CS 260: Seminar in Computer Science: Multimedia Networking

Jiasi Chen

Lectures: MWF 4:10-5pm in CHASS

http://www.cs.ucr.edu/~jiasi/teaching/cs260_spring17/

Encoding Images

- 1. Pre-processing
- 2. Discrete cosine transform
- 3. Quantization
- 4. Entropy encoding

Encoding Images: Pre-processing

• Convert from color to luma and chroma components

• Divide image into blocks (e.g. 8x8 pixels)

Encoding Images: Discrete Cosine Transform

• Transform from spatial domain to frequency domain

$$g = \begin{bmatrix} -76 & -73 & -67 & -62 & -58 & -67 & -64 & -55 \\ -65 & -69 & -73 & -38 & -19 & -43 & -59 & -56 \\ -66 & -69 & -60 & -15 & 16 & -24 & -62 & -55 \\ -65 & -70 & -57 & -6 & 26 & -22 & -58 & -59 \\ -61 & -67 & -60 & -24 & -2 & -40 & -60 & -58 \\ -49 & -63 & -68 & -58 & -51 & -60 & -70 & -53 \\ -43 & -57 & -64 & -69 & -73 & -67 & -63 & -45 \\ -41 & -49 & -59 & -60 & -63 & -52 & -50 & -34 \end{bmatrix} \downarrow y.$$

$$G = \begin{bmatrix} -415.38 & -30.19 & -61.20 & 27.24 & 56.12 & -20.10 & -2.39 & 0.46 \\ 4.47 & -21.86 & -60.76 & 10.25 & 13.15 & -7.09 & -8.54 & 4.88 \\ -46.83 & 7.37 & 77.13 & -24.56 & -28.91 & 9.93 & 5.42 & -5.65 \\ -48.53 & 12.07 & 34.10 & -14.76 & -10.24 & 6.30 & 1.83 & 1.95 \\ 12.12 & -6.55 & -13.20 & -3.95 & -1.87 & 1.75 & -2.79 & 3.14 \\ -7.73 & 2.91 & 2.38 & -5.94 & -2.38 & 0.94 & 4.30 & 1.85 \\ -1.03 & 0.18 & 0.42 & -2.42 & -0.88 & -3.02 & 4.12 & -0.66 \\ -0.17 & 0.14 & -1.07 & -4.19 & -1.17 & -0.10 & 0.50 & 1.68 \end{bmatrix}$$

Transformation function
$$G_{u,v} = \frac{1}{4}\alpha(u)\alpha(v)\sum_{x=0}^{7}\sum_{y=0}^{7}g_{x,y}\cos\left[\frac{(2x+1)u\pi}{16}\right]\cos\left[\frac{(2y+1)v\pi}{16}\right]$$
 using

Example: https://upload.wikimedia.org/wikipedia/commons/5/5e/ldct-animation.gif

basis functions

u

Encoding Images: Quantization

Lossy compression by division and rounding

					u								
G =	$\begin{bmatrix} -415.38 \\ 4.47 \\ -46.83 \\ -48.53 \\ 12.12 \\ -7.73 \\ -1.03 \\ -0.17 \end{bmatrix}$	$\begin{array}{r} -30.19 \\ -21.86 \\ 7.37 \\ 12.07 \\ -6.55 \\ 2.91 \\ 0.18 \\ 0.14 \end{array}$	-61.20 -60.76 77.13 34.10 -13.20 2.38 0.42 -1.07	; _; ; _; ; _; ; _;	27.24 10.25 24.56 14.76 -3.95 -5.94 -2.42 -4.19	; 1 -1 -1 - -	56.12 13.15 28.91 10.24 -1.87 -2.38 -0.88 -1.17	$9 \\ 6 \\ 1 \\ 0 \\ -3$	7.09 9.93 6.30	-2.39 -8.54 5.42 1.83 -2.79 4.30 4.12 0.50	0.46 4.88 -5.65 1.95 3.14 1.85 -0.66 1.68	-	0 0 0 0 0 0
	By divi	ding b	y Q =	$\begin{bmatrix} 16\\ 12\\ 14\\ 14\\ 18\\ 24\\ 49\\ 72 \end{bmatrix}$	11 12 13 17 22 35 64 92	10 14 16 22 37 55 78 95	16 19 24 29 56 64 87 98	24 26 40 51 68 81 103 112	40 58 57 87 109 104 121 100	51 60 69 80 103 113 120 103	$ \begin{bmatrix} 61 \\ 55 \\ 56 \\ 62 \\ 77 \\ 92 \\ 101 \\ 99 \end{bmatrix} . $	L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0]

