QAVA: Quota Aware Video Adaptation

Jiasi Chen, Amitabha Ghosh, Josphat Magutt, and Mung Chiang
Princeton University, Princeton, New Jersey, USA

{jiasic, amitabhg, jmagutt, chiangm} @ princeton.edu

ABSTRACT

Two emerging trends of Internet applications, video traffic
becoming dominant and usage-based pricing becoming preva-
lent, are at odds with each other. Given this conflict, is there
a way for users to stay within their monthly data plans (data
quotas) without suffering a noticeable degradation in video
quality? In this work, we develop an online video adapta-
tion system, called Quota Aware Video Adaptation (QAVA),
that manages this tradeoff by leveraging the compressibil-
ity of videos and by predicting consumer usage behavior
throughout a billing cycle. We propose the QAVA architec-
ture and develop its main modules, including Stream Selec-
tion, User Profiling, and Video Profiling. Online algorithms
are designed through dynamic programming and evaluated
using real video request traces. Empirical results suggest
that QAVA can provide an effective solution to the dilemma
of usage-based pricing of heavy video traffic.

Categories and Subject Descriptors

C.2.5 [Local and Wide-Area Networks]|: Internet; H.5.1
[Multimedia Information Systems]: Video

Keywords

Video streaming, Video rate adaptation, Data quota.

1. INTRODUCTION
1.1 Motivation for Online Video Adaptation

This paper is motivated by two recent and conflicting
trends in Internet applications, which may be summarized
by two numbers: 70 and 10.

e 70 is the predicted percentage of mobile traffic from
video alone by 2016 [1]. Together with YouTube, Net-
flix, Hulu, HBO Go, iPad personalized video magazine
apps, and news webpages with embedded videos, video
traffic is surging on both wireline and wireless Internet.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CoNEXT’12, December 10-13, 2012, Nice, France.

Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

121

e 10 is the dollars per gigabyte (GB) charged by the two
major US cellular carriers once a baseline data quota is
exceeded during a monthly billing cycle. Tiered pric-
ing, or usage-based pricing, is becoming increasingly
commonplace in other countries and even for wireline
broadband. For example, in May 2011, AT& T wireline
U-Verse high-speed Internet began charging $10 per
50 GB beyond a baseline data quota. In Canada, the
charges are even steeper, with Rogers charging $2 per
GB overage fees on its high-speed Internet service [2].
And in India, Reliance charges 0.02 rupees per 10 kB
overage on its 3G mobile data plans [3].

These two trends, wvideo traffic becoming dominant and
usage-based pricing plans becoming prevalent, are at odds
with each other. On the one hand, videos, especially on high-
resolution devices (e.g., iPhone 5, iPad, Android tablets),
consume much more data than other types of traffic; for in-
stance, 15 min of low bitrate YouTube videos per day uses 1
GB a month, and a single standard-definition movie can take
up to 2 GB. On the other hand, usage-based pricing threat-
ens the business model of delivering entertainment via the
high speed Long Term Evolution (LTE). These factors can
result in high overage charges by the service provider, sub-
scription to more expensive data plans, or discontinuation
of data service by disgruntled users. Given this conflict, a
natural question to ask is: Can a consumer stay within her
monthly data quota without suffering a noticeable drop (dis-
tortion) in video quality?

In today’s practice, there are two main approaches to bal-
ancing the competing goals of delivering high quality video
while consuming less data:

e Consumers may be warned by service providers (or by
self-imposed warnings) to stop watching more videos
once their usage-based charges become too high. This
straight-forward “solution” can be undesirable as it
could result in dissatisfied users [4].

e Content providers can take a “one size fits all” ap-
proach of cutting back bit rates across all video re-
quests, for all users, and at all times. For example, the
YouTube mobile app automatically chooses low qual-
ity video when the request is made over the cellular
data network. Netflix implemented a similar approach
in Canada in March 2011, in light of expensive usage-
based charges by Canadian Internet Service Providers
(ISPs), even for wireline customers.

In contrast, Quota Aware Video Adaptation (QAVA) in
this paper exploits the dynamic range of video compress-
ibility and users’ temporal data consumption patterns. To
the best of our knowledge, video adaptation with respect to
each user’s data quota in the context of usage-based pricing
has not been systematically investigated.

