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Abstract—The recently proposed 3-Tier access model for
Whitespace by the Federal Communications Commission (FCC)
mandates certain classes of devices to share frequency bands in
space and time. These devices are envisioned to be a heteroge-
neous mixture of licensed (Tier-1 and Tier-2) and unlicensed,
opportunistic devices (Tier-3) . The hierarchy in accessing the
channel calls for superior adaptation of Tier-3 devices with
varying spectral opportunity. While policies are being ratified
for efficient sharing, it also calls for redesigning many common
applications to adapt to this novel paradigm.

In this paper, we focus on the ever-increasing demand for
video streaming and present a methodology suitable for Tier-3
devices in the shared access model. Our analysis begins with a
stress test of commonly adopted video streaming methods under
the new sharing model. This is followed by the design of a
robust MDP-based solution that proactively adapts to fast-varying
channel conditions, providing better user quality of experience
when compared to existing solutions, such as MPEG-DASH.
We evaluate our solution on an experimental testbed and find
that our MDP-based algorithm outperforms DASH, and partial
information of Tier-2 dynamics improves video quality.

I. INTRODUCTION

In recent years, the FCC has addressed the dearth of
spectrum through various rule-making efforts [1] that focus
on sharing large swaths of frequencies, historically allocated
to various federal and non-federal bodies. In this regard, it
has been proposed that a prioritised access scheme should be
adopted for sharing this common pool of resources, collec-
tively called whitespace. While exclusive rights remain for the
incumbent users of these bands, other devices and services
can use those bands based on certain rules and policies. The
architecture of such a sharing paradigm is unique compared to
current architectures in practice, especially as it concerns the
co-existence of Tier-2 (T2) and Tier-3 (T3) classes of devices.

Figure 1 shows an example of spectrum sharing between
the two classes of users, where T2 networks are allowed to
have a larger transmission range. T3 networks use the same
frequency band in the vicinity, but are comprised of unlicensed
and opportunistic devices. Being lower in priority, T3 devices
will have to be adaptive in terms of their transmission ranges
to prevent harmful interference to T2 clients. The degree of
adaptation (low transmit power) depends on the proximity
of T2 in the region where the transmission zones overlap,
represented by varying ranges of T3 networks in Figure 1.
Also, the frequency of arrival of T2 users will force T3
networks to adapt, often at a much smaller timescale than
experienced in the current channelized mode of access.

In this paper, we focus on characterizing the collective
effect of these two factors as experienced by a T3 client
and study its effect on bandwidth demanding applications like

Fig. 1: Spectrum sharing in Whitespace. T3 users adapt to the
dynamics of T2 clients by adjusting their transmission ranges.

video streaming. Now, a T3 client will not only experience
time-varying interference from devices of its own class but
also have to compensate for varying transmission ranges. This
may also include spectrum outages. Designing video streaming
applications for this class of devices is the goal of this work.

Modern video streaming applications use adaptive tech-
niques to combat variations in the throughput of the underlying
channel. Dynamic Adaptive Streaming using HTTP (DASH)
[2] , which was recently standardized, has been widely adopted
in the video streaming industry, as it provides flexibility and
reliability which leads to a high quality of experience (QoE)
for the end user. DASH progressively request small chunks
of video, called segments, of various video resolutions, while
adapting to channel variations. This is implemented as a
moving average of the application layer throughput observed
over a finite timescale. Segments are requested based on the
estimated throughput.

Clearly, the benefit of DASH depends on the smoothness
of the estimated throughput and the availability of segments
with multiple resolutions. This limits the performance gain of
conventional DASH-based video streaming as it can make a
decision for future segments only. Furthermore, since DASH
acts on the average throughput estimated over previous time
windows, it reacts slowly to changing channel conditions
because the averaging operator smoothes these variations.

A. Problem Statement and Methodology

Fig. 2 shows the performance of adaptation in conventional
DASH. If the application layer throughput estimated by the
adaptation algorithm varies slowly, the bit-rate of the segments
downloaded consistently follows the variation in throughput
(Fig. 2a). However, if the channel changes quickly (Fig.
2b), the adaptation of the video segments fails to follow the
maximum throughput offered by the channel, even if partial
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Fig. 2: Performance of DASH in various channel conditions

Fig. 3: DASH with SVC

information of the variation pattern is known, since DASH
does not have the mechanism to handle this information. This
leads to lost opportunities to download higher quality segments
when the channel offers a higher throughput. With partial
information of channel condition, particularly T2 dynamics,
can we do better than DASH in adapting to the fast-varying
whitespace channel? This is precisely the problem we will
solve in this work, as follows.

