
Instruction Set Extensions for Dynamic Time Warping
Joseph Tarango, Eamonn Keogh, Philip Brisk

Department of Compuer Science and Engineering
University of California, Riverside

Riverside, CA 92521
{jtarango, eamonn, philip}@cs.ucr.edu

ABSTRACT
Processor specialization through application-specific instruction
set customization can significantly improve performance while
reducing energy. Due to the costs associated with semiconductor
fabrication, specialized processors are only viable for products
with high production volumes. The emergence of low-cost sensor-
based computing products in recent years has created an urgent
need to process time-series data with the utmost efficiency.
Although most sensor data is fixed-point, the normalization
process—an absolute necessity for highly accurate similarity
search of time-series data—converts the data to floating-point in
order to avoid a loss in precision. The sensors that collect time-
series data are typically connected to low-power microcontrollers
or RISC processors sans floating point units. The computational
requirements of real-time similarity search would overwhelm such
processors. To address this concern, we introduce a specialized
instruction set for time-series data mining applications to a 32-bit
embedded processor, yielding a 4.87x performance improvement
and a 78% reduction in energy consumption compared to a highly
optimized software implementation.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose and
Application-based Systems–real-time and embedded systems.
H.2.8 [Information Systems]: Database Application – Data
Mining.

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Time-series, Similarity Search, Dynamic Time Warping (DTW),
Instruction Set Extension (ISE)

1. INTRODUCTION
Sensor-based embedded systems generate tremendous quantities
of time-series data. Mining large time-series data sets to extract
useful information is one of the foremost challenges falling under
the umbrella term “Big Data.” Although some time-series data can
be collected and stored onto a server, other data must be mined in
real-time, as the value of the data rapidly degrades otherwise.
Real-time time-series data mining applications include speech
recognition [10, 19, 20, 22], activity recognition [17, 18], robotics,
financial markets, user interfaces, and many others [23].

The Cisco Internet Business Solutions Group (IBSG) predicts that
25 billion devices will connect to the Internet by 2015 [6], and
that this number will double by 2020. The vast majority of these
devices are projected to be sensor-based embedded systems, i.e.,
the so-called “Internet of Things.” In principle, many of these
devices could and should be able to mine the time-series data
produced by their sensors in real-time; however, the cost of doing
so, both in terms of computation and energy, may be prohibitive.
Similarity search is the computational bottleneck in time-series
data mining. One recent empirical study compared twelve widely
cited time-series classification algorithms and showed that one in
particular, Dynamic Time Warping (DTW), performed the best
across forty-four data sets, including several based on human
physiological data such as gestures and heartbeats [5].

At its core, DTW is a dynamic programming algorithm with a
quadratic time complexity; as such, it has historically been too
computationally demanding for deployment in a real-time, low-
power, cost-constrained embedded system. Optimized software
DWT implementations quickly discard unlikely matches, thereby
eliminating the need to resort to the full-blown similarity search in
the vast majority of queries. The most advanced DTW
implementation published to date achieved an amortized constant
time complexity per data point [23]. When tested on a data set
comprising approximately 8.5 trillion electrocardiogram (ECG)
data points, the optimized implementation ran in 18.0 minutes,
while the prior state-of-the-art implementation took 49.2 hours.

This was a significant breakthrough, suggesting that DTW, in fact,
could perform similarity search on time-series data in real-time.
The experiment was performed using one core of a 2x Intel Xeon
Quad-Core E5620 2.40GHz with 12GB 1333MHz DDR3 ECC
unbuffered RAM, far from a cost-constrained embedded processor
with limited battery lifetime. Such a platform is certainly not
representative of the semiconductor devices that will provide the
computational core of the “Internet of Things.”

A typical “Internet of Things” device will run on a system-on-a-
chip (SoC), that integrates all of its computational needs. The SoC
will include some amount of specialized hardware for common
functions that are performance and/or energy critical, while all
other applications run in software. Prior work has shown that
application-specific processors with specialized instruction sets
(ASIPs) can almost equal the energy efficiency of application-
specific integrated circuits (ASICs) [8], without sacrificing
general-purpose functionality to support other applications.

Our opinion is that DTW falls into the category of functions that
justify hardware acceleration: it is computationally demanding
and applicable to a wide variety of SoC-based products, thereby
justifying the cost of dedicated silicon; an ASIP specialized for
DTW is therefore an attractive component for SoC integration.

This paper presents the design and evaluation of an ASIP
specialized for DTW. Our objective in designing this ASIP was to

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS'13, September 29 – October 4, 2013, Montréal,
Canada.
978-1-4799-1417-3/13/$31.00 ©2013 IEEE

mailto:@cs.ucr.edu

make it as low cost as possible, so that it could be deployed across
a wide variety of SoC products, from low-end to high-end, in
order to maximize market penetration. The simplest such product
would be a simple sensor+ASIP, and should not cost more than a
low-end microcontroller or RISC processor. On the high-end, the
processor should be capable enough for integration into the
semiconductor industry’s most advanced SoC products, such as
smart phones, tablet PCs, and SSD controllers.

We started with an extensible 32-bit RISC processor and source
code for a highly tuned DTW implementation written in C [23].
We identified four computational bottlenecks, each of which
could be replaced with an instruction set extension (ISE).
Empirically, we observed that introduction of further ISEs did
little to improve the performance or energy efficiency of the
ASIP, so we stopped with four. Compared to the baseline, the
ISEs increased performance by a factor of 4.87x while reducing
energy consumption by 78%, when prototyped on an FPGA.

2. TIME-SERIES SIMILARITY SEARCH
2.1 Definition
Let T = t1, t2, …, tm be a time-series, i.e., an ordered list of
numbers; in principle these numbers can be integer or real-valued,
fixed- or floating-point. In many cases, we consider only a shorter
region of T called a subsequence: Ti,k = ti, ti+1, …, ti+k. If there is
no ambiguity, we refer to a subsequence Ti,k as a candidate, C,
which eliminates unnecessary subscripting. The general objective
is to match a candidate C against a query Q.

In a real-time context, similarity search is performed periodically
(e.g., after a fixed number of sensor readings), over a relatively
recent window of activity. For example, when determining if a
patient is experiencing a heart attack right now, then the query
should focus on a recent window of candidate points; yesterday’s
data points will provide minimal information regarding today’s
heart attack, and querying them would drain the battery and
potentially divert computational resources that could be used for a
more prescient purpose.

