3 (loops fully unrolled and 
software pipelined). Fig. 13 reports the percentage of execution 
time of different phases of the application as ISEs are introduced 
one-by-one. With no ISEs, normalization is critical; after speeding 
up normalization with ISE-Norm, DTW becomes critical. 
Introducing the three subsequent ISEs changes the critical code 
section. After introducing all four ISEs, normalization is once 
again critical, accounting for more than 50% of total execution 
time. Since ISE-Norm has already accelerated normalization, we 
stop here, as further acceleration would yield diminishing returns. 

5. PROCESSOR DESIGN 
To support double-precision floating-point operations and ISEs, 
we chose a Xilinx MicroBlaze, a 32-bit extensible RISC processor 
as the baseline. The MicroBlaze is a Harvard architecture with an 
in-order 5-stage pipeline and 32-bit general-purpose registers. It 
supports a single-precision floating-point ALU as a configuration 
option [28]. We added double-precision floating-point ALU 
operations (Table I) and application-specific accelerators (Table 
II) as ISEs, as shown in Fig. 14. 
Our evaluation platform is a Xilinx EK-V6-ML605-G Virtex 6 
development board; on this platform, the MicroBlaze operates at 
100 MHz [29]; we estimate that it would operate at around 1 GHz 
if it was synthesized using a standard cell design flow. 
 

 
Figure 13. Introducing ISEs significantly alters which 
computational kernels dominate application performance.  

 
Figure. 14. The MicroBlaze does not support double-precision 
floating-point operations as part of its instruction set, but they 
can be added as custom instruction set extensions.  

5.1 Custom ISE Operators and Interface 
The MicroBlaze has been optimized for performance and includes 
several interfaces including: Cache Link (CL), Fast Simple Link 
(FSL), Instruction/Data Local Memory Buses (I/D-LMB), and 
Instruction/Data OnChip Peripheral Buses (I-OPB) [30]. The 
point-to-point FLS provides a tightly coupled interface to the 
register file, allowing seamless integration of ISEs into the 
processor, without requiring pipeline modifications or affecting 
the critical path, as shown in Fig. 15.  
The FSL uses a single 32-bit Master/Slave interface with optional 
FIFO data buffers. Since we are using 64-bit double-precision 
floating-point operations, we separated data into 32-bit words. 
The interface includes 16-entry FIFO buffers. As the Microblaze 
operates on 32-bit words of data per cycle, we developed our own 
ISE operator model that uses finite state machines (FSMs) to 
manage data transfers. Different FSMs were created, depending 
on the number of data elements to transfer.  
Table III lists the critical path delay and area overhead the FSMs. 
Pop-k (Push-k) refers to an FSM that transfers k data elements, 
requiring k cycles. Tables I and II do not include these latencies, 
which affect both FPU and custom ISE logic.  
All ISEs were pipelined to match the system clock. The latency of 
executing each ISE includes its pipeline depth, plus the number of 
FSM cycles for pushing and popping, which transfer the data to 
and from the processor’s register file. Since ISEs operate on 64-
bit values, two cycles are required to read and write each value. 
For example, the total latency of ISE-DTW is (10 + 14 + 2 = 26 
cycles), noting that Eq. (4) has five inputs. 

  
Figure. 15. ISE interface, with dual-clock FIFOs and finite 
state machine (FSM) control. 

 
Table III. FSM I/O Interface (Fig. 15): critical path delay and 
area overhead. 
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ISE-Norm 
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ISE-Accum 
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433 
889 
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1575 
285 
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27 
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9 
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FSM Clock (ns) Slice Regs Slice LUTs LUT FF 
Pop-2 
Pop-4 
Pop-6 
Pop-10 
Push-1 
Push-2 

1.254 
1.045 
1.688 
1.703 
1.031 
1.316 

99 
228 
226 
494 
33 
68 

130 
290 
328 
520 
50 
68 

98 
291 
334 
525 
50 
68 

 



Table IV. Synthesis summary of the double-precision floating-
point arithmetic operators. 

Table V. Synthesis summary of the four ISEs introduced to 
accelerate the DTW application. 

