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Abstract—This paper describes an application-specific 
embedded processor with instruction set extensions (ISEs) for the 
Dynamic Time Warping (DTW) distance measure, which is 
widely used in time series similarity search. The ISEs in this 
paper are implemented using a form of logarithmic arithmetic 
that offers significant performance and power/energy advantages 
compared to more traditional floating-point operations.  
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I. INTRODUCTION 
Subsequence similarity search (also known as time series 

similarity search) is the task of finding a region within a much 
longer time series that matches a specified query time series 
within a given threshold. It is useful in its own right as an 
exploratory tool, and it is the core subroutine in many higher-
level data mining tasks such as motif discovery, anomaly 
detection, association discovery, and classification. 

One simple and straightforward distance measure for time 
series similarity is Euclidean Distance (Fig. 1a), which 
considers a one-to-one mapping in time between the points on 
the two time series. While more than one hundred different 
distance measures for time series similarity have been 
proposed for this task, there is increasing empirical evidence 
that Dynamic Time Warping (DTW, Fig. 1b), which includes 
ED as a special case, is the best measure across a wide range of 
domains, from robotics to medicine [9]. Unlike ED, DTW can 
find similarities between time series that have relative minor 
offers in time. Given DTW’s usefulness and ubiquity, there has 
been a large community-wide effort to mitigate its relative 
lethargy in the last decade. 

 
 (a) (b) 

Fig. 1. Euclidean Distance (a) and Dynamic Time Warping (DTW) (b) are 
distance measures for time series similarity search. DTW enables realignment 
in time, while Euclidean Distance does not.  

DTW is expected to play a central role in the emerging 
Internet of Things (IoT), in which low-cost sensor-based 
devices connected to the Internet produce time-series data. A 
representative device could be a small wearable computer that 
performs real-time physiological monitoring. It must be able to 
generate and analyze time-series data in real-time, while 
minimizing energy consumption to maximize battery lifetime.  

IoT devices are likely to be realized using microcontroller-
based SoCs in order to minimize cost and power. Such an SoC 
could benefit from application-specific customization for time 
series similarity search, due to its overall ubiquity; however, 
full-blown ASIC accelerators would likely be too large and too 
costly. A cheaper solution is to customize the microcontroller 
at the core of the SoC with a small set of application-specific 
instruction set extensions (ISEs) that offer much of the desired 
performance and/power energy benefits that one would obtain 
from an ASIC, but at a fraction of the cost [7].  

This paper explores the use of logarithmic arithmetic, rather 
than floating-point, in a set of four ISEs that have already been 
shown to be beneficial for DTW.  At the highest compiler 
optimization level (gcc -O3), the logarithmic ISEs improved 
performance and energy consumption by identical factors of 
1.8x compared to traditional floating-point ISEs.  

II. RELATED WORK 
DTW was introduced in 1968 for speech processing [8]; 

since then, it has been found useful for time series similarity 
search in many application domains. The DTW measure can be 
computed in quadratic time using dynamic programming. In 
the context of an IoT device, DTW is invoked each time a 
signal is sampled for each query that the sample time series is 
being matched against. The overhead is prohibitive for use in a 
power- and resource-constrained context such as IoT. 
Consequently, there has been a wealth of work that tries to 
perform similarity search in a way that avoids computing DTW 
when more efficient analyses can prove that the current time 
series subsequence and query exceed the threshold for a match.  

Proposed speedup techniques include early abandoning 
strategies, lower-bound based pruning, indexing and 
embedding into a lower dimensional metric space [9]; however 
recent work has argued that we are now close to exhausting all 
possible speedup from software, and that we must turn to 
hardware-based solutions [5]. 



Ref. [5] argues that as DTW subsequence search is 
carefully optimized, an increasingly large fraction of the time is 
spent in Z-normalizing each subsequence before it is passed to 
the DTW function.  Z-Normalization ensures that the query 
and the subsequence have the same mean and standard 
deviation, and are thus commensurate. Ref. [5] demonstrates 
that is possible to do the Z-Normalization in an online fashion, 
and moreover, that it is possible to interleave the early 
abandoning calculations with the online Z-normalization. In 
other words, DTW (or a lower bound of DTW used for early 
abandoning) can be computed incrementally while Z-
normalizing the same data point. Thus, early abandoning 
prunes not just the distance calculation step, but subsequent 
normalization steps.  