2.2 Euclidean Distance
Let |C| = |Q| = n, the Euclidean Distance (ED) between C and Q,
denoted ED(Q, C), is

,ܳ)ܦܧ (ܥ = ඥ∑ ௜ݍ) − ܿ௜)ଶ௡

௜ୀଵ . (1)

If |C| = n, |Q| = m, and m < n, then ED can be computed over a
sliding window, as discussed above; requiring ED to be computed
n - m times to be exhaustive. The smallest ED computed over the
sliding window would be returned as the result.

As shown in Fig. 1(a), ED considers a one-to-one mapping in time
between the points on the two curves. Fig. 1(b) highlights ED’s
biggest weakness; it may miss time series that are similar to one
another, but with minor offsets in time. DTW, introduced next,
corrects this weakness.

2.3 Dynamic Time Warping
DTW is a quadratic-time dynamic programming algorithm: If
|C|=n and |Q|=m, then its time complexity is O(mn). In practice,
m << n, as the query is a relatively short pattern (e.g., a motif
representing a heart attack), while n is a much longer time series
(e.g., a human heartbeat over time). By considering multiple
alignments in context, DTW effectively generalizes ED; however,
this generalization comes at a significant cost in terms of runtime.

 (a) (b)

Figure 1. (a) ED (b) and DTW are similarity search metrics;
DTW enables realignment in time, while ED does not.

 (a) (b)

Figure 2. (a) Query (Q, red) and Candidate (C, blue) (b) DTW
warping path for alignment between Q and C.
DTW creates an n-by-n matrix M, where Mi,j = d(qi, cj) = |qi − cj|
is the distance between points qi and cj. DTW permits a one-to-
many alignment, which allows query point qi to align with one or
more candidate points, ci-k, ci-k+1, … ci+k-1, ci+k, as shown in Fig.
2.A warping path P is a contiguous set of matrix elements that
establishes a mapping between Q and C. The kth element of P is
denoted Pk = (i, j)k; a warping path has the form

P = p1, p2, …, pk, …, pK (2)

max(m,n) < K < m+n-1.

A warping path is subject to the following constraints:

 Boundary conditions: p1 = (1,1) and pK = (m,n); W starts and
finishes at diagonally opposite corners of the matrix.

 Continuity and Monotonocity: If pk =(x,y), then pk-1 = (x’,y’)
where 0 < x – x’ <1 and 0 < y – y’< 1; this restricts W to
(diagonally) adjacent cells, monotonically spaced in time.

The optimal warping path minimizes the warping cost

,ܳ)ܹܶܦ (ܥ = ݉݅݊ ቐ
ට∑ ெ(௣ೖ)಼

ೖసభ

௄
; (3)

the denominator compensates for paths having different lengths.

Let γ(i,j) denote the cumulative distance w1 to matrix element (i,j),
computed recursively, as follows:

,݅)ߛ ݆) = ݀൫ݍ௜ , ௝ܿ൯ (4)

݅)ߛ}݊݅݉	+ − 1, ݆ − 1), ݅)ߛ − 1, ݆), ,݅)ߛ ݆ − 1)}.

γ(i,j) is computed in terms of the cumulative distances of its
adjacent neighbors, preceding it on the warping path. The optimal
warping path is thereby computed using dynamic programming.

In many practical applications, the issue goes beyond finding the
best DTW alignment. For example, finding the best match of an
ECG motif representing a heart attack does not mean that a heart
attack is occurring; the quality of the match must be assessed.

2.4 Z-Normalization
The time series being compared need to be normalized; this
addresses the situation where the time-series are similar, but differ
in terms of amplitude, as shown in Fig. 2. The candidate and
query have near-identical shapes, but differ by approximately a
constant, i.e., qi = ci + k. If k is large then the ED metric will
suggest a large distance (and this will manifest itself in the DTW
calculation as well), even though the series have otherwise-
identical shapes. Z-Normalization addresses this issue, and is
applied to the time series prior to classification.

Without loss of generality, we will Z-normalize C. The arithmetic
mean and standard deviation of C are:

஼ߤ = ଵ
௡
∑ ܿ௜௡
௜ୀଵ , and (5)

஼ߪ = ට ଵ
௡ିଵ

∑ (ܿ௜ − ஼)ଶ௡ߤ
௜ୀଵ . (6)

Each data point ci is then replaced with a normalized counterpart

ܿ௜′ = ௖೔ିఓ಴
ఙ಴

 (7)

Prior work has shown that normalization is necessary to make
meaningful comparisons between time series, and failure to do so
can lead to erroneous results (i.e., false negatives) [11]. Each
subsequence must be normalized before making a comparison; it
is insufficient to normalize an entire dataset. When a sliding
window is used, the window itself must be re-normalized as as it
slides! We revisit this issue later in Section 3.1.

Even if the time series data are integers, Z-normalization yields
real values because of the division and square root operations in
Eqs. (5)-(7). Embedded microcontrollers and RISC processors
without floating-point units must execute Z-normalization and
subsequent DTW operations in software, as they generally do not
have integrated floating-point hardware; thus, the performance
and energy overheads become significant. Even with floating-
point units in-place, specializing the hardware implementation of
these calculations can result in significant improvements.

3. OPTIMIZED DTW IMPLEMENTATION
We assume a candidate window of size W, meaning that the query
is matched against the W most recent time series data points. Each
new sensor reading shifts the window by 1. Let R be the similarity
search interval, meaning that DTW is performed after every R
sensor readings, meaning we discard the R oldest data points to
make room in the window for the newly read data point.
In practice, most queries do not yield positive matches; numerous
enhancements have been published that quickly abandon DTW
before or during the dynamic programming phase. Our ASIP is
based on a recent software implementation of DTW that performs
many of these optimizations, which are described next.

 (a) (b)

Figure 3. (a) Un-normalized and (a) Z-normalized time series.
Z-normalization noticeably reduces the ED and DTW metrics.

3.1 Using the Squared Distance
ED and DTW compute square roots; however, this computation
does not alter the rankings of nearest neighbors relative to one
another because the functions are monotonic and concave.
Eliminating it improves performance and enables subsequent
optimizations; the square root from Z-Normalization, Eq. (6),
unfortunately, is still required. The Squared Distance (SD) refers
to the ED (Eq. (1)), with the square root removed.

3.2 Lower Bounds
Computationally efficient lower bounds that recognize non-
matching queries can preempt the full DTW computation. At least
18 lower bounds have been reported in past literature [23], three
of which are relevant to our implementation:

LBKim [14] shown in Fig. 4(a), computes the SD between the two
sequences first (A), minimum (B), maximum (C), and last (D)
points as the lower bound. The time complexity of LBKim is O(n)
because the query and candidate must be searched to find the
minimum and maximum values.