5.2 Floating-point Operators and ISEs 
All double-precision floating-point operators and ISEs were 
synthesized as combinational operators, and then pipelined to 
meet a target frequency (delay) of 100 MHz (10ns). Tables IV and 
V report the synthesis results, including cycle count, delay, and 
FPGA resource usage. Among the basic operators, the comparator 
executes in a single-cycle, and does not require pipelining. 

6. EXPERIMENTAL RESULTS 
6.1 Experimental Setup 
We used a Xilinx EK-V6-ML605-G Virtex 6 development board 
for prototyping. It was connected to a desktop PC running Red 
Hat Enterprise Linux Workstation release 6.3 (Santiago) x86_64. 
We compiled the DTW application using gcc 4.1.2, and 
synthesized all custom hardware using Xilinx Embedded System 
Design Software version 12.4; power and energy estimates were 
obtained using Xilinx XPower Analyzer [31].  
The MicroBlaze configuration was set for single core running at 
100MHz with the PLB peripheral bus. Table VI lists the 
instruction and data cache configurations that we used. We also 
enabled 64-bit fixed-point multiplication, a hardware divider, and 
a branch target cache with 2048 entries. 
We used a query length of 128. Our input data set consisted of one 
million double-precision floating-point time-series data values, 
which exceeded FPGA’s block RAM capacity. We modified the 
linker script to map data sections to the 512MB external DDR3 
memory. As part of the configuration process, a PLB peripheral 
populates the DDR3 memory prior to executing the application. 

Table VI. MicroBlaze cache configurations. 

We introduced parameterized function calls into the source code 
to invoke the double-precision FPUs and ISEs; inline assembly 
separated data into 32-bit words and populated the FSL. For each 
invocation, the MicroBlaze was configured to execute a sequence 
of NOPs equal in length to the pipeline depth of the operator or 
ISE. At optimization levels -O2 and -O3 gcc fully unrolled loops 
and applied software pipelining to best utilize the FPU and ISEs.   

6.2 Results 
Fig. 16 reports the execution time of the DTW application running 
on several architectural configurations at varying gcc optimization 
levels. At -O3, four ISEs yield a 4.87x speedup compared to 
software execution, and 1.42x compared to the integrated FPU. 
Multiple ISEs are required before a speedup can be obtained over 
the FPU because each ISE accelerates one or two specific 
computations, while the FPU can execute any floating-point 
operation in the program. With few ISEs and no FPU, all other 
floating-point operations execute in software. Collectively, the 
four ISEs execute the vast majority of floating-point operations.  
Fig. 17 reports the peak power and energy consumption of 
different MicroBlaze configurations when running the application 
compiled with gcc at the -O3 optimization level. The ISEs 
compare 78% less energy than the baseline processor and 35% 
less than the baseline processor augmented with a pipelined FPU. 
The ISEs save power by executing floating-point computations 
more efficiently than the processor or the FPU, and by avoiding 
redundant data transfers. For example, consider ISE-Norm (Eq. 
(7)), which has six inputs and two outputs: 256 bits are 
transferred. When using the FPU, both the adder and multiplier 
require four inputs and two outputs, so 384 bits are transferred.  
Peak power is an upper bound over application execution, and is 
relatively flat across all processor configurations. The PLB bus, 
FPU, and ISEs do consume power when executing or idle, which 
accounts for the relatively small variations reported in Fig. 17. 
Table VII reports the peak power consumed by the operators.  

 
Figure. 16. Execution time of DTW processor configurations 
at varying compiler optimization levels. 
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Figure. 17. Energy and peak power consumption of different 
processor configurations. The DTW application was compiled 
using gcc at the -O3 optimization level. 

Table VII. Peak power consumption of FPU operators and 
custom ISE logic units.  

 
Figure. 18. FPGA resource usage (absolute and percentages) 
of different DTW processor configurations. 

Fig. 18 reports the resource usage of different DTW processor 
configurations running on the FPGA. Considering Slice LUTs, 
adding the FPU unit increases the area compared to the baseline 
by 2.1x, and all four ISEs increases the area by 2.8x. As DTW is 
not memory-intensive, and time-series data is naturally streaming, 
the FPU and ISEs make limited use of block RAMs. 