Ref. [5] demonstrated notable performance improvements 
on a desktop PC. The code was written in C and used double-
precision floating-point arithmetic. In the embedded domain, 
Ref. [7] ported the software to an embedded processor and 
introduced four floating-point ISEs for acceleration; the system 
was prototyped and evaluated using an FPGA. At the highest 
compiler optimization level (gcc -O3), the floating-point ISEs 
improved performance by a factor of 1.4x and energy 
consumption by a factor of 2.9x compared a baseline variant of 
the processor which included a floating-point ALU.  

The contribution of this work can be best viewed as an 
extension to Ref. [7]. In Ref. [7], the ISEs were implemented 
using compound floating-point operators that were optimized 
for an FPGA implementation by the FloPoCo arithmetic 
compiler [2]. This work replaces the floating-point operations 
within each ISE with operations based on logarithmetic 
arithmetic; the result is further improvements in performance 
and energy consumption by identical factors of 1.8x.  

III. FLOATING-POINT ISES FOR TIME SERIES SIMILARITY 
SEARCH BASED ON DTW 

Table I lists the four ISEs reported in Ref. [7]: ISE-Norm, 
ISE-DTW, ISE-Accum, and ISE-SD. In the discussion that 
follows the two time series whose similarity is being measured 
are the query Q and the candidate C; qi and ci are the ith 
respective data points of the query and candidate.  

ISE-Norm is normalization each candidate data point ci; ci’ is 
the normalized data point. The mean µC and standard deviation 
σC of the candidate data point values are computed in an online 
fashion as described in Ref. [5, Section 4.2.1]. 

ISE-DTW is the recurrence relation at the core of the dynamic 
programming algorithm that computes DTW. The recurrence 
relation computes γ(i,j), which is the minimum cost warping 
path between sub-query Q1..i = {q1, …, qi} and sub-candidate 
C1..j = {c1, …, cj}, and d(qi, cj) = |qi - cj| is the distance between 
points qi and cj.  

TABLE I.  THE FOUR FLOATING-POINT ISES IDENTIFIED IN REF. [7]. 

 

ISE-Accum is a floating-point accumulation operation that is 
called frequently by the LBKeogh [4] lower bound; as described 
in Ref. [5], computation of LBKeogh can be interleaved with 
online Z-normalization for better performance. 

ISE-SD: The squared difference of two points is part of the 
computation for the Euclidean Distance measure. LBKeogh 
computes the Euclidean Distance between the candidate C and 
the closer among a pair of auxiliary sequences {U, L}, which 
form upper and lower bounds on the query Q.  

IV. FLOATING-POINT AND LOGARITHMIC ARITHMETIC 
The floating-point and logarithmic number formats used in 

the ISEs described in this paper are based on representations 
used in the FloPoCo compiler [2]; the floating-point operations 
and ISEs are not compliant with the IEEE-754 standard.  

A. Floating-Point Number Format 
A floating-point number P is a tuple P = (Z, s, E, M), 

where Z is a two-bit exception field, s is the sign bit, E is the 
exponent, and M is the mantissa; let e = |E| and m = |M| be the 
number of bits in the exponent and mantissa respectively. The 
exception values are 00 for zero, 01 for normal numbers, 10 for 
infinity, and 11 for not-a-number (NaN).   

A normalized mantissa has a hidden ‘1’ that is not 
explicitly encoded, so the actual value is 1.M, where the m 
mantissa bits represent the fractional part of the number. The 
range of a normalized mantissa is  

 1 ≤ 1.𝑀 ≤ 2 − 2!!. (1) 

For sake of brevity, we do not discuss denormalized mantissas. 

 The exponent E is base-2 and a bias of 𝐵 = 2!!! − 1. 
When Z = 01, the value p represented by a floating-point 
number P is  

 𝑝 = −1 ! 1.𝑀 ×2!! !!! . (2) 

B. Logarithmic Arithmetic 
The key idea behind logarithmic number systems is to 

represent a positive value X by its logarithm, logX. The 
following three identifies explain several key advantages to 
using logarithmic representations: 

 𝑙𝑜𝑔 𝑋𝑌 = 𝑙𝑜𝑔𝑋 + 𝑙𝑜𝑔𝑌, (3) 

 log !
!
= 𝑙𝑜𝑔𝑋 − 𝑙𝑜𝑔𝑌, and (4) 

 log 𝑋! = 𝑎𝑙𝑜𝑔𝑋. (5)  

In other words, multiplication, division, and exponentiation in 
a logarithmic number system can be implemented using fixed-
point addition, subtraction, and multiplication respectively. 

