
Accelerating the Dynamic Time Warping Distance
Measure using Logarithmetic Arithmetic

Joseph Tarango, Eamonn Keogh, Philip Brisk
University of California, Riverside

Department of Computer Science and Engineering
Riverside, CA, USA

{jtarango, eamonn, philip}@cs.ucr.edu

Abstract—This paper describes an application-specific
embedded processor with instruction set extensions (ISEs) for the
Dynamic Time Warping (DTW) distance measure, which is
widely used in time series similarity search. The ISEs in this
paper are implemented using a form of logarithmic arithmetic
that offers significant performance and power/energy advantages
compared to more traditional floating-point operations.

Keywords—Time series; similarity search; application-specific
processor; Instruction Set extension (ISE); Euclidean Distance
(ED); Dynamic Time Warping (DTW); floating-point arithmetic;
logarithmic arithmetic

I. INTRODUCTION
Subsequence similarity search (also known as time series

similarity search) is the task of finding a region within a much
longer time series that matches a specified query time series
within a given threshold. It is useful in its own right as an
exploratory tool, and it is the core subroutine in many higher-
level data mining tasks such as motif discovery, anomaly
detection, association discovery, and classification.

One simple and straightforward distance measure for time
series similarity is Euclidean Distance (Fig. 1a), which
considers a one-to-one mapping in time between the points on
the two time series. While more than one hundred different
distance measures for time series similarity have been
proposed for this task, there is increasing empirical evidence
that Dynamic Time Warping (DTW, Fig. 1b), which includes
ED as a special case, is the best measure across a wide range of
domains, from robotics to medicine [9]. Unlike ED, DTW can
find similarities between time series that have relative minor
offers in time. Given DTW’s usefulness and ubiquity, there has
been a large community-wide effort to mitigate its relative
lethargy in the last decade.

 (a) (b)

Fig. 1. Euclidean Distance (a) and Dynamic Time Warping (DTW) (b) are
distance measures for time series similarity search. DTW enables realignment
in time, while Euclidean Distance does not.

DTW is expected to play a central role in the emerging
Internet of Things (IoT), in which low-cost sensor-based
devices connected to the Internet produce time-series data. A
representative device could be a small wearable computer that
performs real-time physiological monitoring. It must be able to
generate and analyze time-series data in real-time, while
minimizing energy consumption to maximize battery lifetime.

IoT devices are likely to be realized using microcontroller-
based SoCs in order to minimize cost and power. Such an SoC
could benefit from application-specific customization for time
series similarity search, due to its overall ubiquity; however,
full-blown ASIC accelerators would likely be too large and too
costly. A cheaper solution is to customize the microcontroller
at the core of the SoC with a small set of application-specific
instruction set extensions (ISEs) that offer much of the desired
performance and/power energy benefits that one would obtain
from an ASIC, but at a fraction of the cost [7].

This paper explores the use of logarithmic arithmetic, rather
than floating-point, in a set of four ISEs that have already been
shown to be beneficial for DTW. At the highest compiler
optimization level (gcc -O3), the logarithmic ISEs improved
performance and energy consumption by identical factors of
1.8x compared to traditional floating-point ISEs.

II. RELATED WORK
DTW was introduced in 1968 for speech processing [8];

since then, it has been found useful for time series similarity
search in many application domains. The DTW measure can be
computed in quadratic time using dynamic programming. In
the context of an IoT device, DTW is invoked each time a
signal is sampled for each query that the sample time series is
being matched against. The overhead is prohibitive for use in a
power- and resource-constrained context such as IoT.
Consequently, there has been a wealth of work that tries to
perform similarity search in a way that avoids computing DTW
when more efficient analyses can prove that the current time
series subsequence and query exceed the threshold for a match.

Proposed speedup techniques include early abandoning
strategies, lower-bound based pruning, indexing and
embedding into a lower dimensional metric space [9]; however
recent work has argued that we are now close to exhausting all
possible speedup from software, and that we must turn to
hardware-based solutions [5].

Ref. [5] argues that as DTW subsequence search is
carefully optimized, an increasingly large fraction of the time is
spent in Z-normalizing each subsequence before it is passed to
the DTW function. Z-Normalization ensures that the query
and the subsequence have the same mean and standard
deviation, and are thus commensurate. Ref. [5] demonstrates
that is possible to do the Z-Normalization in an online fashion,
and moreover, that it is possible to interleave the early
abandoning calculations with the online Z-normalization. In
other words, DTW (or a lower bound of DTW used for early
abandoning) can be computed incrementally while Z-
normalizing the same data point. Thus, early abandoning
prunes not just the distance calculation step, but subsequent
normalization steps.