We leverage the Scalable Video Coding (SVC) extension
of the MPEG H.264 encoder [3]. With SVC, the raw video
is encoded in various interdependent layers. In its simplest
form, it consists of a Base Layer (BL) and multiple En-
hancement Layers (EL). Although these layers are required
to be multiplexed before decoding the video, they can be
stored independently in smaller chunks, as are DASH-based
streaming contents. The main benefit obtained from SVC is
the ability to download EL for video segments at a later
timestep if the corresponding BL is already in the buffer. This
form of video storage and distribution is beneficial for the fast
varying channel (Fig. 2b). Since SVC allows for incremental
improvement of video segments over time, video streaming
applications can optimize the sequence of the segments to
download while maximizing the quality of each video segment
before it is played back. Fig. 3 is a snapshot of the video
buffer within the player which shows the possible candidate
segments to request if there is enough throughput to download
the particular layer. This provides various choices to the
application, and the key challenge is to maximize user QoE
using the flexibility of SVC.

To determine a preferred way to download a video, we
use proactive adaptation. Because of the tiered architecture
of whitespace and the scheduling role of a Spectrum Access
System (SAS) [4], a T3 video streaming client may have prior
information of T2 users’ arrival and mobility patterns, and
can use this to predict future throughput for video streaming.
Considering the unpredictability of the whitespace channel,
our proactive adaptation is Markov Decision Process (MDP)
based, which chooses a segment bit rate that will maximize
the expectated future video quality, unlike DASH which only
considers the moving average of past throughput.

B. Contributions

Architecture: We design a network-aware video adaptation
framework that uses future channel condition information to
proactively adapt to the fast-varying whitespace channel.

Traffic model in whitespace: Based on the 3-tier model for
whitespace, we use a two-state Markov chain to model the T2
dynamics, and estimate the available bandwidth pattern for a
T3 user by considering T2 and T3 dynamics.

Algorithm: We design an MDP-based, proactive, adaptive
video streaming algorithm using SVC and take signal strength
as an input to detect current T2 ON/OFF-state.

Experiment: To test our MDP scheme, we implement a wire-
less system using two PCs and a channel emulator. We run real-
time video streaming from a video server to a streaming client,
and model the whitespace traffic in the channel emulator.

II. SYSTEM MODEL

In this section, we show the fast-varying channel in whites-
pace by characterizing T3 throughput. Then, we describe our
system architecture that allows video streams to adapt to the
whitespace channel.

A. Characterization of T3 Throughput

Because of the coexistence of T2 and T3 users, the max-
imum transmitting power of a T3 access point (AP) depends
on the location of T2 users. To simulate this scenario, we use
a reverse mapping of the 802.16 Stanford University Interim
(SUI) path loss model to find the maximum transmitting
power of a T3 AP, given the distance between T2 and T3
users, the transmitting power of T2 base station (BS), and
the minimum required receiving power of T2 clients. SUI is
defined as PLSUI = A + 10γ log10( dd0 ) + Xf + Xh + s
[5]. We choose the parameters based on an urban area, giving
PLSUI(d) = 126 + 46.15 log10( d

100 ) dB. Then we derive the
throughput of a T3 user by considering (1) the dynamics of
T2 users (ON/OFF) results in various SNR for all T3 users,
and thus the variation in total throughput available to T3 users,
and (2) a varying number of T3 users share the same channel
using TDMA. Based on these factors, a sample throughput
trace for a T3 user for 300s is shown in Fig. 4, which shows a
fast-varying channel with frequent throughput fluctuation due
to both arrival/departure and mobility of T2 users, and the
varying number of T3 users sharing the same channel.

B. Whitespace Adaptive Video Streaming Architecture

Our architecture consists of three components: the video
server, the tiered access model and the video player, as shown
in Fig. 5. The server stores videos in SVC format as well
as the corresponding Media Presentation Description (MPD)
files for each video, which describes the video length and
the segments available for each resolution. The whitespace
tiered access channel is modeled based on the T2 and T3
dynamics in the previous section. At the client side, the video
player runs our adaptation algorithm to select which video
resolution and segment to request every segment duration slot.
The segment selection algorithm runs based on the predicted
future throughput from T2 dynamics pattern, and also the
measurement of current signal strength. Each time a requested
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Fig. 4: A sample of T3 throughput. In this example, we have
5 T2 users randomly located in the T2 cell. The number of T3
users follows a normal distribution between 10 and 15.

Fig. 5: System Overview

segment is downloaded, the video segments in each bin (buffer
for each layer) and the display buffer will be updated, and the
current number of segments in bins and the buffer become
feedback for segment selection algorithm.

III. PROBLEM FORMULATION

In this section, we formulate and solve the problem of
choosing the video segments which maximize the user QoE
over the duration of the video. We do this for two cases: (1)
our proposed algorithm based on MDP, which is adaptive to
uncertainty in the throughput variations of the T3 user, and
also incorporates knowledge of T2 users if available, and (2)
a simple scenario where the available throughput of a T3 user
is known over time, serving as a benchmark. The notation in
this section is given in Table I.