LBKimFL [14, 23] is a variant of LBKim that computes the SD
between the first (A) and last (D) points as a lower bound,
omitting the minimum and maximum points (B and C). This
reduces the time complexity to O(1). Z-normalization tends to
reduce the SD of the minimum and maximum points, so the loss
in terms of the tightness of the bound is minimal.

 LBKeogh [5, 7, 12], shown in Fig. 4(b) and below in Eq. (8), takes a
query Q and creates two other curves, L and U, that envelope Q.

௄௘௢௚௛(ொ,஼)ܤܮ = ∑ ቐ
(ܿ௜ − ௜ܷ)ଶ				݂݅	ܿ௜ > ௜ܷ
(ܿ௜ − ݂݅ܿ௜				௜)ଶܮ < ௜ܮ

݁ݏ݅ݓݎℎ݁ݐ݋					0

௡
௜ୀଵ (8)

The ED between C and the closest part of the envelope, rather
than the corresponding point of Q, is taken as a tight lower bound.
If the current sum of the SDs exceeds a threshold, indicating that a
match will not occur, then the similarity search between C and Q
can be abandoned early. The time complexity of LBKeogh is O(n).

3.3 Early Abandoning ED and LBKeogh
When computing the ED or LBKeogh, the current sum of the
squared differences can be compared to the best DTW value
computed thus far. If the computation exceeds the lower bound,
then the calculation can be stopped, knowing that there is no
possible way that the current match could. improve upon it, as
shown in Fig. 5.

 (a) (b)

Figure 4. (a) LBKim [14] and (b) LBKeogh [5, 7, 12].

Figure 5. ED early abandoning; in this example, we abandon
after summing the SD of 9 out of 32 pairs of data points [23].

CQ

We can early abandon at this point

 (a) (b)

Figure 6. (a) The DTW computation starts with LBKeogh
computed up-front. (b) As DTW completes from from K-1 to
K, the dashed line moves right; combining the contribution of
LBKeogh from the right of the dashed line (top) with the partial
DTW from the left of the dashed line (bottom), tightens the
bound as exact DTW values replace LBKeogh estimates [23].

3.4 Early Abandoning DTW
A full LBKeogh lower bound that does not prune the query does not
guarantee that the full DTW guarantees a match; however, the
LBKeogh result does not need to be discarded. As shown in Fig. 6,
the basic idea here is to incrementally compute DTW in the range
1…K, and add the partial accumulation to the LBKeogh contribution
from K+1 to n. In other words

(ଵ:௄ܥଵ:௄ܳ)ܹܶܦ + (9) (௄ାଵ:௡ܥ௄ାଵ:௡ܳ)௄௘௢௚௛ܤܮ

≤ ,(ଵ:௡ܥଵ:௡ܳ)ܹܶܦ

and the bound becomes tighter as K increases. If this lower bound
exceeds the best DTW value computed thus far, the calculation is
pruned and DTW can be abandoned [23].

3.5 Early Abandoning Z-Normalization
Early abandoning Z-normalization [23] incrementally computes a
lower bound such as ED or LBKeogh for each data point while that
point is being normalized. This enables the normalization step to
benefit from early abandonment as well. Since every subsequence
of a candidate must be normalized before comparing it to query, it
is possible to quickly compute the mean by keeping two running
sums with a lag of m values; the variance is computed similarly:

஼ߤ = ଵ
௠
൫∑ ܿ௜௞

௜ୀଵ − ∑ ܿ௜௞ି௠
௜ୀଵ ൯, and (10)

௖ଶߪ = ଵ
௠
൫∑ ܿ௜ଶ௞

௜ୀଵ −∑ ܿ௜ଶ௞ି௠
௜ୀଵ ൯ − ௖ଶ. (11)ߤ

Fig. 7 shows pseudocode that describes the early abandoning
process. A circular buffer X stores the candidate, C, which is
compared with the query, Q. The current window is an m-element
contiguous sub-array of the circular buffer. Each new sensor
reading (line 5) overwrites a value in the buffer and shifts the
window by one. In the previous iteration (lines 15, 16), the
running sums for the average (ex) and standard deviation (ex2)
were updated to remove the value that will be shifted out of the
window during the current iteration. ex and ex2 are then updated
to account for the new sensor value (line 6), and the mean and
standard deviation are updated incrementally (line 8).

Next, the ED for the current window is computed (lines 10-12)
including the possibility of early abandonment. Each data point in
the current window is normalized on-the-fly (line 11), but the
normalized value is not retained; since each new sensor reading
changes the average and standard deviation, the normalized value
of each data point changes as the window shifts. The process then
repeats as the next time series data point is read.

Algorithm Similarity Search
Procedure [L] = similaritySearch (T,Q)
1 best-so-far ← ∞,count← 0
2 Q ← z-normalize(Q)
3 while !next(T)
4 i← mod(count,m)
5 X[i] ←next(T)
6 ex← ex+ X[i], ex2← ex2+X[i]2

7 if count ≥ m-1
8 µ← mean(ex,ex2,m),σ← stdv(ex,ex2,m)
9 j← 0, dist← 0
10 while j < m and dist < bsf
11 dist← dist+Q[j]-(X[mod(i+1+j,m)]-µ)/σ
12 j← j+1
13 ex← ex-X[mod(i+1,m)]
14 ex2← ex2-X[mod(i+1,m)]2
15 count← count+1
Figure 7. Pseudocode for similarity search with early
abandoning Z-normalization [23].

One concern regarding this approach is the accumulation of
floating-point error, as time-series values are added and subtracted
from ex and ex2; to mitigate this factor, the Z-normalization resets
after one million subsequences, and renormalizes the window. It
is important to note that Eqs. (5) and (6) are rarely computed
outright, but are updated, for the current window, on-the-fly.

3.6 Reordering Early Abandoning
In Figs. 5 and 6, ED and/or SD are computed from left to right; in
principle, the distances between pairs of points can be computed
in any order. Empirically, it has been shown that sorting the data
points based on the absolute values of the Z-normalized query
values qi’, and processing them in that order, tends to reduce the
number of data points processed when early abandonment occurs.
This is not an absolute rule, and offers no theoretical guarantees of
improvement. Fig. 8 shows an example.

3.7 Reversing the Query/Data Role in LBKeogh
In Section 3.2 and Eq. (7), LBKeogh(Q,C) builds an envelope every
around the query. This is done once, as the query never changes.
In principle, we can build an envelope around the candidate,
rather than the query; however, the candidate is not fixed, as new
data points are added and removed with each new sensor reading.
The overhead of building the envelope, however, is quite high. If
all other lower bounds fail, we can build the envelope around the
sliding window and compute a lower bound LBKeogh(C,Q) as well,
as shown in Fig. 9, possibly pruning the query.