 Addition and subtraction in a logarithmic number system 
are somewhat more complicated: 

 𝑙𝑜𝑔 𝑋 ± 𝑌 = 𝑙𝑜𝑔𝑋 + 𝑙𝑜𝑔 1 ± 2!"#$!!"#$ . (6) 



The right hand-term is typically implemented by multipartite 
table lookup and addition [3]; optimizing hardware designs for 
this term has been an active resarch area since the 1970s [6].  

C. Logarithmic Number Format 
A logarithmic number L is a tuple L = (Z, s, I, F), where Z 

is a two-bit exception field (identical to the floating-point 
format), s is the sign bit, and I and F are the integral and 
fractional parts of the value of logX, which is represented as a 
two’s complement fixed-point number. When Z = 01, the value 
l represented by a floating-point number L is  

 𝑙 = −1 ! 𝐼.𝐹 = −1 !𝑙𝑜𝑔𝑋. (7) 

D. Handling Error Accumulation 
The online Z-normalization approach described in Ref. [5] 

is susceptible to the cumulative accumulation of floating-point 
error. Ref. [5] proposes to flush the accumulated error each 
time one million new time series data points are processed. To 
flush, the online Z-normalization is abandoned for the current 
candidate subsequence, and an offline (exact) Z-normalization 
is computed instead. When subsequent data points arrive, the 
online Z-normalization can then be resumed. 

Our approach is somewhat different, and requires a detailed 
accounting of the bits in both the floating-point and logarithmic 
number formats. In the floating-point number format, e = 11 
and f = 52; in the logarithmic number format, there are 11 
integral bits and 52 fractional bits. With the sign and exception 
bits, there are 66 bits in total. In our implementation, the 
exception bits are computed internally by the ISEs, along with 
a 67th valid bit, that is used for energy management. Pipeline 
stages that are not in use are shut down to conserve dynamic 
energy, and the valid bit is turned off; otherwise, it remains on. 
The valid bit serves as an extra guarantee that the staging, 
pipeline, and finishing registers always hold correct values.  

If the valid bit is not set, the data produced by the ISE can 
be ignored. If it is set, a flush is triggered if the exception bits 
are infinity or NaN. If no flush is triggered, the result is 
transmitted back to the processor.  

V. LOGARITHMIC ISES FOR DTW 
The four ISEs listed in Table I were redesigned in the 

following way. Each data element enters and leaves each ISE 
in double-precision IEEE-754 floating-point format. Internally, 
the data element is converted to the logarithmic format from 
Section IV.C, the ISE operations are then performed using 
logarithmic operations, and the result is then converted back to 
the IEEE-754 compliant format. This ensures that all floating-
point operations performed outside of the ISEs are IEEE-754 
compliant and completely portable across processors.  

The conversions between the double-precision IEEE-754 
floating-point and logarithmic format in both directions were 
implemented using multipartite table lookup and addition [3]. 
Addition and subtraction in the logarithmic format were 
implemented as described in Ref. [1]. Multiplication (squaring 
for ISE-SD) and division (ISE-Norm) are implemented using 
64-bit fixed-point adders and subtractors respectively.   

ISE-DTW, which includes a 3-way minimum operation, is 
more complex. The three input values γ(i-1, j-1), γ(i-1, j), and 
γ(i, j-1) are converted from the double-precision IEEE-754 
floating-point format to the FloPoCo floating-point format 
described in Section IV.A; the minimum of the three values is 
computed in this format, and then converted to the logarithmic 
format. The two other input parameters qi and cj are converted 
directly to the logarithmic format; (qi  - cj)2 is then computed 
and added to the minimum value in the logarithmic format. The 
result is then converted back to the double-precision IEEE-754 
floating-point format and returned to the processor.  