A. Online Dynamic Video Adaptation Formulation

We first tackle the problem of online dynamic video
adaption to handle uncertainty in the future throughput. This
uncertainty is key in whitespace networks, where T2 users can
interfere with T3 users, so we first discuss the traffic model of
T2 users.

T2 user dynamics: User population dynamics are generally
modeled as a Poisson process [6]. Since the video requests
by the application are periodic, we use a Bernoulli process,
which is the discrete-time case of Poisson, to model the
arrival/departure of T2 users. This forms a two-state Markov
chain with states ON and OFF, denoting T2 user presence. The
transition probability OFF→ON and ON→OFF are denoted
as p1 and p2, respectively. Then the ON and OFF duration of
T2 users follows a geometric distribution, with T2 presence
duration(t1) and absence duration(t2) expressed as P (t1 =
k) = (1 − p2)k−1p2, and P (t2 = k) = (1 − p1)k−1p1. The

N, T total number of segments of video, number of iterations in
MDP (T ≤ N )

Q0, Q1, Q2 video quality(SSIM): low, medium, high

R0, R1, R2 video rate for low, medium, high resolution

S(n, r) size of video segment n of resolution r, r ∈ {0, 1, 2}
S(r) average size of a video segment of resolution r, r ∈ {0, 1, 2}
qr =
log[k(1 + r)]

utility of resolution r for a segment, k ≥ 10

R(m) throughput at time m

τ playback length of a segment (segment duration)

Ct
r number of segments in bin r at time t

At
r number of segments to request for resolution r for the tth

time slot

Nt
r number of segments successfully downloaded for resolution r

for the tth time slot, Nt ≤ At

U(t) utility at time t

B size of each bin in video segments

Br required minimum number of segments in bin r

S,A states and available actions in MDP

SA all possible states after taking action A from state S in MDP

RL, RH Average throughput of T3 when T2 is ON and OFF

TABLE I: Table of notation.

combined effect of T2’s interference and T3 varying transmit
power (to avoid interference to T2 users) results in varying
SNR at the T3 receiver.

Markov decision process: At the beginning of each time
interval, the algorithm must choose: (a) which video segment,
and (b) which quality level to request. The optimal action for
the current time interval is based on the available throughput,
which is unknown but can be estimated from the probabilistic
user dynamics model previously described. The online dy-
namic video adaptation can naturally be formulated as a finite
horizon Markov Decision Process (MDP), where the actions
are the video segments to be requested by the T3 user, and the
state transition probabilities are based on T2 users’ dynamics.1

An example of the states of the MDP is shown in Fig. 6a.
There are two types of states, called “super-states” and “sub-
states”(colored). Each super-state is described by a tuple with
elements: (1) t, the current video display time; (2) C0, C1, C2,
the current number of segments in bins 0, 1, and 2 respectively;
(3) Ut, the utility, which will be formulated below; and (4)
ON/OFF, whether T2 is currently present. Then there are three
sub-states depending on whether T2 ON/OFF information in
the next state is known in this super-state, with probability
pa, pb and pc. The actions here are how many segments to
request for each layer, denoted as A. An example of A is
(1, 0, 0), which means requesting 1 segment of layer0 (L0),
requesting none for layer1(L1) or layer2 (L2). If T2 ON/OFF
information is known, as shown in the first two sub-states,
then the next super-state is fixed based on an action. However,
if T2 ON/OFF information is unknown, with the same action
A1, the next super-state has several candidates with transition
probability based on possible throughput ranges.

To simplify MDP, we fit the three sub-states into the
super-state by adding one more element {Knowon, Knowoff ,

1The markov property arises because the buffered segments in the next state
only depends on the buffered segments in current state and the action taken
in this state. In addition, segment requests in a future state only depend on
the buffered segments and T2 dynamics in that state, independent of segment
requests in previous states. The finite horizon arises because the video has
finite length.



(a) Video Segment Fetching as a Finite Horizon
MDP

(b) Case1: T2 is known to be on

(c) Case2: T2 is known to be off (d) Case3: T2 ON/OFF is unknown

Fig. 6: One-state transition in MDP. The last three figures are the detailed expansion of the colored sub-states in the first figure.

Unknown} indicating whether T2 ON/OFF information in
the next state is known. Fig. 6 shows the detailed one-
state transition by considering three starting states: Knowon,
Knowoff and Unknown. In each state S(t), the utility for
taking action Atr is defined as:

U(t, Atr) = R(St, A
t
r) + P TU(t+ 1) (1)

where R(St, A
t
r) =

L∑
r=0

Nn
r qr is the current reward of taking

action Atr in state S(t) at time t. As defined in Table I,
N t
r is the number of segments successfully downloaded for

each resolution, which depends on Atr and the actual current
throughput. P is the probability transition vector from current
state to all states after taking Atr, and U(t + 1) is the vector
of utilities in all states at next stage t+ 1. The current utility
is the summation of current reward and expected utility in the
next stage.

