CS 260:

Seminar in Computer Science: Multimedia Networking

Jiasi Chen

Lectures: MWF 4:10-5pm in Chass South 2130

http://www.cs.ucr.edu/~jiasi/teaching/cs260_winter17/ (soon)

Why Networks?

Supports the applications that we use today...

Social media

Exabytes per Month

Number of Internet users

- 97% of Americans between 18-29
- 40% of the world population → scope for more users

Video streaming

http://www.pewinternet.org/data-trend/internet-use/latest-stats/ https://en.wikipedia.org/wiki/List_of_countries_by_number_of_internet_users

Why Networks?

But also a source of conflict.

Posted: 04/06/2015 10:30 am EDT | Updated: 06/06/2015 5:59 am EDT

Network neutrality

TECHNOLOGY

T-Mobile Video Plan Could Test F.C.C.'s New Net Neutrality Rules

A new plan from T-Mobile USA to allow unlimited streaming of some video services may become the first test of the federal government's rules to prevent favoritism on the Internet.

On Tuesday, T-Mobile, the nation's third-largest wireless carrier, said customers could stream as many videos as they want — regardless of their data plan limits — from more than two dozen video providers, including Hulu and Netflix.

http://www.huffingtonpost.com/eric-dezenhall/a-look-back-at-the-target_b_7000816.html http://www.nytimes.com/2015/11/12/technology/t-mobile-video-plan-could-test-fccs-new-net-neutrality-rules.html

What is networking?

Bunch of acronyms?

What is networking?

Bunch of headers?

Networking is...

The search for general principles to guide communication

What is Multimedia?

What is Multimedia?

Multimedia is... **End users** Audio Distribution Storage Content creation Compression On-demand video Internet 0001011101010101001101 Live video Virtual/augmented reality

What You Will Learn in this Course

Knowledge

• 50%: device-centric

• 50%: network-centric

Skills

- How to read
- How to present
- How to discuss
- Whirlwind sample of networking problems

Course Structure

Mondays

- Overview by instructor
- Student presentation on an important paper in the area
- Discussion

Wednesdays

- Divide class into 2 groups and each group reads 1 paper
- Discussion

Fridays

- Mini-lab: taste of implementation based on the week's topic
- For example: install and play with VR apps, run provided network simulation

Project

- Proposal, presentation, and final report
- Can work individually in or in groups

Topics

Week	Topic	Mini-lab
1	Introduction + review	
2	On-demand video	DASH adaptive video player
3	Live video/gaming	Wowza/Skype live streaming
4	Virtual reality	Virtual reality on mobile phones
5	Augmented reality	Oculus Rift
6	Content distribution	Networking simulation
7	Wireless	Wireless simulation
8	Other delivery mechanisms	Simultaneous WiFi+LTE
9	Net neutrality, pricing	Data tracking mobile app
10	Project presentations	

Grading

- Paper presentation (20%)
 - 1 presentation per student
- Class participation (20%)
 - Speak up!
- Mini-labs (10%)
 - ~8 mini-labs in class
- Project (50%)
 - Presentation
 - Report

Review

- 1.1 what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 protocol layers, service models

What's the Internet: "nuts and bolts" view

- millions of connected computing devices:
 - hosts = end systems
 - running network apps

❖ communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

- Packet switches: forward packets (chunks of data)
 - routers and switches

What's the Internet: "nuts and bolts" view

- Internet: "network of networks"
 - Interconnected ISPs
- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, 802.11
- Internet standards
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

- Infrastructure that provides services to applications:
 - Web, VoIP, email, games, e-commerce, social nets, ...
- provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet
 - provides service options, analogous to postal service

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Roadmap

- 1.1 what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 protocol layers, service models

A closer look at network structure:

- network edge:
 - hosts: clients and servers
 - servers often in data centers

- * access networks, physical media: wired, wireless communication links
- network core:
 - interconnected routers
 - network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Access net: home network

Enterprise access networks (Ethernet)

- typically used in companies, universities, etc
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (100 ft)
- 802.11b/g (WiFi): 11,54 Mbps transmission rate

wide-area wireless access

- provided by telco (cellular) operator, 10's km
- between I and I0 Mbps
- 3G, 4G: LTE

Host: sends packets of data

host sending function:

- ❖takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

transmission delay time needed to transmit
$$L$$
-bit packet into link $= \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Review

- 1.1 what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 protocol layers, service models

The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - forward packets from one router to the next, across links on path from source to destination
 - each packet transmitted at full link capacity

Packet-switching: store-and-forward

- takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link
- end-end delay = 2L/R (assuming zero propagation delay)

one-hop numerical example:

- L = 7.5 Mbits
- *R* = 1.5 Mbps
- one-hop transmission delay = 5 sec

Packet Switching: queueing delay, loss

queuing and loss:

- If arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up

Two key network-core functions

Roadmap

- 1.1 what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 protocol layers

Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our discussion of networks?

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- *link:* data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

application transport network link physical

Why layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered *reference model* for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in letter language doesn't affect rest of system
- layering considered harmful?

Layering of post office functionality

Sender writes letter

Sender drops off letter at post office

Post office X sends mail to city Y

Sender city X

airplane routing

intermediate air-traffic control centers

Recipient reads letter

Mailman delivers from post office to sender's home

Post office Y receives mail from city X

Recipient city Y

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Layering of post office functionality

Physical Link Network

Sender writes letter

Sender drops off letter at post office

Post office X sends mail to city Y

Sender city X

airplane routing

intermediate air-traffic control centers

Recipient reads letter

Physical

Network

Link

Mailman delivers from post office to sender's home

Post office X receives mail from city X

Recipient city Y

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Transport: Delivery via UPS (signature required) or USPS (no signature required)

Application: the contents of the letter, e.g. photo, video, novel

Question: given millions of access ISPs, how to connect them together?

Option: connect each access ISP to every other access ISP?

Option: connect each access ISP to a global transit ISP? Customer and provider ISPs have economic agreement.

But if one global ISP is viable business, there will be competitors

But if one global ISP is viable business, there will be competitors which must be interconnected

... and regional networks may arise to connect access nets to ISPS

- at center: small # of well-connected large networks
 - "tier-1" commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage
 - content provider network (e.g, Google): private network that connects it data centers to Internet, often bypassing tier-1, regional ISPs

Tier-1 ISP: e.g., Sprint

