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Multimedia	is…
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Internet

On-demand	video

Live	video

Virtual/augmented	reality

Content	creation Compression

Storage Distribution
Applications

User	perception



Encoding	Images

1. Pre-processing
2. Discrete	cosine	transform
3. Quantization
4. Entropy	encoding
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Encoding	Images:	Pre-processing

• Convert	from	color	to	luma and	chroma components

• Divide	image	into	blocks	(e.g.	8x8	pixels)
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Encoding	Images:	Discrete	Cosine	Transform

• Transform	from	spatial	domain	to	frequency	domain

Example:	https://upload.wikimedia.org/wikipedia/commons/5/5e/Idct-animation.gif

Transformation	function using	 basis	functions
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Encoding	Images:	Quantization

• Lossy compression	by	division	and	rounding

By	dividing	by	 and	then	rounding.
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Encoding	Images:	Entropy	Encoding

• Lossless	compression	to	get	close	to	optimal	code	rate	of
–log# symbols(probability	of	the	symbol)

this is an example of a huffman tree 0110	1010	1000	1011					111							1000	…

Using	the	codebook:

t h							i s						<space>						i

What	about	the	uncompressed	version?
• 26	characters	in	the	alphabet	à 5	

bits/character
• 5	bits/character	*	36	characters	in	

the	sentence	=	180	bits	

135	bits	total
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Encoding	Images:	Quality	Examples

Quality 100 25 10 1

Size 83	bytes 10	bytes 5	bytes 1.5	bytes
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Aside:	Lena
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Video	Encoding

1. Motion	estimation
2. I-frame	encoding
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Video	Encoding:	I-frame	encoding

• Naïve	solution:	encode	every	frame	as	a	JPEG

• Leverage	temporal	redundancy	by	encoding	the	difference between	
frames

• I-frame:	inter	frame
• P-frame:	predictive	inter	frame
• B-frame:	bi-predictive	inter	frame

• GOP	=	“group	of	pictures”	frame	pattern
• E.g.,	IPPBPPBPP

time

time
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Video	Encoding:	Motion	Estimation

• How	to	look	for	similarity	in	time?
• Computationally	complex

Is	this	block	very	similar	
to	the	previous	block	in	

time?

How	close	in	time	should	
we	search?

How	far	in	space	should	
we	look?

Input:	macroblock
(16x16	pixels)

Yes

No

Output:	same	as	input	macroblock	

Output:	motion	vector

Search	threshold

Block	matching
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Video	Encoding:	Block	Matching	

Source:	T.	Wiegand /	B.	Girod:	EE398A	Image	and	Video	Compression	 13



Video	Encoding:	Block	Matching

• Mean	squared	error

• Sum	of	absolute	differences

Source:	T.	Wiegand /	B.	Girod:	EE398A	Image	and	Video	Compression	 14



Video	Encoding:	Search	Strategies

Source:	T.	Wiegand /	B.	Girod:	EE398A	Image	and	Video	Compression	

Full	search Logarithmic	search

Diamond	search

General	algorithm:
1. Start	with	an	initial	step	size	S
2. Search	N	locations	within	S	distance
3. If	the	center	is	best

a) S	=	S/2
b) Go	to	2

4. If	an	edge	location	is	best
a) Re-center	the	origin
b) Go	to	2
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Content	Type	and	Compression

Video Bitrate (kbps)
100 200 300
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cartoon
TV
talk
movie
landscape
sports

Example:	https://www.youtube.com/watch?v=YyRgdWNq-aQ
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Video	Metrics

• Resolution	=	(#	pixels)	x	(#	pixels)
• 720p	=	1280	x	720
• 1080p	=	1920	x	1080
• 4K	=	3840	x	2160

• Frames	per	second
• 30	fps
• 60	fps

• Bitrate
• Wireless:	~1	Mbps
• Desktop:	~3-5	Mbps
• High-resolution:	10+	Mbps

• Codec	=	encoding	type
• H.264
• VP8

• Container	=	holds	video	+	audio
• webm
• MPEG4

• Decoder
• Encoder
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Image	Quality:	Quantitative	Metrics

• How	to	measure	video	quality	quantitatively?
• PSNR

I:	original	image
K:	compressed	image
i,j:	directions
MAX	=	max	value	of	pixel

18



PSNR	Example

Original	uncompressed	image										PSNR	=	45.53 dB PSNR	=	36.81	dB PSNR	=	31.45	dB
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Image	Quality:	Quantitative	Metrics
All	of	these	images	have	the	
same	MSE

à Not	all	errors	are	created	
equal

original mean-shiftedincrease	contrast

JPEG	compression blur salt-pepper	noise
Source:	Wang,	Zhou;	Bovik,	A.C.;	Sheikh,	H.R.;	Simoncelli,	E.P.	(2004-04-01).	"Image	quality	assessment:	from	error	visibility	to	structural	similarity".	IEEE	Transactions	on	Image	Processing.	13	(4):	600–612.	20