The MDP problem is to maximize this utility function in
every time interval t, with the constraint of buffer size and
available throughput:

maximize
At

r

U(t, Atr)

subject to Br ≤ Ctr +Atr ≤ B
S(r)Atr ≤ τR(t)

Ct1 +At1 < Ct0 +At0
Ct2 +At2 < Ct1 +At1

(2)

The first constraint means the number of segments in each
bin cannot exceed the bin size B, and must be larger than the
minimum segment number Br in Bin r, where r ∈ {0, 1, 2}.
The second constraint means the total requested segment size
(candidate actions) cannot exceed the available throughput.
Also, in SVC, lower layers should be requested before higher
layers, which is represented by the last two constraints.

B. MDP-based Adaptation Algorithm

For a finite horizon MDP, the utility at each state U(t) can
be calculated offline. In an online algorithm, the goal is to

maximize the expected utility for all future states.

Offline Utility Calculation: We construct a utility table U
of size T × 6B3, where the tth row stores the utility U(t)
for different cases at time t. 6B3 = 2 × 3 × B3 is the total
number of states, where 2 indicates the element ON/OFF, 3
represents Knowon, Knowoff and Unknown of T2 dynamics
in the next state, B is the buffer size of each bin, and we have
three bins for three layers. The table size is proportional to
video length, and only needs to be calculated once per video.
The optimization problem is the same as (2), with the utility
function
U(t, Atr) = R(St, A

t
r)+E[U(t+1)] = R(St, A

t
r)+P TU(t+1)

(3)
Then all the utilities at different states and different time can

be calculated using dynamic programming(DP), as follows.

The solution of the DP depends on the boundary cases. In
our algorithm, there are only three cases for {C0, C1, C2} in
the end state: {1, 0, 0}, {1, 1, 0} and {1, 1, 1}. The utility only
depends on which layer is fetched, and thus is defined as

Uend =

L∑
r=0

Nend
r qr (4)

Algorithm 1 Offline Utility Calculation

Input: T2 ON/OFF transition probability p1, p2; probability
of knowing T2 ON/OFF for the next τ seconds pa, pb, pc

Output: vector U(t) for each state at state t
1: Construct state transition reward matrix R of size S × S
2: Construct state transition probability matrix P of size S×
S ×A

3: Calculate Uend using Eqn. (4)
4: Using DP, do backward calculation of previous U(t).

The utility of state S at stage t is U(t, S) =
max
A

∑
SA

P (S, SA, A){R(S, SA) + U(t+ 1, SA)}

Online Segment Request: The utility at each state in each
time interval U(t) is found by mapping to the offline utility
table U. Among all actions Atr (the number of segments to



request for each layer in time interval t), the action that
maximizes the summation of current reward and expected
future utilities is selected. This guarantees that if the algorithm
is run over a number of realizations, the average utility over
all realizations is the optimal. However, for every single
realization, this MDP method does not guarantee the best
action, as a single realization of T2 dynamics may differ
from the general T2 transition probabilities. For computational
complexity, though the number of states in the utility table U
is large, the utility of each state can be stored at a unique
location. Then looking for the action at a particular state only
takes O(N) time, where N is the video length in segments.
Algorithm 2 MDP-based adaptation using SVC

Input: bin level (in video segments); current signal strength
SSc; Segment duration τ .

Output: video quality Q(n) for each segment n, n ∈
{1, ..., N}, Q(n) ∈ {Q0, Q1, Q2}.

1: for t = 1 : T do
2: Detect the current state by checking whether T2 is

ON/OFF based on the value of SSc, and the current bin
level C0, C1, C2.

3: Find the best action for the current state at time t from
the table of actions.

4: Request Ar according to the best action.
5: Discard unfinished segments in the current request if
τ seconds passed.

6: end for

C. Incorporating partial information about T2 users

In the previous section, the information we have about T2
ON/OFF is only for the next τ seconds. The online algorithm
we developed depends on time-invariant transition probabilities
between states so that the MDP model can be used. In practice,
however, T3 users may have additional information about the
arrival and departure of T2 users, since T2 users can register in
the FCC database. We can therefore incorporate this additional
information about T2 users into our model to improve the
performance of the T3 users.

Suppose we have exact T2 ON/OFF knowledge for the next
αNτ seconds (α of entire video length, α ∈ [0, 1], depending
on the percentage of T2 users that register in the database).
Then the exact state transition patterns are fixed for these
αNτ seconds. In the extreme case, exact T2 ON/OFF times
are known for the entire video (α = 1), providing perfect
information of T2 dynamics. The fixed transition patterns in
the known period make the MDP non-stationary, because the
transition probabilities change over time. The offline utility
calculation needs to be modified to fit this non-stationary
MDP, as shown in Algorithm 3. During the period where T2
dynamics are known, instead of calculating the expected future
utilities based on T2 transition probabilities, we calculate the
future utilities after taking each action based on the known T2
ON/OFF pattern. In the unknown period, the utility calculation
is the same as in Algorithm 1. The utility table should be
updated whenever there is a new known T2 pattern, even if
the general T2 dynamics and video data are unchanged.