6

Encoding Images: Entropy Encoding

 Lossless compression to get close to optimal code rate of -log_{# symbols}(probability of the symbol)

Encoding Images: Quality Examples

Quality	100	25	10	1
Size	83 bytes	10 bytes	5 bytes	1.5 bytes

Aside: Lena

Video Encoding

- 1. Motion estimation
- 2. I-frame encoding

Video Encoding: I-frame encoding

• Naïve solution: encode every frame as a JPEG

time

- Leverage temporal redundancy by encoding the difference between frames
 - I-frame: inter frame
 - P-frame: predictive inter frame
 - B-frame: bi-predictive inter frame
- GOP = "group of pictures" frame pattern
 - E.g., IPPBPPBPP

Video Encoding: Motion Estimation

- How to look for similarity in time?
- Computationally complex

How close in time should

Video Encoding: Block Matching

Source: T. Wiegand / B. Girod: EE398A Image and Video Compression

Video Encoding: Block Matching

- Mean squared error $SSD(d_x, d_y) = \sum_{y=1}^{By} \sum_{x=1}^{Bx} [s(x, y, t) - s'(x - d_x, y - d_y, t - \Delta t)]^2$
- Sum of absolute differences

$$SAD(d_x, d_y) = \sum_{y=1}^{By} \sum_{x=1}^{Bx} |s(x, y, t) - s'(x - d_x, y - d_y, t - \Delta t)|$$

Source: T. Wiegand / B. Girod: EE398A Image and Video Compression

Video Encoding: Search Strategies

Source: T. Wiegand / B. Girod: EE398A Image and Video Compression

Content Type and Compression

Example: https://www.youtube.com/watch?v=YyRgdWNq-aQ

Video Metrics

- Resolution = (# pixels) x (# pixels)
 - 720p = 1280 x 720
 - 1080p = 1920 x 1080
 - 4K = 3840 x 2160
- Frames per second
 - 30 fps
 - 60 fps
- Bitrate
 - Wireless: ~1 Mbps
 - Desktop: ~3-5 Mbps
 - High-resolution: 10+ Mbps

- Codec = encoding type
 - H.264
 - VP8
- Container = holds video + audio
 - webm
 - MPEG4
- Decoder
- Encoder

Image Quality: Quantitative Metrics

- How to measure video quality quantitatively?
- PSNR

$$egin{aligned} MSE &= rac{1}{m\,n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) - K(i,j)]^2 \ PSNR &= 10 \cdot \log_{10} \left(rac{MAX_I^2}{MSE}
ight) \ &= 20 \cdot \log_{10} \left(rac{MAX_I}{\sqrt{MSE}}
ight) \ &= 20 \cdot \log_{10} (MAX_I) - 10 \cdot \log_{10} (MSE) \end{aligned}$$

I: original image K: compressed image i,j: directions MAX = max value of pixel

PSNR Example

Original uncompressed image

PSNR = 45.53 dB

PSNR = 36.81 dB

PSNR = 31.45 dB

Image Quality: Quantitative Metrics

mean-shifted

All of these images have the same MSE

 \rightarrow Not all errors are created equal

(f) salt-pepper noise

Source: Wang, Zhou; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. (2004-04-01). "Image quality assessment: from error visibility to structural similarity". IEEE Transactions on Image Processing. 13 (4): 600-612.

LACOPHOUDE !!

Video Quality: SSIM

- Key idea: humans are responsive to changes in *structure*
 - E.g., increase contrast or average brightness doesn't matter too much
 - More closely approximate human visual system
 - Operate on luma component only (not color or chrominance)
- Three components

 - Luminance: based on mean $\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$. Contrast: based on variance, with mean subtracted $\sigma_x = \left(\frac{1}{N-1} \sum_{i=1}^{N} (x_i \mu_x)^2\right)^{\frac{1}{2}}$
 - Structure: based on correlation, with mean subtracted and variance normalized

Video Quality: SSIM

- Luminance $l(x,y) = \frac{2\mu_x \mu_y + c_1}{\mu_x^2 + \mu_y^2 + c_1}$
- Contrast $c(x,y) = \frac{2\sigma_x\sigma_y + c_2}{\sigma_x^2 + \sigma_y^2 + c_2}$
- Structure $s(x,y) = \frac{\sigma_{xy} + c_3}{\sigma_x \sigma_y + c_3}$

$$SSIM(x,y) = \begin{bmatrix} l(x,y)^{lpha} \cdot c(x,y)^{eta} \cdot s(x,y)^{\gamma} \end{bmatrix}$$