3.8 Cascading Lower Bounds
Cascading lower bounds, shown in Fig. 10, refers to the process
of trying all known lower bounds, one after another, sorted by
time complexity, hoping to achieve early abandonment; a pruning
rate of 99.9999% is reported using this approach [23].

 (a) (b)

Figure 8. (a) Standard early abandoning starts from the
leftmost data point and works to the right; (b) changing the
order in which data points are processed can lead to faster
and more effective pruning [23].

CQ

CU

L

Fully calculated LBKeogh

About to begin calculation of DTW

Partial
calculation of
DTW

Partial truncation of
LBKeogh

K = 0 K = 11

CC
Q Q

1
32 4

6
5

7

98
3

5
1 42

Standard early abandon ordering Optimized early abandon ordering

 (a) (b)

Figure 9. (a) LBKeogh(Q, C) and (b) LBKeogh(C, Q).

Figure 10. Cascading lower bounds; the tightness of each
bound is plotted as a function of its time complexity. Note that
LBKeoghEQ refers to Eq. (8), and max(LBKeoghEQ, LBKeoghEC)
refers to reversing the query role (Section 3.7) [23].
The overhead of applying all known lower bounds for DTW is
significant; Fig. 10 shows a representation of the lower bounds
that the authors of ref. [23] considered to be Pareto optimal based
on a ranking of their tightness as a function of time complexity;
only four lower bounds plus early-abandoning techniques are
considered to be Pareto optimal.

3.9 Sakoe-Chiba Band
The Sakoe-Chiba Band [24] (Fig. 11) limits the space of the DTW
computation to a narrow band in the matrix, guaranteeing that the
warping path deviates by at most R cells from the diagonal:

ℎܾ݅ܽܥ_݁݋݇ܽܵ ൜ ௜ܷ = :௜ି௥ݍ)ݔܽ݉ (௜ା௥ݍ
௜ܮ = :௜ି௥ݍ)݊݅݉ (௜ା௥ݍ . (12)

It reduces the computational cost of the computation, but
eliminates many warping paths from consideration, thereby
sacrificing the theoretical optimality of the DTW computation.

4. APPLICATION ANALYSIS
We started with a publicly available implementation of DTW, as
described in Section 3, written in C [23], and a publicly available
data set [13]. Figs. 12(a) and (b) show a call graph of the DTW
application, and its workflow; modules shown in color represent
subroutines that we accelerated with instruction set extensions.

4.1 Data Precision Analysis
Both the DTW source code and publicly available data set were in
double-precision (64-bit) floating-point format. Looking at the
data values, we realized that it could be converted to fixed-point
and/or lower-precision floating-point formats with no loss in
precision. We converted the data set and rewrote the source code
to use several different fixed-point (Q8.8, Q16.16, Q32.32) and
floating-point (half, single, and double precision) formats and ran
the application on a modern desktop PC; we observed erroneous
operation (e.g., no query matches) at the reduced precision levels.

Figure 11. The Sakoe-Chiba band [24] creates a tighter bound
around the query and prevents pathological warp patterns.

(a)

(b)

Figure. 12. (a) A call graph (b) and high-level control flow
graph illustrate the basic workflow of the DTW application.
Modules shown in color are computationally intensive, as
determined by profiling.

CU

L

UQ

L

0

1

O(1) O(n) O(nR)

LB_KimFL LB_KeoghEQ

max(LB_KeoghEQ, LB_KeoghEC)
Early_abandoning_DTW

LB_Kim
LB_YiTi

gh
tn

es
s

of

lo
w

er
 b

ou
nd

LB_Ecorner
LB_FTW DTW

LB_PAA

We modified the source code to track the arithmetic precision of
the data on an operator-by-operator basis. We observed that the Z-
normalized values of the candidate and query quickly approached
zero, within one hundred iterations. The primary culprits were the
floating-point multiplication, division, and square root operations.

To further understand the loss in precision, we implemented our
own floating-point operators and traced the intermediate values
after each sub-step. The normalization and rounding steps at the
end of the multiplication and division operators were the primary
loss cause for the loss in precision; the precision loss during
mantissa alignment for addition and subtraction was negligible.
Our square root operator used the Newton-Raphson method,
which repeatedly performs division, so all of the aforementioned
issues affected this operation as well. Reducing the precision of
the floating-point operations from double to single and half
yielded similar results, but with different rates of decay.

With a more restrictive dynamic range, the fixed-point operators
were thoroughly erroneous. Z-normalization rapidly zeroed out
most values leading to incorrect query matches.

For these reasons, we reverted back to the original C language
implementation with double-precision operations. At this point,
we were confident that fixed-point and lower-precision floating-
point operators introduce excessive error into the calculations, and
that double precision was the most appropriate choice.

4.2 Supporting Floating-point in Hardware
As discussed in Section 5, our target processor is an extensible 5-
stage RISC pipeline that does not natively support double-
precision floating-point instructions; however, we can introduce
them by extending the instruction set and integrating a double-
precision floating-point unit (FPU) into the architecture.
We started with a software floating-point library in C. In software,
floating-point operations are variable-latency; to estimate the
average latency, we executed each operation 100 times in a loop,
based on input data obtained from our DTW application, and
averaged the latencies. We did this twice: first, with low compiler
optimization levels (e.g., gcc -O0 and -O1), and then with higher
optimization levels (e.g., gcc -O2 and –O3); in the latter case, the
compiler fully unrolled the loops and software-pipelined the
operations, in order to achieve higher overall performance.

We also designed and implemented our own double-precision
floating-point operators in VHDL and synthesized them on our
target platform (a Xilinx EK-V6-ML605-G Virtex 6 FPGA) with
a target frequency of 100 MHz.

Table I reports the latencies of the operators.

4.3 Application Profiling
We profiled the software using one million data points of the data
suite and a query size of 128. Since we are optimizing the DTW
implementation for a specific query length, as determined by our
medical application, we know that loops will be unrolled by a
factor that does not exceed the query size (128 in our case). If we
are running a multi-query instance of DTW, the unroll factor will
be the least common multiple (LCM) of the query sizes.

We identified several critical code regions, which are highlighted
in Fig. 12(b). Based on our estimates, LBKeogh consumes 84.63%
of computation cycles; the dynamic programming DTW
computation consumes 12.44%; and Z-normalization consumes
2.2%. The exact percentages vary with the loop unroll factor, but
the general trend remains consistent.

Table I. Latencies of double-precision floating-point operators
in software (with and without pipelining) and hardware.