For all ISEs, the 64-bit result that is sent back to the 
processor via the 64-bit FIFO interface is always in double-
precision IEEE-754 floating-point format. A post-processing 
stage at the end of each ISE examines the two except bits and 
converts the value to NaN (as defined by the IEEE-754 format) 
if an exception occurs. After invoking each ISE, the software 
checks the result to see if it is NaN. If so, a flush is triggered 
and the query is immediately re-normalized offline. Online 
normalization resumes when the next data point is sampled.  

VI. EXPERIMENTAL SETUP 
We prototyped the processor on a Xilinx EK-V6-ML605-G 

Virtex 6 development board using a MicroBlaze soft processor, 
which supports ISEs. The development board was connected to 
a desktop PC running Windows 7 x64. We compiled the DTW 
application using gcc 4.1.2, and synthesized all custom 
hardware using Xilinx Embedded System Design Software 
version 12.4; power and energy estimates were obtained using 
Xilinx XPower Analyzer [10].  

The MicroBlaze runs at 100MHz and uses the PLB 
peripheral bus. Table II lists the instruction and data cache 
configurations that we used, which is the same as Ref. [7]. We 
enabled 64-bit fixed-point multiplication, a hardware divider, 
and a branch target cache with 2048 entries. 

Four processor configurations are used in our experiments. 
The Base processor configuration is described above. Lacking 
a floating-point unit (FPU), all floating-point operations are 
implemented in software. Base-FPU includes a pipelined FPU 
which is accessed through ISEs for all standard floating-point 
operations. DTW-FP includes the four ISEs, implemented 
using double-precision floating-point arithmetic. It does not 
include an FPU, so all arithmetic operations that operate on 
floating-point data elements and are not included in an ISE are 
implemented in software. DTW-LOG includes the same four 
ISEs implemented using logarithmic arithmetic as described in 
Section V. It does not include an FPU. Arithmetic operations 
that are not included in the four ISEs are implemented in 
software using a double-precision IEEE-754 compliant library.   

The query length was set to 128. The input data set had one 
million double-precision floating-point time-series data values, 
which exceeded the FPGA’s block RAM capacity. We 
modified the linker script to map data sections to the 512MB 
external DDR3 memory on the development board. As part of 
the configuration process, a PLB peripheral populates the 
DDR3 memory prior to executing the application. 

 



TABLE II.  MICROBLAZE INSTRUCTION AND DATA CACHE 
CONFIGURATIONS. 

 

We selected the point-to-point Fast Simple Link (FSL) to 
provide a communication interface between the MicroBlaze 
register file and ISEs implemented as hardware accelerators. 
The FSL uses a 32-bit Master/Slave interface with optional 
FIFO data buffers; thus, each data element was separated into 
two 32-bit words. We created a set of Finite State Machines 
(FSMs) to transfer different numbers of data elements to/from 
the processor’s register file, based on the needs of each ISE. 
Fig. 2 depicts the ISE interface. The latency of executing one 
ISE includes its pipeline depth plus the number of FSM cycles 
required for data transfers.  

We introduced parameterized function calls into the source 
code to invoke calls to the FPU (for Base-FPU) and ISEs (for 
DTW-FP and DTW-LOG). Inline assembly separated data 
into 32-bit words and populated the FSL. For each invocation, 
the MicroBlaze was configured to execute a sequence of NOPs 
equal in length to the pipeline depth of the operator or ISE. At 
optimization level -O3 gcc unrolled loops and applied software 
pipelining to best utilize the FPU and FP ISEs; under the 
logarithmic number system, ISE-DTW required two cycles 
(ignoring data transfer overhead) while the other three ISEs 
required one cycle.  

Our experimental setup is aligned as closely as possible to 
the prior work described in Ref. [1], which introduced the 
DTW-FP processor, which accelerates similarity search using 
DTW with using double-precision floating-point ISEs. 

VII. EXPERIMENTAL RESULTS 

A. FP and LNS ISEs 
Figs. 3 and 4 report the latency and area of the FPU and all 

four ISEs implemented using FP and logarithmic arithmetic. 
The logarithmic ISEs have far lower latencies than the floating-
point ISEs, and are significantly smaller as well. Floating-point 
operations incur extra overhead due to mantissa alignment 
(shifting), normalization (shifting), and rounding; the overhead 
of the the logarithmic operators is much smaller in comparison. 