Ref. [5] demonstrated notable performance improvements
on a desktop PC. The code was written in C and used double-
precision floating-point arithmetic. In the embedded domain,
Ref. [7] ported the software to an embedded processor and
introduced four floating-point ISEs for acceleration; the system
was prototyped and evaluated using an FPGA. At the highest
compiler optimization level (gcc -O3), the floating-point ISEs
improved performance by a factor of 1.4x and energy
consumption by a factor of 2.9x compared a baseline variant of
the processor which included a floating-point ALU.

The contribution of this work can be best viewed as an
extension to Ref. [7]. In Ref. [7], the ISEs were implemented
using compound floating-point operators that were optimized
for an FPGA implementation by the FloPoCo arithmetic
compiler [2]. This work replaces the floating-point operations
within each ISE with operations based on logarithmetic
arithmetic; the result is further improvements in performance
and energy consumption by identical factors of 1.8x.

III. FLOATING-POINT ISES FOR TIME SERIES SIMILARITY
SEARCH BASED ON DTW

Table I lists the four ISEs reported in Ref. [7]: ISE-Norm,
ISE-DTW, ISE-Accum, and ISE-SD. In the discussion that
follows the two time series whose similarity is being measured
are the query Q and the candidate C; qi and ci are the ith
respective data points of the query and candidate.

ISE-Norm is normalization each candidate data point ci; ci’ is
the normalized data point. The mean µC and standard deviation
σC of the candidate data point values are computed in an online
fashion as described in Ref. [5, Section 4.2.1].

ISE-DTW is the recurrence relation at the core of the dynamic
programming algorithm that computes DTW. The recurrence
relation computes γ(i,j), which is the minimum cost warping
path between sub-query Q1..i = {q1, …, qi} and sub-candidate
C1..j = {c1, …, cj}, and d(qi, cj) = |qi - cj| is the distance between
points qi and cj.

TABLE I. THE FOUR FLOATING-POINT ISES IDENTIFIED IN REF. [7].

ISE-Accum is a floating-point accumulation operation that is
called frequently by the LBKeogh [4] lower bound; as described
in Ref. [5], computation of LBKeogh can be interleaved with
online Z-normalization for better performance.

ISE-SD: The squared difference of two points is part of the
computation for the Euclidean Distance measure. LBKeogh
computes the Euclidean Distance between the candidate C and
the closer among a pair of auxiliary sequences {U, L}, which
form upper and lower bounds on the query Q.

IV. FLOATING-POINT AND LOGARITHMIC ARITHMETIC
The floating-point and logarithmic number formats used in

the ISEs described in this paper are based on representations
used in the FloPoCo compiler [2]; the floating-point operations
and ISEs are not compliant with the IEEE-754 standard.

A. Floating-Point Number Format
A floating-point number P is a tuple P = (Z, s, E, M),

where Z is a two-bit exception field, s is the sign bit, E is the
exponent, and M is the mantissa; let e = |E| and m = |M| be the
number of bits in the exponent and mantissa respectively. The
exception values are 00 for zero, 01 for normal numbers, 10 for
infinity, and 11 for not-a-number (NaN).

A normalized mantissa has a hidden ‘1’ that is not
explicitly encoded, so the actual value is 1.M, where the m
mantissa bits represent the fractional part of the number. The
range of a normalized mantissa is

 1 ≤ 1.𝑀 ≤ 2 − 2!!. (1)

For sake of brevity, we do not discuss denormalized mantissas.

 The exponent E is base-2 and a bias of 𝐵 = 2!!! − 1.
When Z = 01, the value p represented by a floating-point
number P is

 𝑝 = −1 ! 1.𝑀 ×2!! !!! . (2)

B. Logarithmic Arithmetic
The key idea behind logarithmic number systems is to

represent a positive value X by its logarithm, logX. The
following three identifies explain several key advantages to
using logarithmic representations:

 𝑙𝑜𝑔 𝑋𝑌 = 𝑙𝑜𝑔𝑋 + 𝑙𝑜𝑔𝑌, (3)

 log !
!
= 𝑙𝑜𝑔𝑋 − 𝑙𝑜𝑔𝑌, and (4)

 log 𝑋! = 𝑎𝑙𝑜𝑔𝑋. (5)

In other words, multiplication, division, and exponentiation in
a logarithmic number system can be implemented using fixed-
point addition, subtraction, and multiplication respectively.