D. Benchmark: Offline Optimal Video Quality Selection

In this section, we consider an offline problem with known
throughput over the entire video duration, to benchmark the

Algorithm 3 Utility Calculation for non-stationary MDP

Input: T2 ON/OFF transition probability p1, p2; probability
of knowing T2 ON/OFF for the next τ seconds pa, pb, pc;
exact T2 ON/OFF for period Ω = αNτ .

Output: vector U(t) for every state at state t
1: Construct state transition reward matrix R, with size S×S.
2: Construct state transition probability matrix P, with size
S × S ×A.

3: Calculate Uend using Eqn. (4).
4: Using DP, do backward calculation of previous U(t). The

utility at state S at stage t is U(t, S) = max
A
{R(S, SA) + U(t+ 1, SA)} t ∈ Ω

max
A

∑
SA

P (S, SA, A){R(S, SA) + U(t+ 1, SA)} t /∈ Ω

video quality. The question is, given perfect knowledge of the
T3 user’s available throughput over time, how should the T3
user request video segments? If the available throughput is
generally low, then the user should request the low quality
version of each video segment. If the available throughput
is slightly higher, then the user should request higher quality
versions of some video segments, in addition to low quality
versions of all video segments. Thus, there are two decision
variables: which video segments should be requested, and
at what quality level. This is formulated as a video quality
maximization problem in (5).

maximize
Nn

r

Uglobal =

N∑
n=1

L∑
r=0

Nn
r qr

subject to n ≤
n∑

m=1

Nm
0 ≤ n+B,n ∈ [1, N ]

Cnr +Nn
r ≤ Cnr−1 +Nn

r−1, r ∈ [1, L]

Nn
r S(r) ≤ R(n), n ∈ [1, N ]
N∑
n=1

Nn
0 = N

(5)

L+ 1 is the number of layers in a video. Here we consider
a video with three layers (three resolutions), so L = 2.
Cnr is the current number of segments for layer r at time
n, which is updated as Cn+1

r = Cnr + Nn
r . The objective

function is to maximize utility of all segments in the video.
qr = log[k(1 + r)] is the utility of layer r of a segment, as
defined in Table I. The concave log function is to illustrate
that a user has less incentive to improve video quality if the
video quality is already relatively high. The first constraint
says the lowest layers must be request before its playback
time, and the buffered segments cannot exceed buffer size B.
The second constraint says that lower layers must be requested
before higher layers, due to the layer dependency of SVC. The
third constraint says that the size of all segments requested in
a time slot cannot exceed the total throughput in this this time
slot. The last constraint says the total number of segments of
lowest layer should be video length.

This problem is a linear programming problem, but is com-
plicated by the periodic buffer update and the time-dependency
between the video request and the video playback time. To
simply this problem, we divide the problem into subproblems
and use dynamic programming to solve this problem, as this
problem has optimal substructure and the optimization can be
done for every segment request. For each suboptimal problem



(every segment request), it is the same as (5) except that the

objective function becomes
L∑
r=0

Nn
r qr.

E. Optimality of MDP-based algorithm

In this section, we show the optimality of our MDP-
based algorithm for two cases: (1) imperfect information of
T2 dynamics, when only the Markov transition probability of
T2 dynamics is known; and (2) perfect information, when T2
arrival/departure for the entire video duration is known ahead
of time. Proofs of all the propositions can be found in our
technical report.[7]

Proposition 1. The optimal policy of MDP based algorithm
in section III-B maximizes the expected utility E(Uglobal) in
the offline global optimization problem (5).

Proposition 2. The lower bound of the MDP performance on
a single realization is (N−N1MPD)Q0+N1MPDQ1

(N−N1opt)Q0+N1optQ1
% of optimal

, N1opt = bN(RL−R0)
R1

c, N1MDP = b
N

p1
p1+p2

RL−NR0

R1
c. If

T2 dynamics distribution in a realization differs from expected
distribution by pD, the performance will degrade at most by
pD(1− pOFF Q0

Q2
).

Proposition 3. With perfect T2 information over the entire
video duration, the non-stationary MDP method in III-C pro-
vides a solution to problem (5), the offline global optimization
problem.

F. Stability of Video Quality

In previous sections, only video quality is considered.
However, the stability of video quality is also important to
QoE. In this section, we modify the utility function in MDP
to reduce temporal variations of video quality.

Instead of using the summation of video quality of each
segment, we use the geometric mean of video quality of all
segments in the buffer as the utility function (shown below).
Geometric mean not only maximizes video quality, but also
minimizes quality variance among these segment[8].