1.2 Trading off Quality vs. Cost vs. Volume

Our premise is the following: Not every video bit is needed
for every consumer, and the bit rates can be adjusted not
only based on screen resolution and channel conditions but
also usage patterns. QAVA can be customized to each user’s
demand and monthly data quota by adaptively choosing an
appropriate bit rate for each video request, thereby shaping
the supply for the user. We will show that by leveraging video
compressibility and profiling usage behavior, QAVA can sig-
nificantly mitigate the conflict between growing video traffic
demand and usage-based pricing.

At the heart of QAVA is a Stream Selector (SS), which
takes inputs from a User Profiler (UP) and a Video Profiler
(VP), to select a particular bit rate and pre-emptively com-
press the more compressible videos early in the billing cycle.
The VP provides information related to a video, such as its
compressibility, which measures the extent to which the size
of a video can be reduced without a significant distortion
in quality. The UP predicts consumer usage patterns from
past history and customizes the system to every user’s flavor
for watching certain types of videos. The SS then uses the
information provided by the VP and UP to optimize QAVA
for each user based on her monthly data quota.

The benefits to a QAVA-enabled user include the abil-
ity to watch more videos under a given monthly data plan
without suffering a noticeable distortion in video quality, as
compared to a non-QAVA user. Or, phrased differently, if
a user’s demand for video traffic remains the same or goes
down, QAVA tries to save money for the user with a min-
imum impact on video quality. This 3-way tradeoff is il-
lustrated in Figure 1. Across the three competing goals of
minimizing cost, maximizing the number of videos watched,
and minimizing distortion, QAVA strikes a graceful, tunable
tradeoff.

1.3 Incentives of Players in QAVA Ecosystem

A natural question to our proposed approach is: What are
the incentives for different players in the ecosystem to use
QAVA? We address this from the perspective of three major
players: users, ISPs, and content providers.

Users: A user has the most obvious incentive, because
QAVA enables her to stop worrying about her monthly data
plan and watch all the videos she wants with minimal dis-
tortion.

ISPs: An ISP has two options: it may wish to (a) reduce
data traffic to lower network congestion and thereby opera-
tional and capital expenditure costs, or (b) preserve traffic
to continue receiving overage charges from customers and /or
usage fees from content providers. In the first case, QAVA
ensures that all customers remain below their quota, which
indirectly lowers the traffic rate. In the second case, the
ISP can set the user’s quota parameter to ensure that the
user still consumes the same amount of data as a non-QAVA
user, but receives better video quality.

122

Distortion

Cost

Number of videos

Figure 1: A 3-way tradeoff between distortion, cost,
and the number of videos watched. For a fixed cost,
QAVA enables a user to watch the desired videos
while minimizing distortion.

Content providers: The advantages for the content
provider (CP) are three-fold. Firstly, since QAVA allows
a user to access more content under the same data plan, the
CP achieves greater profit by increasing the content con-
sumption and thereby advertising revenue. Secondly, the
CP improves customer satisfaction by removing her worries
about exceeding her quota, which can be marketed as a com-
petitive advantage over other CPs. Thirdly, QAVA reduces
the potential need for the CP to pay the ISP for the cus-
tomer’s data charges.

QAVA is thus mutually advantageous from the perspec-
tives of all three players. We summarize our contributions
along four different dimensions:

e Architecture: We design a modular system architec-
ture for QAVA comprising three functional modules:
SS, UP, and VP. Our design makes QAVA a deploy-
able system that can be used by real-world consumers.

e Algorithms: We design an online bit rate selection
algorithm for the SS module based on finite-horizon
Markov Decision Process (MDP) [8]. This algorithm
runs at the heart of QAVA, enabling it to provide a
graceful, tunable control of the quality, cost, and vol-
ume tradeoff.

e Experiments: We evaluate the performance of QAVA
in simulations using real video request traces.

e Implementation: We implement QAVA as an An-
droid application and deploy it among several volun-
teers from the Princeton University community in an
ongoing trial. Further trials are being planned with
several major carriers and content providers.