4.4 Instruction Set Extension (ISEs)
We tried to run a standard ISE identification and selection
algorithm [21] on the critical kernels of the DTW code;
unfortunately, it does not support floating-point ISEs. Instead, we
identified and selected ISEs manually, rather than automatically;
automating the identification and selection process for floating-
point ISEs is left open for future work.

The four ISE candidates that we selected manually are:

ISE-Norm: Main and LBKeogh perform Z-normalization, e.g., Eq.
(7), accounting for 81.3% of total execution time. In Fig. 7, the
average and standard deviation are updated on-the-fly for each
new time-series datum, so the sums shown in Eqs. (5) and (6) are
not computed outright, and are not part of this ISE.

ISE-DTW: The recurrence relation at the core of the DTW
dynamic programming algorithm (Eq. (4)) accounts for 12.44% of
total computation cycles.

ISE-Accum: In LBKeogh floating-point accumulation (a = a + b)
accounts for 5.52% of the total computation cycles. The overhead
of transmitting data to an ISE can impact performance. Compared
to standard floating-point adder (a = b + c), the accumulator
transmits one value (b) rather than two (b and c).

ISE-SD: The SD function (Eq. (1) without the square root)
accounts for 0.72% of computation cycles.

4.5 ISE Synthesis
We used the FloPoCo arithmetic core generator to convert each
ISE to VHDL [4], which we then synthesized on our target FPGA
platform. After synthesizing each operator, we can estimate the
speedup attained through the ISEs. FloPoCo performs many
optimizations on compound operators, for example, by
eliminating internally redundant normalizations between operators
[15, 26]; as well as other FPGA-specific optimizations [15].

We enhanced FloPoCo in several respects. We introduced
operator matching in floating-point pipelines; for example,
consider (a+b)/(c*d); since the latencies of the floating-point
adder and multiplier differ, registers are inserted to ensure that the
resulting operations arrive at the divider at the same time. We also
introduced ‘valid’ bit propagation, which allows unused stages of
arithmetic operators to switch into a low-power mode, conserving
energy. Lastly, we introduced a new floating-point comparator
that selects the minimum of three values in ISE-DTW (Eq. (4)).

Table II reports the latencies of the ISEs in software (pipelined
and non-pipelined), with floating-point operators, and ISEs. In
two cases (ISE-Norm and ISE-Accum), the ISE logic has a higher
latency than the FPU-based implementation; this is because the
ISE logic must wait for all data to arrive before the pipeline can
start. The ISE logic is designed to enable software pipelining,
where the objective is to maximize throughput, rather than to
minimize latency.

Operator

Software

FPU
Non-pipelined
(gcc -O0/O1)

Pipelined
(gcc -O2/O3)

Add
Sub
Mul
Div

433
488
516
498

285
345
394
360

6
6
7
19

Table II. Latencies of ISEs in software (with and without
pipelining), using floating-point operators, and specialized
hardware ISE logic generated by FloPoCo.

4.6 Performance Estimation
We used standard profiling techniques to identify the performance
bottlenecks in the DTW software [1]; profiling weights are
assigned to control flow edges, and memory access latencies are
based on coarse-grained estimates.

We compiled the DTW software using a query length of 128
using gcc 4.1.2 at optimization level –O3 (loops fully unrolled and
software pipelined). Fig. 13 reports the percentage of execution
time of different phases of the application as ISEs are introduced
one-by-one. With no ISEs, normalization is critical; after speeding
up normalization with ISE-Norm, DTW becomes critical.
Introducing the three subsequent ISEs changes the critical code
section. After introducing all four ISEs, normalization is once
again critical, accounting for more than 50% of total execution
time. Since ISE-Norm has already accelerated normalization, we
stop here, as further acceleration would yield diminishing returns.

5. PROCESSOR DESIGN
To support double-precision floating-point operations and ISEs,
we chose a Xilinx MicroBlaze, a 32-bit extensible RISC processor
as the baseline. The MicroBlaze is a Harvard architecture with an
in-order 5-stage pipeline and 32-bit general-purpose registers. It
supports a single-precision floating-point ALU as a configuration
option [28]. We added double-precision floating-point ALU
operations (Table I) and application-specific accelerators (Table
II) as ISEs, as shown in Fig. 14.
Our evaluation platform is a Xilinx EK-V6-ML605-G Virtex 6
development board; on this platform, the MicroBlaze operates at
100 MHz [29]; we estimate that it would operate at around 1 GHz
if it was synthesized using a standard cell design flow.

Figure 13. Introducing ISEs significantly alters which
computational kernels dominate application performance.

Figure. 14. The MicroBlaze does not support double-precision
floating-point operations as part of its instruction set, but they
can be added as custom instruction set extensions.

5.1 Custom ISE Operators and Interface
The MicroBlaze has been optimized for performance and includes
several interfaces including: Cache Link (CL), Fast Simple Link
(FSL), Instruction/Data Local Memory Buses (I/D-LMB), and
Instruction/Data OnChip Peripheral Buses (I-OPB) [30]. The
point-to-point FLS provides a tightly coupled interface to the
register file, allowing seamless integration of ISEs into the
processor, without requiring pipeline modifications or affecting
the critical path, as shown in Fig. 15.
The FSL uses a single 32-bit Master/Slave interface with optional
FIFO data buffers. Since we are using 64-bit double-precision
floating-point operations, we separated data into 32-bit words.
The interface includes 16-entry FIFO buffers. As the Microblaze
operates on 32-bit words of data per cycle, we developed our own
ISE operator model that uses finite state machines (FSMs) to
manage data transfers. Different FSMs were created, depending
on the number of data elements to transfer.
Table III lists the critical path delay and area overhead the FSMs.
Pop-k (Push-k) refers to an FSM that transfers k data elements,
requiring k cycles. Tables I and II do not include these latencies,
which affect both FPU and custom ISE logic.
All ISEs were pipelined to match the system clock. The latency of
executing each ISE includes its pipeline depth, plus the number of
FSM cycles for pushing and popping, which transfer the data to
and from the processor’s register file. Since ISEs operate on 64-
bit values, two cycles are required to read and write each value.
For example, the total latency of ISE-DTW is (10 + 14 + 2 = 26
cycles), noting that Eq. (4) has five inputs.

Figure. 15. ISE interface, with dual-clock FIFOs and finite
state machine (FSM) control.

Table III. FSM I/O Interface (Fig. 15): critical path delay and
area overhead.