 Addition and subtraction in a logarithmic number system
are somewhat more complicated:

 𝑙𝑜𝑔 𝑋 ± 𝑌 = 𝑙𝑜𝑔𝑋 + 𝑙𝑜𝑔 1 ± 2!"#$!!"#$. (6)

The right hand-term is typically implemented by multipartite
table lookup and addition [3]; optimizing hardware designs for
this term has been an active resarch area since the 1970s [6].

C. Logarithmic Number Format
A logarithmic number L is a tuple L = (Z, s, I, F), where Z

is a two-bit exception field (identical to the floating-point
format), s is the sign bit, and I and F are the integral and
fractional parts of the value of logX, which is represented as a
two’s complement fixed-point number. When Z = 01, the value
l represented by a floating-point number L is

 𝑙 = −1 ! 𝐼.𝐹 = −1 !𝑙𝑜𝑔𝑋. (7)

D. Handling Error Accumulation
The online Z-normalization approach described in Ref. [5]

is susceptible to the cumulative accumulation of floating-point
error. Ref. [5] proposes to flush the accumulated error each
time one million new time series data points are processed. To
flush, the online Z-normalization is abandoned for the current
candidate subsequence, and an offline (exact) Z-normalization
is computed instead. When subsequent data points arrive, the
online Z-normalization can then be resumed.

Our approach is somewhat different, and requires a detailed
accounting of the bits in both the floating-point and logarithmic
number formats. In the floating-point number format, e = 11
and f = 52; in the logarithmic number format, there are 11
integral bits and 52 fractional bits. With the sign and exception
bits, there are 66 bits in total. In our implementation, the
exception bits are computed internally by the ISEs, along with
a 67th valid bit, that is used for energy management. Pipeline
stages that are not in use are shut down to conserve dynamic
energy, and the valid bit is turned off; otherwise, it remains on.
The valid bit serves as an extra guarantee that the staging,
pipeline, and finishing registers always hold correct values.

If the valid bit is not set, the data produced by the ISE can
be ignored. If it is set, a flush is triggered if the exception bits
are infinity or NaN. If no flush is triggered, the result is
transmitted back to the processor.

V. LOGARITHMIC ISES FOR DTW
The four ISEs listed in Table I were redesigned in the

following way. Each data element enters and leaves each ISE
in double-precision IEEE-754 floating-point format. Internally,
the data element is converted to the logarithmic format from
Section IV.C, the ISE operations are then performed using
logarithmic operations, and the result is then converted back to
the IEEE-754 compliant format. This ensures that all floating-
point operations performed outside of the ISEs are IEEE-754
compliant and completely portable across processors.

The conversions between the double-precision IEEE-754
floating-point and logarithmic format in both directions were
implemented using multipartite table lookup and addition [3].
Addition and subtraction in the logarithmic format were
implemented as described in Ref. [1]. Multiplication (squaring
for ISE-SD) and division (ISE-Norm) are implemented using
64-bit fixed-point adders and subtractors respectively.

ISE-DTW, which includes a 3-way minimum operation, is
more complex. The three input values γ(i-1, j-1), γ(i-1, j), and
γ(i, j-1) are converted from the double-precision IEEE-754
floating-point format to the FloPoCo floating-point format
described in Section IV.A; the minimum of the three values is
computed in this format, and then converted to the logarithmic
format. The two other input parameters qi and cj are converted
directly to the logarithmic format; (qi - cj)2 is then computed
and added to the minimum value in the logarithmic format. The
result is then converted back to the double-precision IEEE-754
floating-point format and returned to the processor.

For all ISEs, the 64-bit result that is sent back to the
processor via the 64-bit FIFO interface is always in double-
precision IEEE-754 floating-point format. A post-processing
stage at the end of each ISE examines the two except bits and
converts the value to NaN (as defined by the IEEE-754 format)
if an exception occurs. After invoking each ISE, the software
checks the result to see if it is NaN. If so, a flush is triggered
and the query is immediately re-normalized offline. Online
normalization resumes when the next data point is sampled.

VI. EXPERIMENTAL SETUP
We prototyped the processor on a Xilinx EK-V6-ML605-G

Virtex 6 development board using a MicroBlaze soft processor,
which supports ISEs. The development board was connected to
a desktop PC running Windows 7 x64. We compiled the DTW
application using gcc 4.1.2, and synthesized all custom
hardware using Xilinx Embedded System Design Software
version 12.4; power and energy estimates were obtained using
Xilinx XPower Analyzer [10].