The utility function is the same as 1, except the reward
function becomes

R(St−1, St) = [(q2)C
t
2(q1)C

t
1−C

t
2(q0)C

t
0−C

t
1 ]

1

Ct
0 (6)

which is the reward in transition from state St−1 =
{Ct−10 , Ct−11 , Ct−12 } to state St = {Ct0, Ct1, Ct2} = {Ct−10 +
N t

0, C
t−1
1 + N t

1, C
t−1
2 + N t

2}, resolution r ∈ {0, 1, 2}. Then
the boundary case becomes

Uend = [(q2)C
end
2 (q1)C

end
1 −Cend

2 (q0)C
end
0 −Cend

1 ]
1

Cend
0

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our scheme
on a real testbed by comparing it with three alternatives: (1)
an offline optimal algorithm that knows all throughput varia-
tions for the entire video duration, (2) a conventional DASH
algorithm that requests a resolution based on moving average
of past throughput, and (3) a modified DASH that knows T2
ON/OFF for the next segment length τ with probability Pknow.
We also explore the effects of T2 users’ density and arrival
frequency on video quality, as well as the sensitivity of our
algorithm to varying levels of knowledge on T2 dynamics.
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Fig. 8: Experiment video data for three resolutions

A. Experiment Setup

We implement and evaluate our algorithm using the setup
in Fig. 7, where the Wi-Fi cards of the client and the video
server are connected to the channel emulator [9]. We use Wi-Fi
band instead of 3.5GHz band because the main difference in
whitespace is the tiered access sharing architecture and the
interactions between T2 and T3 users. Our method detects
T2 presence by checking signal strength at T3 clients, so
the propagation property, which depends on the frequency
band for communication, does not affect too much in our
T3 small cell of several hundred meters. The channel em-
ulator uses Extended Pedestrian A model (EPA) to emulate
the multipath fading propagation condition. The effect of T2
dynamics is programmed in the channel emulator by setting
the transmitting power of the T3 access point, because T2
receivers at different locations will result in different maximum
transmitting power of the T3 access point. The effect of T3
dynamics, which is the varying number of T3 users in a T3 cell,
is programmed in the server PC by controlling the round-trip
delay time. A large number of T3 users means a long round-
trip delay. The video server stores video segments in both
MPEG-DASH and SVC formats, as well as the MPD files for
each format. The video streaming client is a QT video player
using the open-source libdash library [10], and we modify the
video player to support SVC by adding additional buffer bins
for each layer and segment reordering function. The video we
used in the experiment is a 12-minute short action film “Tears
Of Steel” [11]. The SVC format of the video is encoded into
three resolutions using spatial scalability (Table II and Fig. 8).
The DASH format of the video is encoded using MPEG-DASH
with the same resolutions as SVC.

B. Comparing Adaptive Streaming Algorithms

We assume that the Markov transition probabilities of T2
p1, p2 are always known. We first run the optimal offline

TABLE II: Video Data

Resolution Average bit rate Maximum bit rate Average SSIM

320 × 180 0.29Mbps 1.28Mbps 0.9145

640 × 360 0.95Mbps 3.37Mbps 0.9705

1280 × 720 2.67Mbps 10.46Mbps 1



video quality selection as a video quality benchmark, which
solves (5) with the knowledge of throughput variation over the
entire video duration. This provides the optimal solution that
maximizes the overall video quality by aggressively requesting
the best video quality when the previous request is finished.
However, this does not consider temporal variation in video
quality (stability of video quality), so we call this the “optimal
quality”. For the other three cases, video request is made every
τ seconds (segment length). In conventional DASH, video
adaptation is reactive to throughput fluctuations and does not
take future throughput variations into account. To make a fair
comparison of our algorithm and DASH, we modified the
DASH adaptation to make DASH know exact T2 ON/OFF for
the next τ seconds with probability Pknow. As a result, we call
this “DASH with T2 information”. However, the adaptation is
still myopic, because the adaption only sees T2 dynamics for
the next τ seconds, but our algorithm considers the expected
T2 ON/OFF for the entire video duration based on the markov
transition probability of T2 dynamics.

To analyze video quality, we use the average SSIM value
of a video. SSIM is a metric to measure the similarity of
two images, which was designed to improve on traditional
methods like peak signal-to-noise ratio (PSNR) and mean
squared error (MSE) [12], and is more consistent with user
QoE. Typically, it is calculated on window size of 8 × 8.
The measure between two windows x and y is calculated as
SSIM(x, y) =

(2µxµy+c1)(2δxy+c2)
(µ2

x+µ
2
y+c1)(δ

2
x+δ

2
y+c2)

, where µx, µy , δ2x, δ2y
are the mean and variance of x and y, c1 and c2 are two
variables to stabilize the division with weak denominators.
SSIM is a decimal value between −1 and 1, and 1 denotes
the case of two identical images. In our video data set, the
average SSIM for low resolution is 0.9145, for high resolution
is 1. To provide better visualization, we use the normalized
SSIM SSIMnorm = (SSIM − 0.9145)/(1− 0.9145), which
is 0 when SSIM is 0.9145, and is 1 when SSIM is 1.