ISE-NormBaseline ISE-Norm
ISE-DTW

ISE-Norm
ISE-DTW
ISE-Accum

ISE-Norm
ISE-DTW
ISE-Accum
ISE-ED

Normalization

DTW

FP Accumulation

ED

Other/Control Flow

100%

80%

60%

40%

20%

0

Profiling Results

Pe
rc

en
ta

ge
 o

f T
ot

al
 E

xe
cu

tio
n

T
im

e

ISE

Software

FPU
Custom
ISE Logic

Non-Pipelined
(gcc -O0/O1)

Pipelined
(gcc -O2/O3)

ISE-Norm
ISE-DTW
ISE-Accum
ISE-SD

802
1851
433
889

613
1575
285
712

27
40
9
18

31
26
12
16

FSM Clock (ns) Slice Regs Slice LUTs LUT FF
Pop-2
Pop-4
Pop-6
Pop-10
Push-1
Push-2

1.254
1.045
1.688
1.703
1.031
1.316

99
228
226
494
33
68

130
290
328
520
50
68

98
291
334
525
50
68

Table IV. Synthesis summary of the double-precision floating-
point arithmetic operators.

Table V. Synthesis summary of the four ISEs introduced to
accelerate the DTW application.

5.2 Floating-point Operators and ISEs
All double-precision floating-point operators and ISEs were
synthesized as combinational operators, and then pipelined to
meet a target frequency (delay) of 100 MHz (10ns). Tables IV and
V report the synthesis results, including cycle count, delay, and
FPGA resource usage. Among the basic operators, the comparator
executes in a single-cycle, and does not require pipelining.

6. EXPERIMENTAL RESULTS
6.1 Experimental Setup
We used a Xilinx EK-V6-ML605-G Virtex 6 development board
for prototyping. It was connected to a desktop PC running Red
Hat Enterprise Linux Workstation release 6.3 (Santiago) x86_64.
We compiled the DTW application using gcc 4.1.2, and
synthesized all custom hardware using Xilinx Embedded System
Design Software version 12.4; power and energy estimates were
obtained using Xilinx XPower Analyzer [31].
The MicroBlaze configuration was set for single core running at
100MHz with the PLB peripheral bus. Table VI lists the
instruction and data cache configurations that we used. We also
enabled 64-bit fixed-point multiplication, a hardware divider, and
a branch target cache with 2048 entries.
We used a query length of 128. Our input data set consisted of one
million double-precision floating-point time-series data values,
which exceeded FPGA’s block RAM capacity. We modified the
linker script to map data sections to the 512MB external DDR3
memory. As part of the configuration process, a PLB peripheral
populates the DDR3 memory prior to executing the application.

Table VI. MicroBlaze cache configurations.

We introduced parameterized function calls into the source code
to invoke the double-precision FPUs and ISEs; inline assembly
separated data into 32-bit words and populated the FSL. For each
invocation, the MicroBlaze was configured to execute a sequence
of NOPs equal in length to the pipeline depth of the operator or
ISE. At optimization levels -O2 and -O3 gcc fully unrolled loops
and applied software pipelining to best utilize the FPU and ISEs.

6.2 Results
Fig. 16 reports the execution time of the DTW application running
on several architectural configurations at varying gcc optimization
levels. At -O3, four ISEs yield a 4.87x speedup compared to
software execution, and 1.42x compared to the integrated FPU.
Multiple ISEs are required before a speedup can be obtained over
the FPU because each ISE accelerates one or two specific
computations, while the FPU can execute any floating-point
operation in the program. With few ISEs and no FPU, all other
floating-point operations execute in software. Collectively, the
four ISEs execute the vast majority of floating-point operations.
Fig. 17 reports the peak power and energy consumption of
different MicroBlaze configurations when running the application
compiled with gcc at the -O3 optimization level. The ISEs
compare 78% less energy than the baseline processor and 35%
less than the baseline processor augmented with a pipelined FPU.
The ISEs save power by executing floating-point computations
more efficiently than the processor or the FPU, and by avoiding
redundant data transfers. For example, consider ISE-Norm (Eq.
(7)), which has six inputs and two outputs: 256 bits are
transferred. When using the FPU, both the adder and multiplier
require four inputs and two outputs, so 384 bits are transferred.
Peak power is an upper bound over application execution, and is
relatively flat across all processor configurations. The PLB bus,
FPU, and ISEs do consume power when executing or idle, which
accounts for the relatively small variations reported in Fig. 17.
Table VII reports the peak power consumed by the operators.

Figure. 16. Execution time of DTW processor configurations
at varying compiler optimization levels.

Combinational

Operator Cycles
Clock
(ns)

Slice
Regs.

Slice
LUTs

LUT
FF

Add/Sub
Mul
Div
Compare

1
1
1
1

22.3
22.7
24.2
3.79

203
12
128
0

1627
761
523
121

1734
761
572
121

Pipelined

Operator Cycles
Clock
(ns)

Slice
Regs.

Slice
LUTs

LUT
FF

Add/Sub
Mul
Div

6
7
19

5.61
6.28
7.42

659
513
2841

910
1017
4637

950
413
1307

Combinational

Operator Cycles
Clock
(ns)

Slice
Regs.

Slice
LUTs

LUT
FF

ISE-Norm
ISE-DTW
ISE-Accum
ISE-SD

1
1
1
1

156
34.9
22.3
35.3

283
214
203
206

10672
1978
1627
2090

10758
2114
1734
2011

Pipelined

Operator Cycles
Clock
(ns)

Slice
Regs.

Slice
LUTs

LUT
FF

ISE-Norm
ISE-DTW
ISE-Accum
ISE-SD

23
14
6
10

7.42
8.33
5.61
6.17

3436
2270
659
1151

5515
2501
910
1263

6257
2970
950
1325

Parameter/Policy I-Cache D-Cache
Capacity
Cache Line Length
Allocation Policy
Associativity
Victim Buffer Size
Other

64KB
32 bytes
Read/Write Allocate
Direct-mapped
8 Victims
1 Stream

64 KB
32 bytes
Read/Write Allocate
Direct-mapped
8 Victims
Write-back

Figure. 17. Energy and peak power consumption of different
processor configurations. The DTW application was compiled
using gcc at the -O3 optimization level.

Table VII. Peak power consumption of FPU operators and
custom ISE logic units.

Figure. 18. FPGA resource usage (absolute and percentages)
of different DTW processor configurations.

Fig. 18 reports the resource usage of different DTW processor
configurations running on the FPGA. Considering Slice LUTs,
adding the FPU unit increases the area compared to the baseline
by 2.1x, and all four ISEs increases the area by 2.8x. As DTW is
not memory-intensive, and time-series data is naturally streaming,
the FPU and ISEs make limited use of block RAMs.

7. RELATED WORK
7.1 DTW Accelerators
Early processors introduced in the 1980s featuring custom DTW
accelerators for speech recognition [10, 19, 20, 22]. More
recently, low-power DTW accelerators were developed for body-
area sensor networks to accelerate activity recognition [17, 18].
These designs accelerate the dynamic programming kernel, but do
not perform normalization, which becomes a bottleneck when the
software is highly tuned.