The rest of the paper is organized as follows. In Section 2,
we describe the QAVA system architecture and discuss de-
sign considerations. The individual modules are described
in detail in Sections 3 and 4. We provide simulation re-
sults in Section 5 and implementation details in Section 6.
Lastly, we discuss related works in Section 7, and conclude
in Section 8.

2. QAVA SYSTEM ARCHITECTURE

In this section, we describe the architecture of QAVA and
the different modules that comprise the system. For each
module, we describe its functionality as well as its connection
with other modules.

2.1 A Modular Architecture Design

The architecture of QAVA comprises three different mod-
ules, each responsible for a specific function. The modules
work together to enable QAVA to optimize across the three
performance goals shown in Figure 1. We first describe the
motivation for each of the modules.

Selecting Right Bit Rates: The basic operation of
QAVA is to choose an appropriate bit rate for every video
request made by a user. This bit rate selection is based on
two factors: (i) the user’s data consumption pattern, and
(ii) the particular video requested. This job is performed
by a Stream Selector module running at the heart of QAVA
on the content provider’s server, as shown in Figure 2. Due
to space limitation, we focus on the pre-encoded bit stream
scenario, where each video has multiple copies, each copy
pre-encoded in a different bit rate and stored on the content
provider’s server. The number of copies with different bit
rates of a video is pre-determined by the content provider.

Profiling Usage Behavior: A user’s past data con-
sumption history gives an indication of her future usage
pattern. Since the video requests from a user can arrive
at different times without any prior knowledge, a prediction
of these arrival times is helpful to QAVA so it can choose ap-
propriate bit rates to serve the requests. A simple usage pat-
tern could be watching on average x4 number of videos (or,
equivalently, y4 bytes) on day d of a week. When the num-
ber z4 (or yq) remains approximately the same for the same
day d across different weeks, we may notice a weekly pat-
tern. More complex usage behavior can lead to small-scale
seasonal variations (daily or hourly) as well as trends, which
are long term variations due to habitual changes that lead
to a steady increase or decrease in data usage over months
or years.

QAVA employs a User Profiler module to find patterns
in usage behavior and to predict future video requests. In
particular, the UP module estimates the probability of a
video request arriving in a given time interval. The length
of this interval can be uniform or variable depending on the
past data consumption history, and is configured by a system
parameter. We design the UP module as an application
that can be installed on a user device (client), as shown in
Figure 2.

Estimating Video Compressibility: In addition to
staying within a monthly data quota, the SS algorithm also
aims to minimize video distortion. For this, the algorithm
needs to know to what extent the requested video can be
compressed and how much distortion it would cause in doing
so. Different videos have different levels of compressibility
depending on their spatial or temporal activity, as well as
on the choice of encoder. For example, a talk show that
has very little motion in it can be greatly compressed using
an H.264/AVC encoder, whereas a motion-rich sports video
may not be compressible to the same extent.

The SS algorithm should be careful in choosing the right
bit rate for every video request to avoid the following un-
desirable situation. Suppose the algorithm chooses a high
bit rate for an easily compressible video when the user has

123

Video request

User Stream Video
. Access e)
Profiler Backbone| | |Selector| | Profiler
: Network) :
(online) (online) (offline)
Devi Content provider’s
User Device Video delivery at right bit rate server

Figure 2: QAVA’s modular system architecture:
The UP module sits on a user device, whereas the SS
and VP modules are located on a content provider’s
server. A video request originating from a user
device travels through the access network and the
backbone to the server, which then runs a stream
selection algorithm to choose an appropriate bit rate
to deliver to the user.

a lot of quota left, possibly in the beginning of a month.
Then it might be forced to choose low bit rates for some
not-so-easily compressible videos near the end of the billing
cycle in order to stay within the monthly budget, thus caus-
ing significant distortion. A possible remedy is to choose
low bit rates for easily compressible videos even when there
is sufficient quota left. However, such intelligent online de-
cisions can be made only if the system knows about the
distortion vs. bit rate tradeoff for every video and can learn
the quota consumption pattern over a billing cycle for each
user. An example of this tradeoff is shown in a demo video
at http://snipurl.com/23uozdh. QAVA employs an offline
Video Profiler module to compute this distortion for every
bit rate and store it on the content provider’s server, as
shown in Figure 2.
We now summarize the three modules of QAVA:

e Stream Selector (SS): The SS module is at the
heart of QAVA and is located on the content provider’s
server. It is an online module which decides on the
right bit rate for every video request.