 

 
Fig. 2. ISE interface with dual-clock FIFOs and finite state machine (FSM) 
control [7, Fig. 15]. 

 
Fig. 3. Latencies of FPU operations (for the Base-FPU) processor 
configuration and the floating-point and logarithmic ISEs (for the DTW-FP 
and DTW-LOG processor configurations).  

 
Fig. 4. Area (FPGA resource usage) for the FPU operations and the floating-
point and logarithmic ISEs.  

Fig. 5 shows that DTW-LOG outperforms DTW-FP 
significantly. At optimization level -O0,  DTW-LOG with one 
ISE outperforms DTW-FP with four ISEs; at optimization 
levels -O1 and -OS, DTW-LOG with one ISE achieves equal 
performance to DTW-FP with four ISEs; and at optimization 
level -O3, DTW-LOC with two ISEs achieves equal 
performance to DTW-FP with four ISEs. In all cases, further 
increasing the number of available ISEs to DTW-LOG yields 
additional gains in performance.  

The best overall performance is obtained by DTW-LOG 
with four ISEs at optimization level -O3; the speedup over 
DTW-FP with four ISEs at the same optimization level is 1.8x. 
The primary cause of this disparity is the overhead that 
floating-point operations incur due to mantissa alignment, 
normalization, and rounding.  

An important detail to note is that flushing and offline 
normalization occurs much more frequently for DTW-LOG 
than for DTW-FP. The reason is that the logarithmic ISEs 
(including conversion to and from the double-precision IEEE-
754 floating-point format) introduce more error than the 
floating-point ISEs. Since floating-point and logarithmic 
number systems have comparable dynamic ranges, this 
phenomenon is not inherent to the latter; it is simply a problem 
that arises due to tradeoffs made when creating arithmetic 
operators for the logarithmic number system. By using 
(exponentially) larger and more accurate lookup tables, much 
of this error accumulation could be suppressed. We have no 
investigated this issue further because our low-area 
implementation (Fig. 4) still manages to achieve good 
performance (Fig. 5).  

Parameter/Policy	   I-‐Cache	   D-‐Cache	  
Capacity	  
Cache	  Line	  Length	  
Allocation	  Policy	  
Associativity	  
Victim	  Buffer	  Size	  
Other	  

64KB	  
32	  bytes	  
Read/Write	  Allocate	  
Direct-‐mapped	  
8	  Victims	  
1	  Stream	  

64	  KB	  
32	  bytes	  
Read/Write	  Allocate	  
Direct-‐mapped	  
8	  Victims	  
Write-‐back	  

 



 

 

 

 
Fig. 5. Execution time of different processor configurations with software 
compiled using gcc optimization levels -O0, -O1, -OS, and -O3.  

 Fig. 6 reports the energy and peak power consumption of 
different processor configurations at the gcc -O3 optimization 
level. Base has the lowest peak power consumption because it 
does not have an FPU or any ISEs which consume dynamic 
power; however, it has the highest overall energy consumption 
because of its long execution time. The other processor 
configurations finish faster and can therefore shut down earlier, 
thus reducing total energy consumption. 

 Base-FPU, DTW-FP, and DTW-LOG consume far less 
energy than Base because they finish their executions much 
faster. Although Base-FPU has the lowest peak power 
consumption, DTW-FP and DTW-LOG consume less energy 
due to their performance advantages. Similarly, DTW-LOG 
consumes less energy than DTW-FP due to its performance 
advantage, as its advantage in terms of peak power (0.04 W) is 
negligible.   

 
Fig. 6. Peak power and energy consumption of different processor 
configurations (DTW-FP and DTW-LOG use all four ISEs) with software 
compiled using gcc optimization level -O3.  

VIII. CONCLUSION 
 This paper has shown that hardware accelerators for the 
dynamic time warping distance measure for time series 
similarity search perform better and consume less area and 
energy under logarithmic number systems than floating-point 
number systems. Several application-specific processors were 
prototyped on an FPGA, and hardware acceleration was 
realized through application-specific instruction set extensions. 
As software optimization alone seems unlikely to yield further 
improvements to this widely applicable algorithm, the next step 
is to explore further avenues for hardware acceleration include 
parallel implementations and executing the entire algorithm, 
not just ISEs, using a logarithmic number format.  
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