C. Effect of T2 dynamics on video quality

The effect of T2 dynamics on video quality is considered
in two ways: (1) T2 density: the number of T2 receivers when
T2 is ON, (2) the percentage of time that T2 is ON. The result
of the experiment using the four methods is shown in Fig. 9a
and 9b, respectively.

In Fig. 9a, when there are no T2 users, all methods can re-
quest the highest resolution and provide the same performance.
As the percentage of T2 ON time increases, the video quality
decreases, but the gap between our algorithm and the optimal
increases substantially slower than the gap between DASH and
the optimal (about 3 times slower). In the extreme case when
T2 is always ON, the two DASH can only request the low
resolution, but our algorithm can still request some segments
with medium resolution. This is because in DASH, if the
throughput is between the low and medium resolution bit rates,
DASH always requests low resolution. However, our MDP
uses SVC, where the medium resolution is the combination of
base layer and enhancement layer, and thus will select some
enhancement layers to improve those low resolution segments
in bins. Our method is very close to the “optimal quality”,
and outperforms “DASH” and “DASH with T2 information”
by 20% on average.
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(a) Video quality vs. T2 ON%. X axis
is the percentage of video duration
that T2 is ON.
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(b) Video quality vs. Density of T2
users. X axis is the number of T2
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Fig. 9: Percentage of T2 ON time has more effect than the
number of T2 users on video quality.
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(a) Video quality with varying Pknow

(the probability of knowing exact T2
ON/OFF for the next segment dura-
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of perfect information. X axis is the
percentage of video duration that T2
dynamics is known.

Fig. 10: Video quality with partial T2 information. Knowledge
of T2 ON/OFF only for the next state does not impact our
method, but impacts DASH. Knowing more of T2 ON/OFF
for a set of continuous states improves our performance.

In Fig. 9b, as the number of T2 increases, video quality
decreases slightly. This is due to the fact that the maximum
transmitting power of T3 depends on the closest T2 receiver
location. The more the number of T2 users, the more likely that
some T2 users are close to the T3 cell. The video quality gap
between our algorithm and the optimal keeps almost the same
as T2 density increases, but the quality gap between DASH and
the optimal increases as T2 density increases. This is because
when the density of T2 users increases, the actual available
throughput to T3 video streaming will be a slightly lower
than the expected throughput. In this case, our MDP method
using SVC will always finish downloading lower layers in our
request queue, and if the available throughput is not enough
to download all requested layers, only higher layers will be
discarded. However, in DASH, video segments are requested
by resolutions, not layers. If the available throughput is not
enough to download the requested high resolution segment, the
whole segment has to be discarded, and then the low resolution
segment is requested again in the next time interval.

D. Robustness Analysis

To test the robustness of our algorithm to the level of T2
ON/OFF information in the next state, we run the experiment
with different Pknow (Fig. 10a). As Pknow decreases, the
performance of our algorithm decreases only slightly, meaning
that our algorithm is robust with different values of Pknow.
This is because our MDP-based algorithm not only considers
the exact T2 ON/OFF for the next state (next τ seconds), but
also adapts to the general T2 dynamics for the entire video
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Fig. 11: Improvement of MDP method from T2 information.

duration based on the Markov transition probabilities of T2
ON/OFF. The exact T2 ON/OFF in a state is a realization of the
general T2 dynamics model, so without exact T2 information
for the next state, our algorithm can choose the best action
based on expected T2 dynamics for the entire video duration.
In comparison, conventional DASH is the worst, because it
does not have the ability to predict/use future throughput
information, even if T2 dynamics in the future is given. If
DASH is modified to adapt to the known exact T2 ON/OFF
for the next τ seconds, then the video quality can be improved,
but still worse than our method using MDP with SVC. In the
case of “DASH with T2 information”, the performance largely
depends on Pknow: the more information that is provided
about T2 dynamics for the next τ seconds, the better the
performance.

E. Perfect vs. Imperfect Information

In this section, we analyze whether perfect information of
T2 dynamics for the entire video duration can help improve
the video quality. In this case, as formulated in Section III-C,
the MDP is no longer stationary, as the transition probability
is time-dependent. We evaluate the video quality with respect
to the percentage of video duration that T2 ON/OFF is
known. The longer we know the exact T2 dynamics, the less
uncertainty we have about future channel conditions, so the
actions taken in our algorithm are closer to the optimal (Fig.
10b). In Fig. 11b, when level of perfect information is 1, our
algorithm provides the same video quality as the optimal video
quality, which means that if our algorithm knows the same
information as the offline optimal algorithm, our algorithm can
provides the optimal solution.