e User Profiler (UP): The UP module predicts the
probability of future video requests from past usage
history, and also computes a user-specific distribution
of video types reflecting the user’s taste of watching
different types of videos. It is an online module and is
located on the user device.

e Video Profiler (VP): The VP module is also located
on the content provider’s server and is an offline entity.
It computes the distortion for every bit rate version of
all the stored videos. We loosely call this the “com-
pressibility” of the videos.

Input-Output Connections Between Modules: Based
on the preceding discussion, the relationship between the dif-
ferent modules describing their inputs, outputs, and update
frequencies is shown in Table 1. The input to the SS mod-
ule is the compressibility of the requested video, the user’s
remaining monthly budget, and the user’s profile as output
by the UP module. For every request, it runs the stream
selection algorithm and outputs the selected bit rate ver-
sion. The input to the VP module is the set of all videos
stored on the content provider’s server, and its output is the
compressibility for each video. The input to the UP module

Module Input Output Frequency
Stream Selector | Compressibility of video request, re- | Selected bit rate version to deliver for the | Every request
(SS) maining monthly budget, and the user | video request.
profile.
User Profiler | Time stamps and compressibility all | Probability of a video request arriving at a | Every billing
(UP) past video requests. time interval, and the video compressibility | cycle
distribution for all past requests. Together
these comprise the user profile.
Video Profiler | All videos stored in the content | Compressibility of all videos. Offline
(VP) provider’s server.

Table 1: Three key functional modules of QAVA with their inputs, outputs, and update frequency.

are the time stamps for the user’s past video requests, as
well as the compressibility of those videos. Its output is the
predicted video request probability and the video type dis-
tribution (i.e., compressibility distribution) specific to that
user. These quantities characterize the user’s behavior and
are fed to the SS module. These predictions can be made at
the beginning of the billing cycle, or updated more periodi-
cally throughout the billing cycle.
To be concrete, we give an operational example.

1. The content provider computes and stores the com-
pressibility of all the videos on the server.

2. In the beginning of a billing cycle, the UP makes pre-
dictions (to be used in the current cycle) of the video
request probability and the compressibility distribu-
tion based on its log of the past requests of the user.

3. When the user requests a video in the current billing
cycle, the request is sent to the SS module, which se-
lects the bit rate to be delivered. The content provider
also sends the compressibility of the requested video to
the UP. The UP logs this as well as the timestamp of
the request.

4. Once the current billing cycle is over, the UP updates
its predictions based on the recent request logs. Steps
2—4 repeat for the next billing cycle.

2.2 Design Considerations

There are several alternatives and variants for designing
the QAVA architecture. We briefly describe these alterna-
tives, their advantages and disadvantages, and our design
decisions.

Availability of Video Versions: In this paper, we as-
sume that the videos are pre-encoded and stored on the
content provider’s server. An alternative to this is on-the-
fly transcoding and adaptation, which requires compressing
the video dynamically at the particular bit rate determined
by the SS module. This can be a time-consuming operation
and has significant implementation challenges; however, it
would be capable of adapting video feeds for live events. In
contrast, pre-encoded streams can be selected with minimal
computation, but cannot handle video streams of live events.

We also assume that the different version of the video from
which the SS module chooses are supported by the channel
in terms of bandwidth requirement. These sustainable video
versions may be pre-selected by the CP based on typical
wireless or wireline bandwidth, or chosen on-the-fly based

124

on bandwidth estimation techniques currently proposed for
use in adaptive HTTP video streaming algorithms [9].

Time Scale of Video Adaptation: There are two choices
for the time scale of video adapation: (i) inter-video adapta-
tion, and (ii) intra-video adaptation. Inter-video adaptation
is choosing a single bit rate stream for entire duration of the
requested video, whereas intra-video adaptation involves di-
viding each video into smaller clips and choosing the correct
adaptation operation for each clip.

