
CS 179i:
Project in Computer Science (Networks)

Jiasi Chen

Lectures: 3:10-4pm Watkins 2240

TA: Shahryar Afzal

Lab: Tuesday 4:10-7pm WCH 133

http://www.cs.ucr.edu/~jiasi/cs179i_winter18/
1

Why Networks?

2

Video streaming

Social media

Number of Internet users

• 97% of Americans between 18-29

• 40% of the world population à
scope for more users

http://www.pewinternet.org/data-trend/internet-use/latest-stats/

https://en.wikipedia.org/wiki/List_of_countries_by_number_of_internet_users

Supports the applications that we use today…

Why Networks?

3

But also a source of conflict.

Network neutralityCyber security

http://www.huffingtonpost.com/eric-dezenhall/a-look-back-at-the-target_b_7000816.html
http://www.nytimes.com/2015/11/12/technology/t-mobile-video-plan-could-test-fccs-new-net-neutrality-rules.html

What is networking?

• Bunch of acronyms?

4

TCP

OSPF

IP

BGP

DNS

ABR

UMTS

DDoS

HTTP

REST

SPDY

MCS

MAC
RED

NAT

VLAN

DHCP

What is networking?

• Bunch of headers?

5Source: https://nmap.org/book/tcpip-ref.html

Networking is…

The search for general principles to guide communication

6

Major Areas in Networking

• Wireless
• How to provide a one-to-one communication

pipe in an inherently broadcast environment?

• Layering
• How to modularize the design to enable easy

innovation?

• Protocols
• How to interact within each layer, and talk to

other layers?

• Resource allocation
• How to share limited resources between

competing users?

7

Application
(e.g. video streaming)

Transport
(e.g. TCP, UDP)

Network
(e.g. routing)

Link
(e.g. scheduling)

Physical
(e.g. OFDM)

OSI 5-layer model of the Internet

Download Booster Using Multiple Interfaces

• Speed up downloads by using
multiple interfaces
simultaneously (e.g., WiFi, 4G,
Ethernet)

• Samsung introduced Download
Booster, but it got blocked by
major carriers

• Multipath-TCP is another
major standardization effort

8

Client

Internet

Ap
pl

ic
at

io
n

Vi
rt

ua
l i

nt
er

fa
ce

Server

Transport layer multipath: multipath-TCP
• Extension of TCP to split a single flow into

multiple subflows
• Each subflow can use a different interface

• Pros: works for TCP traffic
• Cons: kernel modification

• Control knobs
• Congestion control
• Scheduler

• Resources
• MPTCP kernel: http://www.multipath-tcp.org/

9

Application
(example: wget)

Kernel
(routing table, MPTCP)

Network interface
(example: eth0)

Network interface
(example: wlan0)

Application layer: HTTP proxy on client
• Construct a local HTTP proxy that listens on port 8080
• Split GET requests

• eth0: request bytes 1-50
• wlan0: request bytes 51-100

• Pros: easy to run
• Cons: only works for HTTP traffic

• Control knobs
• Split 50/50? 25/75? Depends on link bandwidth
• What if link bandwidth changes over time?

• Resources
• Simple Python local proxy will be provided

10

Application
(example: wget)

Kernel
(routing table)

Network interface
(example: eth0)

Network interface
(example: wlan0)

HTTP proxy

Competition

11

Server

Client

Metrics
• Throughput (how fast can I download?
• Fairness (how well do I share the link with others?)
• What if throughput changes over time?

Team 1

Team 2

Team 3

Default

Switch

Client

Client

Client

Switch

Link capacity = 500 kbps

Link capacity = 1 Mbps

time

throughput

Example run:

Your Tasks

1. Install and get familiar with Mininet (small assignment)
2. Install multipath-TCP as a baseline
• Experiment with different congestion control and schedulers

3. Implement the HTTP proxy
• Design an algorithms to splitting the traffic

4. Develop a GUI to visualize the results
5. Final demos: head-to-head comparison with your classmates
6. Bonus: Run the proxy in real life (e.g., WiFi + Ethernet)

12

What You Will Learn in this Course

• Knowledge: Common networking tools/protocols, depending on your
choice of project
• Software-defined networking
• Multipath
• Socket programming

• Skills
• How to work in teams
• How to lead your own project
• How to learn on your own

13

Logistics

• Lecture: Jiasi Chen
• Slides available on course website
• Office hours: Thursdays 1-3pm, or by appointment

• Lab: Shahryar Afzal

• Submit assignments on iLearn

• Check class website for latest updates
• http://www.cs.ucr.edu/~jiasi/cs179i_winter18/

14

Grading

• Project: 65% total
• Mininet assignment: 5%
• Project proposal: 5%
• Progress update: 10%
• Final report: 30%
• Final presentation: 15%

• 4 essays: 20%
• ABET requirement
• 2 free late days

• Participation: 15%
• Attending lecture and lab
• Giving feedback during other teams’ final presentations

15

Calendar
Week Lecture Assignment Due

1 Introduction
2 MPTCP Group formation
3 Proxy Mininet mini-assignment
4 Visualization New trends essay
5 Progress update / Q&A Brief (10 minute) presentation per group
6 Ethics
7 Guest lecture
8 TBD Ethics essay
9 Final presentations

10 Final presentations Presentation essay
Finals week Teamwork essay, final report due

16

To do

• Next lecture: Mininet

• To do by next class
• Form groups (2+) and send one email per group to myself and TA

• Questions?