This video quality improvement will incur two types of
cost: (1) scheduling T2 ON/OFF ahead of time, and (2)
reconstructing the utility table for the non-stationary MDP. If
a long period of T2 ON/OFF can be known ahead of time, T2
users have to follow the schedule and have less flexibility in
using a channel than before. If the non-stationary MDP is used,
the transition probability table is time-dependent and thus is
unique for each realization. Each time a video is streamed, a
new utility table of size T ×S needs to be constructed, which
requests more time and computation power. In stationary MDP,
the utility table needs to be constructed only once and used
for all realizations.

In comparison with the previous section, the knowledge of
T2 dynamics for a continuous period will help to improve the
performance of our algorithm, but knowledge of T2 only for
the next state does not help much, as shown in Fig. 11. The
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Fig. 12: tradeoff between video quality and stability. ’MDP
with sum util’ is the algorithm defined in section III-B. ’MDP
with prod util’ is the MDP algorithm with geometric mean
utility function, defined in section III-F.

optimality gap decreases as a longer period of T2 dynamics
is fed into our algorithm, and the variation decreases as more
information of T2 is provided, which means our algorithm is
more certain about future and can take actions specific to each
realization.

F. Video Stability Analysis

In addition to video quality itself, its stability is also
important to user experience. Frequent quality change with
bursts of high quality segments will degrade QoE. Fig. 12
shows the tradeoff between video quality and quality stability.
Fig. 12b evaluates the stable video quality length for different
methods while streaming the same video. Our methods with
modified geometric mean utility is on the far right, clearly
outperforming the other three. However, the increase in video
quality stability is at the cost of lowering video quality, as
shown in Fig. 12a. The video quality of this method is slightly
worse than our MDP with summation utility function, though
this method provides more stable qualtiy. The tradeoff between
video quality and quality stability depends on which factor a
video streaming client cares more.

Compared with DASH, the video quality of our MDP
methods outperform DASH. For stability, the original MDP
(take summation as the utility function) performs similar to
DASH, but the MDP with geometric mean utility provides
better stability. This is because “DASH” and “DASH with T2
information” try to make video quality stable by smoothing the
estimated current throughput using the moving average of the
past throughput. However, the moving average is ineffective
when throughput fluctuation is very frequent. In our method,
we consider the geometric mean (Eqn (6)) of all segments in
bins, which not only maximizes the quality, but also minimizes
the variation among these segments.

V. RELATED WORK

The majority of research on whitespace is about spec-
trum sensing and dynamic spectrum access[13]. This includes
spectrum allocation and AP detection[14], as well as the
architecture of dynamic spectrum sharing that enables multi-
tier access[15]. Sen and Zhang designed a dual technology
WhiteCell that uses both cellular operator’s spectrum and
whitespace[16]. However, none of these architectures or al-
gorithms consider how a particular application can adapt to
the whitespace characteristics. To the best of our knowledge,



adaptive video streaming in the context of whitespace has not
been investigated prior to this work.

Adaptive video streaming and scalable video coding has
been studied since the 1990s. The algorithms and system
architectures to perform such adaptation have been intensively
studied in research communities [2][17][18], as well as in
industries, such as Apple, Netflix and Microsoft, who have de-
veloped HTTP video streaming protocols to perform channel-
based video rate adaptation. Recently, there has also been
increasing interest in DASH using SVC, such as the benefits
of using SVC in DASH in terms of the efficiency of network
cache[19], and experimental analysis on DASH-SVC[20], [21].
However, most of the algorithms are heuristic and rate adap-
tation is based on past throughput and buffer level. Compare
to them, our MDP-based adaptation makes online decisions
based on expected future channel conditions and provides the
optimal actions in each state. Xiang[22] investigated MDP-
based adaptive streaming using SVC, but only layers of future
segments can be requested in this work, which does not fully
utilize the flexibility of SVC to improve downloaded segments’
quality. In that paper, the authors abstract the bandwidth
variation model and uses a simple rayleigh fading channel.
In our work, the bandwidth variation is based on T2 and T3
dynamics in whitespace. Our MDP-based adaptive algorithm
is specific to whitespace dynamics and can request high layers
of downloaded segments to improve video quality.

VI. CONCLUSION AND FUTURE WORK

In this paper, we design an adaptive video streaming system
specific to whitespace fast-varying channel. For the video
rate adaptation, we use an MDP-based adaptation algorithm
to provide the overall best video quality by considering the
uncertainty in future throughput. For video coding, we use
scalable video coding to provide more flexibility in adapting
to the fast-varying channel. Our algorithm outperforms DASH
both in terms of video quality and the temporal variation of
video quality. When partial information of T2 dynamics is
known ahead of time, our non-stationary MDP method is more
certain about the segments to request and can improve the
video quality. We also analyze the effect of T2 dynamics on
T3 video streaming, and show that the frequency of T2 arrivals
has more impact than the density of T2 users. In the future,
we plan to generalize our MDP-based algorithm to consider
the case of spectrum outage and also fit multi-tier models.
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