 $lpha, eta, \gamma = 1, c_3 = c_2/2$
 $SSIM(x,y) = rac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$

Image Quality: Quantitative Metrics

All of these images have the same MSE = 210

 \rightarrow Not all errors are created equal

Source: Wang, Zhou; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. (2004-04-01). "Image quality assessment: from error visibility to structural similarity". IEEE Transactions on Image Processing. 13 (4): 600-612.

Image Quality: Qualitative Metrics

- Mean Opinion Score
 - 5: Excellent
 - 4: Good
 - 3: Fair
 - 2: Poor
 - 1: Bad
- ITU recommendations for how to set up the experiment
 - Distance from viewers, number of views visible, etc.
- User studies can be time-consuming and expensive

Image Quality Metric Comparison

Video Quality

- User quality of experience (QoE)
 - Average PSNR or SSIM across all frames
 - MOS
 - Watch time = how long the user watches the video
- Video metrics
 - Stalls = # of times the buffer is empty
 - Buffering ratio = # the fraction of time the buffer is empty
 - Bitrate switches = # times the video changes quality
 - Startup time = time from when the user requests the video to when it starts playing

Developing a Predictive Model of Quality of Experience for Internet Video

A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, H. Zhang ACM Sigcomm 2013

Relationship between Metrics

	Engagement-centric	Actionable
PSNR-like	X	\checkmark
(e.g., [17])		
Opinion	\checkmark	×
Scores(e.g., [6])		
Network-level	X	\checkmark
(e.g., bandwidth,		
latency [35])		
Single metric	X	\checkmark
(e.g., bitrate,		
buffering)		
Naive learning	X	X
Our approach	\checkmark	\checkmark
Network metrics CDN choice Throughput 	 Video metrics Stalls Buffering ratio 	User QoE • MOS • PSNR/SSIM
	Buffering ratio	•
Latency	Bitrate switche	S
 Packet loss 	 Startup time 	

Method

- Data from Conviva, a video delivery platform
 - 40 million sessions over 3 months in the US
 - VoD and live sports
 - Metrics collected by client
- Decision trees
 - Input: Video metrics
 - Output: Engagement metric
 - Bin these metrics

Confounding Factors?

- Type of video
 - Live
 - Video-on-demand
- User attributes
 - Location
 - Device (smartphones, tablets, laptop)
 - Connectivity (wireless, Ethernet)
- Temporal attributes
 - Time of day/week
 - Freshness

(a) User viewing pattern for live and VOD

(b) Join time distribution for live and VOD

Detecting Confounding Factors

- Information gain metric
 - Entropy
 - Conditional entropy
 - Information gain

$$H(Y) = -\Sigma_i P(Y=y_i) \log(P(Y=y_i))$$

$$H(Y|X) = \Sigma_i P(X=x_i) H(Y|X=x_i)$$

H(Y) - H(Y|X)

Y: the factor we are considering X: the factor we could split along

	-		D 00	D	
Confounding	Engagement		Buff.	Rate of	Avg. bi-
Factor		Time	Ratio	buff.	trate
Type of video	8.8	15.2	0.7	0.3	6.9
(live or VOD)					
Overall popu-	0.1	0.0	0.0	0.2	0.4
larity (live)					
Overall popu-	0.1	0.2	0.4	0.1	0.2
larity (VOD)					
Time since re-	0.1	0.1	0.1	0.0	0.2
lease (VOD)					
Time of day	0.2	0.6	2.2	0.5	0.4
(VOD)					
Day of week	0.1	0.2	1.1	0.2	0.1
(VOD)					
Device (live)	1.3	1.3	1.1	1.2	2.7
Device (VOD)	0.5	11.8	1.5	1.5	10.3
Region (live)	0.6	0.7	1.3	0.5	0.4
Region (VOD)	0.1	0.3	1.2	0.2	0.2
Connectivity	0.7	1.1	1.4	1.1	1.5
(live)					
Connectivity	0.1	0.4	1.1	1.4	1.3
(VOD)					

- Determine which confounding factors have max information gain
- Create a new decision tree for each confounding factor

Using the Model

- Output a decision tree that can predict the user QoE
- Use this to select CDN server