17

Platforms for Network/Systems Teaching
Platform Advantages Disadvantages

Hardware Testbed fast
accurate: "ground truth"

expensive
shared resource?
hard to reconfigure
hard to change
hard to download

Simulator inexpensive, flexible
detailed (or abstract!)
easy to download
virtual time (can be
"faster" than reality)

may require app changes
might not run OS code
detail != accuracy
may not be "believable"
may be slow/non-interactive

Emulator inexpensive, flexible
real code
reasonably accurate
easy to download
fast/interactive usage

slower than hardware
experiments may not fit
possible inaccuracy from
multiplexing

Source: https://conferences.sigcomm.org/sigcomm/2014/doc/slides/mininet-intro.pdf

To start with,
a Very Simple Network

Host Switch Host

firefox httpd

VM Server

Very Simple Network using
Full System Virtualization

ovs-vswitchd

Linux Kernel openvswitch kernel module

Host VM

cupsd

Linux Kernel

init

bash

firefox

eth0

tap0

eth0

tap1

Host VM

cupsd

Linux Kernel

init

bash

httpd

eth010.0.0.1 10.0.0.2

Server (or VM!)

Very Simple Network using
Lightweight Virtualization

ovs-vswitchd

Linux Kernel openvswitch kernel module

Network Namespace 1

firefox

veth1

eth0

veth2

Network Namespace 2

httpd

eth0eth0
10.0.0.1 10.0.0.2

Root Namespace

Mechanism: Network Namespaces
and Virtual Ethernet Pairs

Network Namespace 1

firefox

veth1

eth0

veth2

Network Namespace 2

httpd

eth0eth0

Software
Switch

virtual Ethernet pairs

10.0.0.1 10.0.0.2

Creating it with Linux
sudo bash
Create host namespaces

ip netns add h1

ip netns add h2
Create switch

ovs-vsctl add-br s1

Create links
ip link add h1-eth0 type veth peer name s1-eth1

ip link add h2-eth0 type veth peer name s1-eth2

ip link show
Move host ports into namespaces

ip link set h1-eth0 netns h1

ip link set h2-eth0 netns h2
ip netns exec h1 ip link show

ip netns exec h2 ip link show
Connect switch ports to OVS

ovs-vsctl add-port s1 s1-eth1

ovs-vsctl add-port s1 s1-eth2
ovs-vsctl show

Set up OpenFlow controller

ovs-vsctl set-controller s1 tcp:127.0.0.1
ovs-controller ptcp: &

ovs-vsctl show

Configure network
ip netns exec h1 ifconfig h1-eth0 10.1

ip netns exec h1 ifconfig lo up

ip netns exec h2 ifconfig h2-eth0 10.2
ip netns exec h1 ifconfig lo up

ifconfig s1-eth1 up

ifconfig s1-eth2 up
Test network

ip netns exec h1 ping -c1 10.2

s1

h1

10.0.0.1

h2

10.0.0.2

ctrl’er

s1-eth1

h1-eth0 h2-eth0

s1-eth2

Wouldn’t it be great if...
● We had a simple command-line tool and/or API that did this for us

automatically?

● It allowed us to easily create topologies of varying size, up to hundreds
of nodes, and run tests on them?

● It was already included in Ubuntu?

Mininet command line tool and CLI
demo
mn
mn --topo tree,depth=3,fanout=3 --
link=tc,bw=10
mininet> xterm h1 h2
h1# wireshark &
h2# python -m SimpleHTTPServer 80 &
h1# firefox &
mn --topo linear,100
mn --custom custom.py --topo mytopo

Mininet's Python API
Core of Mininet!! Everything is built on it.
Python >> JSON/XML/etc.
Easy and (hopefully) fun
Python is used for orchestration, but emulation is
performed by compiled C code (Linux + switches +
apps)
api.mininet.org
docs.mininet.org
Introduction to Mininet

Mininet API basics
net = Mininet() # net is a Mininet() object
h1 = net.addHost('h1') # h1 is a Host() object
h2 = net.addHost('h2') # h2 is a Host()
s1 = net.addSwitch('s1') # s1 is a Switch() object
c0 = net.addController('c0') # c0 is a Controller()
net.addLink(h1, s1) # creates a Link()
object
net.addLink(h2, s1)
net.start()
h2.cmd('python -m SimpleHTTPServer 80 &')
sleep(2)
h1.cmd('curl', h2.IP())
CLI(net)
h2.cmd('kill %python')
net.stop()

s1

h1

10.0.0.1

h2
10.0.0.2

c0

Performance modeling in Mininet

Use performance-modeling link and host classes
net = Mininet(link=TCLink, host=CPULimitedHost)
Limit link bandwidth and add delay
net.addLink(h2, s1, bw=10, delay='50ms')
Limit CPU bandwidth
net.addHost('h1', cpu=.2)

s1

h1

10.0.0.1
20% of

CPU

h2

10.0.0.2

controlle
r

10 Mbps, 50 ms