The MicroBlaze runs at 100MHz and uses the PLB
peripheral bus. Table II lists the instruction and data cache
configurations that we used, which is the same as Ref. [7]. We
enabled 64-bit fixed-point multiplication, a hardware divider,
and a branch target cache with 2048 entries.

Four processor configurations are used in our experiments.
The Base processor configuration is described above. Lacking
a floating-point unit (FPU), all floating-point operations are
implemented in software. Base-FPU includes a pipelined FPU
which is accessed through ISEs for all standard floating-point
operations. DTW-FP includes the four ISEs, implemented
using double-precision floating-point arithmetic. It does not
include an FPU, so all arithmetic operations that operate on
floating-point data elements and are not included in an ISE are
implemented in software. DTW-LOG includes the same four
ISEs implemented using logarithmic arithmetic as described in
Section V. It does not include an FPU. Arithmetic operations
that are not included in the four ISEs are implemented in
software using a double-precision IEEE-754 compliant library.

The query length was set to 128. The input data set had one
million double-precision floating-point time-series data values,
which exceeded the FPGA’s block RAM capacity. We
modified the linker script to map data sections to the 512MB
external DDR3 memory on the development board. As part of
the configuration process, a PLB peripheral populates the
DDR3 memory prior to executing the application.

TABLE II. MICROBLAZE INSTRUCTION AND DATA CACHE
CONFIGURATIONS.

We selected the point-to-point Fast Simple Link (FSL) to
provide a communication interface between the MicroBlaze
register file and ISEs implemented as hardware accelerators.
The FSL uses a 32-bit Master/Slave interface with optional
FIFO data buffers; thus, each data element was separated into
two 32-bit words. We created a set of Finite State Machines
(FSMs) to transfer different numbers of data elements to/from
the processor’s register file, based on the needs of each ISE.
Fig. 2 depicts the ISE interface. The latency of executing one
ISE includes its pipeline depth plus the number of FSM cycles
required for data transfers.

We introduced parameterized function calls into the source
code to invoke calls to the FPU (for Base-FPU) and ISEs (for
DTW-FP and DTW-LOG). Inline assembly separated data
into 32-bit words and populated the FSL. For each invocation,
the MicroBlaze was configured to execute a sequence of NOPs
equal in length to the pipeline depth of the operator or ISE. At
optimization level -O3 gcc unrolled loops and applied software
pipelining to best utilize the FPU and FP ISEs; under the
logarithmic number system, ISE-DTW required two cycles
(ignoring data transfer overhead) while the other three ISEs
required one cycle.

Our experimental setup is aligned as closely as possible to
the prior work described in Ref. [1], which introduced the
DTW-FP processor, which accelerates similarity search using
DTW with using double-precision floating-point ISEs.

VII. EXPERIMENTAL RESULTS

A. FP and LNS ISEs
Figs. 3 and 4 report the latency and area of the FPU and all

four ISEs implemented using FP and logarithmic arithmetic.
The logarithmic ISEs have far lower latencies than the floating-
point ISEs, and are significantly smaller as well. Floating-point
operations incur extra overhead due to mantissa alignment
(shifting), normalization (shifting), and rounding; the overhead
of the the logarithmic operators is much smaller in comparison.

Fig. 2. ISE interface with dual-clock FIFOs and finite state machine (FSM)
control [7, Fig. 15].

Fig. 3. Latencies of FPU operations (for the Base-FPU) processor
configuration and the floating-point and logarithmic ISEs (for the DTW-FP
and DTW-LOG processor configurations).

Fig. 4. Area (FPGA resource usage) for the FPU operations and the floating-
point and logarithmic ISEs.

Fig. 5 shows that DTW-LOG outperforms DTW-FP
significantly. At optimization level -O0, DTW-LOG with one
ISE outperforms DTW-FP with four ISEs; at optimization
levels -O1 and -OS, DTW-LOG with one ISE achieves equal
performance to DTW-FP with four ISEs; and at optimization
level -O3, DTW-LOC with two ISEs achieves equal
performance to DTW-FP with four ISEs. In all cases, further
increasing the number of available ISEs to DTW-LOG yields
additional gains in performance.

The best overall performance is obtained by DTW-LOG
with four ISEs at optimization level -O3; the speedup over
DTW-FP with four ISEs at the same optimization level is 1.8x.
The primary cause of this disparity is the overhead that
floating-point operations incur due to mantissa alignment,
normalization, and rounding.