GPUs and FPGAs can accelerate DTW, improving performance
over software by 2 and 4 orders of magnitude respectively [25];
these implementations perform normalization, but do not consider
early abandoning through lower bounds. A more recent FPGA
implementation adds lower bounding capabilities, including the
reversal of the query and data role in LBKeogh (section 3.7) [27],
thereby achieving higher throughput than prior work.

The DTW-accelerator processor introduced here is aimed for the
embedded market, where minimizing cost and power are the most
important objectives. GPUs and FPGAs can easily achieve higher
throughput than our proposed processor, but are several orders of
magnitude more expensive in terms of both cost and power. The
aforementioned DTW accelerators for body-area sensor networks
are similar in cost to the DTW processor proposed here.

7.2 ISEs and Floating-Point
Most of the energy consumption in a 5-stage RISC pipeline is due
to instruction fetch-and-decode and transferring data to and from
the register file [3]. If an n-cycle software routine is replaced with
an m-cycle ISE (m ≤ n), then n fetch-and-decode operations are
replaced with one fetch-and-decode (the ISE itself) followed by
m-1 state machine transitions in the ISE control logic. Amortized
over the entire execution of a program, this can lead to significant
energy savings, as is the case here.

One recent study showed that ISEs could eliminate the energy and
performance gaps between software and ASIC implementations of
an H.264 encoding, while automating the architectural design and
verification process [8]. We believe that our approach achieves
principally similar results for matching one 128-element query.

Most work on ISE identification, selection, and synthesis has
focused on fixed-point operators [21], and these algorithms have
not been extended to handle floating-point ISEs; models to
estimate the speedup and energy reduction attainable via floating-
point ISEs are needed. Possible improvements include operators
with customized precision, merging operators to reduce area [2],
and removing redundant internal normalizations [4, 15, 26].

Fractured floating-point units (FFPUs) [9] are fixed-point ISEs
that accelerate software floating-point operations. FFPUs have a
lower cost than floating-point operators and ISEs, but exhibit
lower performance and higher energy consumption as a result.

8. Conclusion and Future Work
Customizable embedded processors can provide real-time, DTW
in power-constrained environments, such as body area networks
that perform physiological monitoring. The ISEs introduced in
this paper achieve a speedup of 4.87x and a 78% reduction in
energy consumption over software floating-point, and a 1.42x
speedup and 35% reduction in energy compared to an FPU.

The ISE identification and selection algorithm that we used [21]
did not choose good floating-point ISE candidates. We believe
that new floating-point aware ISE identification and synthesis
methods are needed, and we plan to investigate them in the future.
We also plan to study the use of fixed-point representations for
DTW, and dynamic conversion between fixed- and floating-point
in response to time series data characteristics. Based on our
analysis, the normalization step necessitates the use of the double-
precision floating-point representation, regardless of the precision
of the input data. This restriction could be lifted if an alternative
implementation of normalization could be developed that is
friendly to fixed-point numerical representations, even if some
precision is lost during the process.

FPU Op. Peak Power (W) ISE Logic Peak Power (W)
Add/Sub
Mul
Div

0.001
0.007
0.129

ISE-Norm
ISE-DTW
ISE-Accum
ISE-SD

0.107
0.043
0.001
0.02

Sensor data in real-world applications are generally low precision
fixed point, e.g., 8- or 12-bit. If we can reduce the precision of the
intermediate normalized data, then we could ideally switch from a
32-bit RISC processor to an 8- or 16-bit microcontroller. This
would further reduce the cost of the system.

ACKNOWLEDGMENTS
This work was supported in part by NSF Grants CNS-1035603
and IIS-1161997. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the NSF.

REFERENCES
[1] Ball, T., and Larus, J. R., “Optimally profiling and tracing

programs,” ACM Trans. Programming Languages and Systems, vol.
16, no. 4, July, 1994, pp. 1319-1360. DOI=
http://dx.doi.org/10.1145/183432.183527

[2] Chong, Y. J. and Parameswaran, S., “Custom floating-point unit
generation for embedded systems,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 28, no. 5, May,
2009, pp. 638-650. DOI=
http://dx.doi.org/10.1109/TCAD.2009.2013999

[3] Dally, W. J., et al., “Efficient embedded computing,” Computer, vol.
41, no. 7, July 2008, pp. 27-32. DOI=
http://dx.doi.org/10.1109/MC.2008.224

[4] de Dinechin, F., and Pasca, B., “Designing custom arithmetic data
paths with FloPoCo,” IEEE Design and Test of Computers, vol. 28,
no. 4, July-Aug. 2011, pp. 18-27. DOI=
http://dx.doi.org/10.1109/MDT.2011.44

[5] Ding, H., et al., “Querying and mining of time series data:
experimental comparison of representations and distance measures,”
Proceedings of the VLDB Endowment, vol. 1, no. 2, Aug. 2008, pp.
1542-1552. URL= http://dl.acm.org/ citation.cfm?id=1454226

[6] Evans, D., “The Internet of Things: How the Next Evolution of The
Internet Is Changing Everything,” Cisco Internet Business Solutions
Group. White Paper. April, 2011. URL=
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411F
INAL.pdf

[7] Fu, A. W-C., et al., “Scaling and time warping in time series
querying,” International Journal on Very Large Data Bases, vol. 17,
no. 4, July, 2008, pp. 899-921. DOI=
http://dx.doi.org/10.1007/s00778-006-0040-z

[8] Hameed, R., et al., “Understanding sources of inefficiency in
general-purpose chips,” Comm. ACM, vol. 54, no. 10, Oct. 2011, pp.
85-93. DOI= http://dx.doi.org/10.1145/2001269. 2001291

[9] Hockert, N., and Compton, K., “Improving floating-point
performance in less area: fractured floating point units (FFPUs),”
Journal of Signal Processing Systems, vol. 67, no. 1, April, 2012, pp.
31-46. DOI= http://dx.doi.org/10.1007/ s11265-010-0561-y

[10] Iwata, T., et al., “A speech recognition processor,” IEEE Int. Solid-
State Circuits Conf. (ISSCC ’83), pp. 120-121, Feb. 23-25, 1983,
DOI= http://dx.doi.org/10.1109/ISSCC.1983. 1156535

[11] Keogh, E., and Kasetty, S., “On the need for time series data mining
benchmarks: a survey and empirical demonstration,” Journal of Data
Mining and Knowledge Discovery, vol. 7, no. 4, Oct. 2003, pp. 349-
371. DOI= http://dx.doi.org/ 10.1023/A:1024988512476