7. RELATED WORK 
7.1 DTW Accelerators 
Early processors introduced in the 1980s featuring custom DTW 
accelerators for speech recognition [10, 19, 20, 22]. More 
recently, low-power DTW accelerators were developed for body-
area sensor networks to accelerate activity recognition [17, 18]. 
These designs accelerate the dynamic programming kernel, but do 
not perform normalization, which becomes a bottleneck when the 
software is highly tuned. 

GPUs and FPGAs can accelerate DTW, improving performance 
over software by 2 and 4 orders of magnitude respectively [25]; 
these implementations perform normalization, but do not consider 
early abandoning through lower bounds. A more recent FPGA 
implementation adds lower bounding capabilities, including the 
reversal of the query and data role in LBKeogh (section 3.7) [27], 
thereby achieving higher throughput than prior work. 

The DTW-accelerator processor introduced here is aimed for the 
embedded market, where minimizing cost and power are the most 
important objectives. GPUs and FPGAs can easily achieve higher 
throughput than our proposed processor, but are several orders of 
magnitude more expensive in terms of both cost and power. The 
aforementioned DTW accelerators for body-area sensor networks 
are similar in cost to the DTW processor proposed here. 

7.2 ISEs and Floating-Point 
Most of the energy consumption in a 5-stage RISC pipeline is due 
to instruction fetch-and-decode and transferring data to and from 
the register file [3]. If an n-cycle software routine is replaced with 
an m-cycle ISE (m ≤ n), then n fetch-and-decode operations are 
replaced with one fetch-and-decode (the ISE itself) followed by 
m-1 state machine transitions in the ISE control logic. Amortized 
over the entire execution of a program, this can lead to significant 
energy savings, as is the case here.  

One recent study showed that ISEs could eliminate the energy and 
performance gaps between software and ASIC implementations of 
an H.264 encoding,  while automating the architectural design and 
verification process [8]. We believe that our approach achieves 
principally similar results for matching one 128-element query.   

Most work on ISE identification, selection, and synthesis has 
focused on fixed-point operators [21], and these algorithms have 
not been extended to handle floating-point ISEs; models to 
estimate the speedup and energy reduction attainable via floating-
point ISEs are needed. Possible improvements include operators 
with customized precision, merging operators to reduce area [2], 
and removing redundant internal normalizations [4, 15, 26]. 

Fractured floating-point units (FFPUs) [9] are fixed-point ISEs 
that accelerate software floating-point operations. FFPUs have a 
lower cost than floating-point operators and ISEs, but exhibit 
lower performance and higher energy consumption as a result.  

8. Conclusion and Future Work 
Customizable embedded processors can provide real-time, DTW 
in power-constrained environments, such as body area networks 
that perform physiological monitoring. The ISEs introduced in 
this paper achieve a speedup of 4.87x and a 78% reduction in 
energy consumption over software floating-point, and a 1.42x 
speedup and 35% reduction in energy compared to an FPU.  

The ISE identification and selection algorithm that we used [21] 
did not choose good floating-point ISE candidates. We believe 
that new floating-point aware ISE identification and synthesis 
methods are needed, and we plan to investigate them in the future. 
We also plan to study the use of fixed-point representations for 
DTW, and dynamic conversion between fixed- and floating-point 
in response to time series data characteristics. Based on our 
analysis, the normalization step necessitates the use of the double-
precision floating-point representation, regardless of the precision 
of the input data. This restriction could be lifted if an alternative 
implementation of normalization could be developed that is 
friendly to fixed-point numerical representations, even if some 
precision is lost during the process.  

FPU Op. Peak Power (W) ISE Logic Peak Power (W) 
Add/Sub 
Mul 
Div 
 

0.001 
0.007 
0.129 
 

ISE-Norm 
ISE-DTW 
ISE-Accum 
ISE-SD 

0.107 
0.043 
0.001 
0.02 

 



Sensor data in real-world applications are generally low precision 
fixed point, e.g., 8- or 12-bit. If we can reduce the precision of the 
intermediate normalized data, then we could ideally switch from a 
32-bit RISC processor to an 8- or 16-bit microcontroller. This 
would further reduce the cost of the system.  
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