An important detail to note is that flushing and offline
normalization occurs much more frequently for DTW-LOG
than for DTW-FP. The reason is that the logarithmic ISEs
(including conversion to and from the double-precision IEEE-
754 floating-point format) introduce more error than the
floating-point ISEs. Since floating-point and logarithmic
number systems have comparable dynamic ranges, this
phenomenon is not inherent to the latter; it is simply a problem
that arises due to tradeoffs made when creating arithmetic
operators for the logarithmic number system. By using
(exponentially) larger and more accurate lookup tables, much
of this error accumulation could be suppressed. We have no
investigated this issue further because our low-area
implementation (Fig. 4) still manages to achieve good
performance (Fig. 5).

Parameter/Policy	
 I-­‐Cache	
 D-­‐Cache	

Capacity	

Cache	
 Line	
 Length	

Allocation	
 Policy	

Associativity	

Victim	
 Buffer	
 Size	

Other	

64KB	

32	
 bytes	

Read/Write	
 Allocate	

Direct-­‐mapped	

8	
 Victims	

1	
 Stream	

64	
 KB	

32	
 bytes	

Read/Write	
 Allocate	

Direct-­‐mapped	

8	
 Victims	

Write-­‐back	

Fig. 5. Execution time of different processor configurations with software
compiled using gcc optimization levels -O0, -O1, -OS, and -O3.

 Fig. 6 reports the energy and peak power consumption of
different processor configurations at the gcc -O3 optimization
level. Base has the lowest peak power consumption because it
does not have an FPU or any ISEs which consume dynamic
power; however, it has the highest overall energy consumption
because of its long execution time. The other processor
configurations finish faster and can therefore shut down earlier,
thus reducing total energy consumption.

 Base-FPU, DTW-FP, and DTW-LOG consume far less
energy than Base because they finish their executions much
faster. Although Base-FPU has the lowest peak power
consumption, DTW-FP and DTW-LOG consume less energy
due to their performance advantages. Similarly, DTW-LOG
consumes less energy than DTW-FP due to its performance
advantage, as its advantage in terms of peak power (0.04 W) is
negligible.

Fig. 6. Peak power and energy consumption of different processor
configurations (DTW-FP and DTW-LOG use all four ISEs) with software
compiled using gcc optimization level -O3.

VIII. CONCLUSION
 This paper has shown that hardware accelerators for the
dynamic time warping distance measure for time series
similarity search perform better and consume less area and
energy under logarithmic number systems than floating-point
number systems. Several application-specific processors were
prototyped on an FPGA, and hardware acceleration was
realized through application-specific instruction set extensions.
As software optimization alone seems unlikely to yield further
improvements to this widely applicable algorithm, the next step
is to explore further avenues for hardware acceleration include
parallel implementations and executing the entire algorithm,
not just ISEs, using a logarithmic number format.

ACKNOWLEDGMENT
This work was supported in part by NSF Grants CNS-1035603
and IIS-1161997. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the NSF.

REFERENCES
[1] J. Detrey, F. de Dinechin: A Tool for Unbiased Comparison between

Logarithmic and Floating-point Arithmetic. VLSI Signal Processing
49(1): 161-175 (2007)

[2] F. de Dinechin, B. Pasca: Designing Custom Arithmetic Data Paths with
FloPoCo. IEEE Design & Test of Computers 28(4): 18-27 (2011)

[3] F. de Dinechin, A. Tisserand: Multipartite Table Methods. IEEE Trans.
Computers 54(3): 319-330 (2005)

[4] E. J. Keogh, C. (A.) Ratanamahatana: Exact indexing of dynamic time
warping. Knowl. Inf. Syst. 7(3): 358-386 (2005)

[5] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista,
M. B. Westover, Q. Zhu, J. Zakaria, E. J. Keogh: Addressing Big Data
Time Series: Mining Trillions of Time Series Subsequences Under
Dynamic Time Warping. TKDD 7(3): 10 (2013)

[6] E. E. Swartzlander Jr., A. G. Alexopoulos: The Sign/Logarithm Number
System. IEEE Trans. Computers 24(12): 1238-1242 (1975)

[7] J. Tarango, E. Keogh, P. Brisk: Instruction set extensions for Dynamic
Time Warping. CODES+ISSS 2013: 1-10

[8] T. K. Vintsyuk: Speech discrimination by dynamic programming".
Kibernetika, 4(1): 81–88 (1968)

[9] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, E. J.
Keogh: Experimental comparison of representation methods and
distance measures for time series data. Data Min. Knowl. Discov. 26(2):
275-309 (2013)

[10] Xilinx, "Xilinx Power Tools Tutorial UG733 (v14.2)," July 25 2012.

