
Programming	Assignment	2:	Mininet	and	POX	
	
In	this	assignment,	you	will	learn	how	to	create	a	virtual	network	on	your	local	machine	and	
install	flow	rules	with	OpenFlow.	
	
Setup	
1. Download	the	required	components.	

a. Download	Virtualbox:	
https://www.virtualbox.org/wiki/Downloads	
	

b. Download	Mininet:	
https://github.com/mininet/mininet/wiki/Mininet-VM-Images	
	

c. Configure	the	Virtualbox	so	that	you	can	access	it	through	SSH:	
https://github.com/mininet/openflow-tutorial/wiki/Set-up-Virtual-Machine	
From	this	point	on,	you	can	minimize	Virtualbox	and	interact	with	it	purely	through	
SSH.	Don’t	forget	-x	option	for	graphical	forwarding.	

	
2. Learn	how	to	run	a	basic	topology.	

a. Run	a	controller:	
 ./pox.py log.level --DEBUG misc.of_tutorial	
This	loads	the	controller	in	~/pox/pox/misc/of_tutorial.py.	This	version	acts	like	a	
dumb	switch	and	floods	all	packets.		
	

b. At	the	same	time,	set	up	a	topology	that	connects	to	the	controller:	
sudo mn --custom ~/mininet/custom/topo-2sw-2host.py --controller remote 
This	loads	the	topology	~/mininet/custom/	topo-2sw-2host.py.	This	version	creates	
a	simple	topology	with	one	switch	connected	to	two	hosts.	

	
Resources	
This	is	only	a	barebones	guide	to	the	setup.	You	may	find	the	following	resources	useful	(and	in	
fact	are	encouraged	to	look	throught	them):	
https://github.com/mininet/openflow-tutorial/wiki	
https://openflow.stanford.edu/display/ONL/POX+Wiki	
	
Some	handy	commands:	

• Ping	between	hosts	h1	and	h2:	 		 	 h1 ping h2	
• Any	command	you	want	to	send	to	host	h1:			 h1 cmd	
• Open	up	a	new	terminal	for	host	h1:			 	 xterm h1	
• Analyze	network	traffic:		 	 	 	 wireshark, tcpdump	
• Print	the	rules	currently	installed	on	switch	s1:		 ovs-ofctl dump-flows s1	

	
	
	



	
Instructions	
First,	set	up	up	the	following	topology:	
	
	

	
	
	
	

	
	
	
	
	

	
	
In	Parts	A	and	B,	all	traffic	will	be	directed	to	the	network	controller,	which	will	make	decisions	
on	behalf	of	the	switches.	In	Parts	C	and	D,	the	controller	will	install	rules	on	the	switches	so	
they	can	forward	traffic	themselves.	
	
Please	submit	your	Python	code	for	each	step	in	an	Appendix.	
	
Part	A:	Hub	controller	
All	traffic	arriving	on	a	switch	will	be	forwarded	to	the	controller.	The	controller	then	instructs	
the	switch	to	forward	the	packet	on	all	ports	except	the	one	it	arrived	on.	This	is	the	default	
behavior	of	the	of_tutorial.py	controller.		

1. Have	h1 ping h2	and	h1 ping h5.	How	long	did	it	take	to	ping?	What	is	the	
difference?	Which	of	the	hosts	and	switches	observe	traffic?	

2. Run	iperf h1 h2	and	iperf h1 h5.	What	is	the	throughput?	What	is	the	
difference?	

3. Run	pingall	to	verify	connectivity	and	dump	the	output.	
	
Part	B:	MAC	learning	controller	
All	traffic	arriving	on	a	switch	will	be	forwarded	to	the	controller.	Modify	the	default	controller	
so	that,	for	each	switch,	it	learns	the	mapping	between	MAC	addresses	and	ports.	It	then	
instructs	the	switch	which	port	to	forward	the	packet	on.	

1. Have	h1 ping h2	and	h1 ping h5.	How	long	did	it	take	to	ping?	What	is	the	
difference?	Which	of	the	hosts	and	switches	observe	traffic?	How	does	this	compare	to	
the	hub	controller?	

2. Run	iperf h1 h2	and	iperf h1 h5.	What	is	the	throughput?	What	is	the	
difference?	How	does	this	compare	to	the	hub	controller?	

3. Run	pingall	to	verify	connectivity	and	dump	the	output.	
	
	

Host	
1	

Host	
2	

Host	
3	

Host	
4	

Host	
5	

Switch	
1	

Switch	
2	

Switch	
3	



	
Part	C:	MAC	learning	switch	
Now,	we	will	try	to	make	the	switch	a	bit	smarter.	Modify	the	controller	from	Part	B	so	that	
when	it	learns	a	mapping,	it	installs	a	flow	rule	on	the	switch	to	handle	future	packets.	Thus,	the	
only	packets	that	should	arrive	at	the	controller	are	those	that	the	switch	doesn’t	have	a	flow	
entry	for.	

1. Have	h1 ping h2	and	h1 ping h5.	How	long	did	it	take	to	ping?	What	is	the	
difference?	Which	of	the	hosts	and	switches	observe	traffic?	How	does	this	compare	to	
Part	A,	and	why?	

2. Run	iperf h1 h2	and	iperf h1 h5.	What	is	the	throughput?	What	is	the	
difference?	How	does	this	compare	to	Part	A?	

3. Run	pingall	to	verify	connectivity	and	dump	the	output.	
4. Dump	the	output	of	the	flow	rules	using	ovs-ofctl dump-flows.	How	many	rules	

are	there,	and	why?	
	
Bonus:	if	you	used	the	of.ofp_match.from_packet	function	to	create	the	flow	rule,	that	
might	explain	why	there	are	so	many	rules.	Can	you	think	of	a	way	to	reduce	the	number	of	
rules,	and	implement	this	in	the	controller?	
	
Part	D:	Simplified	IP	router	
Finally,	we	will	do	a	bit	of	layer-3	routing.	This	is	a	simplified	version	of	an	IP	router	where	we	
ignore	several	aspects	such	as	TTL,	checksum,	and	ARP.	Modify	the	topology	so	the	hosts	H1-5	
have	IP	addresses	10.0.0.1,	10.0.0.2,	10.0.1.1,	10.0.1.2,	10.0.1.3	respectively	(but	are	still	on	the	
same	subnet,	e.g.	/16).	Install	IP-matching	rules	on	switch	2	(hint:	use	ovs-ofctl	and	match	
on	/24).	Let	switches	1	and	3	stay	as	MAC	learning	switches.	

1. Have	h1	ping	h2	and	h1	ping	h5.	How	long	did	it	take	to	ping?	What	is	the	difference?	
Which	of	the	hosts	and	switches	observe	traffic?	How	does	this	compare	to	the	previous	
controllers?	

2. Run	iperf	h1	h2	and	iperf	h1	h5.	What	is	the	throughput?	What	is	the	difference?	How	
does	this	compare	to	the	previous	controllers?	

3. Run	pingall	to	verify	connectivity	and	dump	the	output.	
4. Dump	the	output	of	the	flow	rules	using	ovs-ofctl	dump-flows.	How	many	rules	
1. are	there,	and	why?	
5. How	does	this	network	compare	to	your	previous	controllers?	Which	is	better,	and	why?	

	
	
	
	
	
	
	
	
	
Based	on	Jennifer	Rexford’s	COS561	programming	assignment.	