[12] Keogh, E., et al., “Supporting exact indexing of arbitrarily rotated
shapes and periodic time series under Euclidean and warping
distance measures,” International Journal on Very Large Data
Bases, vol. 18, no. 3, June, 2009, pp. 611-630. DOI=
http://dx.doi.org/10.1007/s00778-008-0111-4

[13] E. Keogh, et al., “The UCR Time Series Classification/Clustering
Homepage,”
URL=http://www.cs.ucr.edu/~eamonn/time_series_data/

[14] Kim, S-W., Park, S., and Chu, W. W., “An index-based approach for
similarity search supporting time warping in large sequence
databases,” 17th Int. Conf. Data Engr. (ICDE ’01), pp. 607-614, Apr.
2-6, 2001, DOI= http://dx.doi.org/10.1109/ICDE.2001.914875

[15] Langhammer, M., “Floating-point datapath synthesis for FPGAs,”
Int. Conf. Field Programmable Logic and Applications (FPL ’08),
pp. 355-360, Sep. 8-10, 2008, DOI=
http://dx.doi.org/10.1109/FPL.2008.4629963

[16] Lemire, D., “Faster retrieval with a two-pass dynamic-time-warping
lower bound,” Pattern Recognition, vol. 42, no. 9, Sep. 2009, pp.
2169-2180. DOI= http://dx.doi.org/10.1016/j.patcog.2008.
11.030

[17] Loftian, R., and Jafari, R., “An ultra-low power hardware accelerator
architecture for wearable computers using dynamic time warping,”
Design Automation and Test in Europe (DATE ’13), pp. 913-916,
Mar. 18-22, 2013, DOI= http://dx.doi.org/10.7873/DATE.2013.192

[18] Loftian, R., and Jafari, R., “A low power wake-up circuitry based on
dynamic time warping for body sensor networks,” Int. Conf. Body
Sensor Networks (BSN ’11), pp. 83-88, May 23-25, 2011, DOI=
http://dx.doi.org/10.1109/BSN.2011.43

[19] Lowy, M., et al., “An architecture for a speech recognition system,”
IEEE Int. Solid-State Circuits Conf. (ISSCC ’83), pp. 118-119, Feb.
23-25, 1983, DOI= http://dx.doi.org/10.1109/ISSCC.1983.1156528

[20] Owen, R. E., “A VLSI dynamic time warp processor for connected
and isolated word speech recognition,” IEEE Int. Conf. Acoustics,
Speech, and Signal Processing (ICASSP ’85), pp. 985-988, Apr. 26-
29, 1985, DOI= http://dx.doi.org/10.1109/ICASSP.1985.1168159

[21] Pozzi, L., Atasu, K., and Ienne, P., “Exact and approximate
algorithms for the extension of embedded processor instruction sets,”
IEEE Trans. CAD of Integrated Circuits and Systems, vol. 25, no. 7,
July 2006, pp. 1209-1229. DOI=
http://dx.doi.org/10.1109/TCAD.2005.855950

[22] Quenot, G., et al., “A dynamic time warp VLSI processor for
continuous speech recognition,” IEEE Int. Conf. Acoustics, Speech,
and Signal Processing (ICASSP ’86), pp. 1549-1552, Apr. 7-11,
1988, DOI= http://dx.doi.org/10.1109/ ICASSP.1986.1168945

[23] Rakthanmanon, T., et al., “Searching and mining trillions of time
series subsequences under dynamic time warping,” 18th ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD
’12), pp. 262-270, Aug. 12-16, 2012 DOI=
http://dx.doi.org/10.1145/2339530.2339576

[24] Sakoe, H., and Chiba, S. “Dynamic programming optimization for
spoken word recognition,” IEEE Trans. Acoustics, Speech, and
Signal Processing, vol. 26, no. 1, Feb. 1978, pp. 43-49, DOI=
http://dx.doi.org/10.1109/ TASSP.1978.1163055

[25] Sart, D., et al., “Accelerating dynamic time warping subsequence
search with GPUs and FPGAs,” 10th IEEE Int. Conf. Data Mining
(ICDM ’10), pp. 1001-1006, Dec. 13-17, 2010, DOI=
http://dx.doi.org/10.1109/ICDM.2010.21

[26] Sethia, A., et al., “A customized processor for energy efficient
scientific computing,” IEEE Trans. Computers, vol. 61, no. 12, Dec.
2012, pp. 1711-1723. DOI= http://dx.doi.org/10.1109/TC.2012.144

[27] Wang, Z., et al., “Accelerating subsequence similarity search based
on dynamic time warping distance with FPGA,” ACM/SIGDA Int.
Symp. Field Programmable Gate Arrays (FPGA ’13), pp. 53-62,
Feb. 11-13, 2013, DOI= http://dx.doi.org/10.1145/2435264.2435277

[28] Xilinx, "Virtex-6 User Guide Xilinx Corporation," 2010.

[29] Xilinx, "MicroBlaze Processor Reference Guide," October 2010.

[30] Xilinx, "LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c),"
April 2010.

[31] Xilinx, "Xilinx Power Tools Tutorial UG733," July 25 2010.

http://dx.doi.org/10.1145/183432.183527
http://dx.doi.org/10.1109/TCAD.2009.2013999
http://dx.doi.org/10.1109/MC.2008.224
http://dx.doi.org/10.1109/MDT.2011.44
http://dl.acm.org/
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411F
http://dx.doi.org/10.1007/s00778-006-0040-z
http://dx.doi.org/10.1145/2001269.
http://dx.doi.org/10.1007/
http://dx.doi.org/10.1109/ISSCC.1983.
http://dx.doi.org/
http://dx.doi.org/10.1007/s00778-008-0111-4
http://www.cs.ucr.edu/~eamonn/time_series_data/
http://dx.doi.org/10.1109/ICDE.2001.914875
http://dx.doi.org/10.1109/FPL.2008.4629963
http://dx.doi.org/10.1016/j.patcog.2008.
http://dx.doi.org/10.7873/DATE.2013.192
http://dx.doi.org/10.1109/BSN.2011.43
http://dx.doi.org/10.1109/ISSCC.1983.1156528
http://dx.doi.org/10.1109/ICASSP.1985.1168159
http://dx.doi.org/10.1109/TCAD.2005.855950
http://dx.doi.org/10.1109/
http://dx.doi.org/10.1145/2339530.2339576
http://dx.doi.org/10.1109/
http://dx.doi.org/10.1109/ICDM.2010.21
http://dx.doi.org/10.1109/TC.2012.144
http://dx.doi.org/10.1145/2435264.2435277