Inter-video adaptation is suitable for video clips of short
duration (e.g., Youtube videos of less than 5 minutes), be-
cause the spatial and temporal activity tends to be sim-
ilar throughout the duration. However, for longer videos
such as movies, it is more appropriate to stream different
bit rate versions for different parts of the video depending
on the spatial and temporal activity. The algorithms devel-
oped in this paper apply equally to inter- or intra-video rate
switching. QAVA can be used for intra-video adaptation
by considering each smaller segment as a separate video re-
quest. Such intra-video switching requires synchronous bit
stream switching, which can be achieved with the advent of
new video streaming protocols such as MPEG-DASH [20].
QAVA can also work with existing channel-based switching
algorithms by optimizing and restricting the rates available
to the existing algorithm.

Heterogeneous Data Quota: Data usage under a sin-
gle data plan can be decomposed into three usage layers: (i)
multiple users, (i) muliple devices per user, and (iii) multi-
ple traffic types per device per user. QAVA’s control knob is
the video traffic per user per device; thus, the “video quota”
per device must be set. To accomodate non-video data traf-
fic, the video quota should be set to a percentage of the total
data quota, based on historical video data usage. Running
QAVA per user is also possible by aggregating video request
logs across devices. This results in coarser granularity user
profiling, but may also improve performance by decreasing
the sensitivity to noise. For the remainder of this work, we
focus on the case of a single fixed video quota and a single
user with a single device, but QAVA could easily be extended
to encompass the other cases as just outlined.

Module Placement: The placement of the UP and VP
modules is fairly intuitive: by necessity, the VP module is
located on the CP’s server, since only the CP provider knows
about the video characteristics. Profiling the video on the
user device is not feasible due to CPU and battery limita-
tions. The UP module logs user data, so it should be placed
on the user device to alleviate user concerns over data col-
lection and privacy.

45
g
240
o
&35
o
>
£ 30/
-]
T 20 30 40
Cost (MB)

Figure 3: Video utility vs. cost showing diminishing
returns for increasing cost. The z-axis represents
the size of the video when encoded from 100-900
Kbps in 100 Kbps increments.

The location of the SS module that runs the bit rate selec-
tion algorithm is, however, not so intuitive. For every video
request, the SS module requires inputs from both the UP
and VP. One possibility is to place the SS module in the ac-
cess network. Then, in order to satisfy a video request, the
SS module first needs the video compressibility to be sent
from the CP and the user information from the UP module.
After receiving these inputs, the SS module runs the stream
selector algorithm to choose the right bit rate. It then sends
another request to the server to transmit the actual video
in the selected bit rate. Overall, this results in unnecessary
messages and potential delay, which is undesirable for delay-
sensitive traffic such as video. Placing the SS module on the
CP’s server is thus more desirable. This also makes QAVA
complementary to other video adaptation approaches [24].

Placing the SS and VP modules on the CP’s server incurs
some monetary cost to the content provider, which must be
overcome by the advantages discussed in Section 1.3. We
argue that the cost to the content provider is small: it must
install the SS module on its server (one-time), and compute
the video profiles of all videos (a small amount of text data
compared to video data size). And regardless of where the
SS module is placed, our algorithms are equally applicable.

Modularization: The QAVA system is separated into
three modules: SS, UP, and VP. Each module has a fixed
set of input and output and runs some internal algorithms.
The advantage of this modularization is that the internal
algorithms can be upgraded without changing the architec-
ture of the rest of the system, thus simplifying testing and
maintenance.

Other types of module separation and interconnections
are also possible. For example, the VP and SS modules
can be combined into a single module performing joint op-
timization. The stream selector requests videos of a certain
compressibility, and the video profiler optimizes over var-
ious codecs to generate videos with desired characteristics.
This would provide a finer decision granularity to the stream
selector, but is computationally complex since the video pro-
filer also runs video encoding operations.

3. STREAM SELECTION

In this section, we first describe the video request, utility,
and cost model and then formulate the bit rate selection
problem. We also introduce the key notation used in the
paper, as summarized in Table 2.