Video	Quality:	SSIM

• Key	idea:	humans	are	responsive	to	changes	in	structure
• E.g.,	increase	contrast	or	average	brightness	doesn’t	matter	too	much
• More	closely	approximate	human	visual	system
• Operate	on	luma component	only	(not	color	or	chrominance)

• Three	components
• Luminance:	based	on	mean
• Contrast:	based	on	variance,	with	mean	subtracted
• Structure:	based	on	correlation,	with	mean	subtracted	and	variance	
normalized
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Video	Quality:	SSIM

• Luminance
• Contrast
• Structure
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α,	β,	γ =	1,	c3=c2/2



Image	Quality:	Quantitative	Metrics
All	of	these	images	have	the	
same	MSE	=	210

à Not	all	errors	are	created	
equal

original mean-shiftedincrease	contrast

JPEG	compression blur salt-pepper	noise
Source:	Wang,	Zhou;	Bovik,	A.C.;	Sheikh,	H.R.;	Simoncelli,	E.P.	(2004-04-01).	"Image	quality	assessment:	from	error	visibility	to	structural	similarity".	IEEE	Transactions	on	Image	Processing.	13	(4):	600–612.	23

SSIM	=	0.9168 SSIM	=	0.9900

SSIM	=	0.6949 SSIM	=	0.7052 SSIM	=	0.7748



Image	Quality:	Qualitative	Metrics

• Mean	Opinion	Score
• 5:	Excellent
• 4:	Good
• 3:	Fair
• 2:	Poor
• 1:	Bad

• ITU	recommendations	for	how	to	set	up	the	experiment
• Distance	from	viewers,	number	of	views	visible,	etc.

• User	studies	can	be	time-consuming	and	expensive
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Image	Quality	Metric	Comparison
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Video	Quality

• User	quality	of	experience	(QoE)
• Average	PSNR	or	SSIM	across	all	frames
• MOS
• Watch	time	=	how	long	the	user	watches	the	video

• Video	metrics
• Stalls	=	#	of	times	the	buffer	is	empty
• Buffering	ratio	=	#	the	fraction	of	time	the	buffer	is	empty
• Bitrate	switches	=	#	times	the	video	changes	quality
• Startup	time	=	time	from	when	the	user	requests	the	video	to	when	it	starts	
playing
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Metrics
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Internet

On-demand	video

Live	video

Virtual/augmented	reality

Content	creation Compression
Storage Distribution

Applications

User	QoE
• MOS
• PSNR/SSIM

Video	metrics
• Stalls
• Buffering	ratio
• Bitrate	switches
• Startup	time

Network	metrics
• CDN	choice
• Throughput
• Latency
• Packet	loss



Developing	a	Predictive	Model	of	
Quality	of	Experience	for
Internet	Video
A.	Balachandran,	V.	Sekar,	A.	Akella,	S.	Seshan,	I.	Stoica,	H.	Zhang
ACM	Sigcomm 2013
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Relationship	between	Metrics
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User	QoE
• MOS
• PSNR/SSIM

Video	metrics
• Stalls
• Buffering	ratio
• Bitrate	switches
• Startup	time

Network	metrics
• CDN	choice
• Throughput
• Latency
• Packet	loss



Method

• Data	from	Conviva,	a	video	delivery	platform
• 40	million	sessions	over	3	months	in	the	US
• VoD and	live	sports
• Metrics	collected	by	client

• Decision	trees
• Input:	Video	metrics
• Output:	Engagement	metric
• Bin	these	metrics
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Live	video



Confounding	Factors?

• Type	of	video
• Live
• Video-on-demand

• User	attributes
• Location
• Device	(smartphones,	tablets,	laptop)
• Connectivity	(wireless,	Ethernet)

• Temporal	attributes
• Time	of	day/week
• Freshness
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Detecting	Confounding	Factors

• Information	gain	metric
• Entropy H(Y)	=	-Σi P(Y=yi)	log(	P(Y=yi)	)
• Conditional	entropy H(Y|X)	=	Σi P(X=xi)	H(Y|X=xi)
• Information	gain H(Y)	– H(Y|X)

• Determine	which	confounding	factors	have
max	information	gain

• Create	a	new	decision	tree	for	each
confounding	factor
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Y:	the	factor	we	are	considering
X:	the	factor	we	could	split	along



Using	the	Model

• Output	a	decision	tree	that	can	predict	the	user	QoE
• Use	this	to	select	CDN	server
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origin server in North America

CDN distribution node

CDN server
in S. America CDN server

in Europe

CDN server
in Asia

Video	metrics Video	metrics
Video	metrics

???