125

Symbol | Meaning

Ut Utility of bit rate version j for a video re-
quest arriving at ¢.

Ctj Cost of bit rate version j for a video request
arriving at t.

Ttj Indicator variable (1 if bit rate j is chosen
for video request at ¢; 0 otherwise).

M Number of bit rates for each video.

T Number of time periods in a billing cycle.

P(u,c) User-specific joint probability distribution of
video types based on past history.

Pt Probability of a video request at t.

Table 2: Table of key notation.

3.1 Video Request, Utility, and Cost Model

We divide the length of a billing cycle (e.g., month) into T°
time intervals, indexed by ¢t = 1,...,T, and assume that the
user has a total budget B (measured in bytes) in one billing
cycle. In each time interval ¢, a video request arrives with a
certain probability, which we denote by p;. The remaining
budget of the user at time ¢ is b:. The request probability
p: and budget b; are provided by the UP module for each
user.

Each video is encoded into M different bit rates, indexed
by j = 1,..., M. Associated with each video request ar-
riving at time t is a vector of utilites us = (us1, ..., utnr),
and a vector of costs ¢; = (¢, . .., cenr) for different bit rate
versions of the video.! When there is no video request ar-
rival at time ¢, the vectors u; and c; are null vectors with all
components being zero, because then no bit rate is selected.
The VP module provides the utility and cost of each video,
u; and c;, respectively.

Each user might prefer different types of videos with dif-
ferent compressibilities. For example, she might want to
watch news clips that have different compressibilities than
sports videos. To capture this effect, we introduce a joint
probability distribution P(u,c), which is user-specific and
represents the probability that a user requests videos with
certain utility—cost characteristics. The distribution P(u,c)
is provided by the UP module for each user.

In Figure 3, we show a typical utility vs. cost function for a
video encoded using the H.264/AVC codec with a resolution
of 720 x 480 pixels. Such utility—cost curves are usually
concave with diminishing returns for utility at higher cost
(or equivalently, higher bit rate, since bit rate is proportional
to data size for a fixed-length video). A video with a flat
utility-cost curve is “easily compressible” because lowering
the bit rate decreases the utility only slightly. In contrast,
a “hard-to-compress” video has a steep curve. We measure
the utility u¢; of bit rate version j as its peak signal-to-noise
ratio (PSNR) x the duration of the video [6]. The cost ¢;; is
the size in bytes. Discussion of the utility and cost metrics
is reserved for Section 4.2.

'We note that these utility and cost vectors are fixed and
not time-dependent. The use of the time index ¢ in u¢; and
ct; is purely for the ease of exposition.

3.2 Stream Selection as Knapsack Problems

We now formulate the problem of choosing the right bit
rate by the SS module as different versions of the well-known
knapsack problem [7] studied in combinatorial optimization.
We first present an offline formulation, which is easy to un-
derstand, and then motivate the need for an online stochas-
tic formulation.

3.2.1 Offline Multiple-Choice Knapsack Problem

The goal of the stream selector is to choose the right bit
rate for every video request made by the user in a single
billing cycle. We aim to maximize the sum of the utilities
across all the video requests without exceeding the user’s
quota. In other words, we maximize the average video util-
ity. An alternative formulation is to maximize the minimum
utility across all videos requested during the billing cycle.
Since the high-level goal of QAVA is to maximize the over-
all user satisfaction, we optimize for the average utility over
time instead of the worst-case experience, as in the alterna-
tive formulation.

For a video request arriving at time ¢, we define a decision
vector x¢ = (Z1,...,Ttm), where each z¢; takes the value
1 if bit rate version j is chosen, and 0 otherwise. Then our
problem is:

T M
maximize E E Ut Ttj

=1 j=1
T M
subject to cijry; < B
J ;]:ZI]ty (1)
M
thj = 1, Vit
j=1
variables z; € {0,1}, V¢, 7,

where the first constraint says that the cost of the selected
bit rates for all the videos requested in a billing cycle must
not exceed the quota B, and the second constraint says that
one bit rate version may be selected for each video.

This optimization problem is known as the Multiple-Choice
Knapsack Problem (MCKP) [7]. In the regular single-choice
knapsack problem, we are given a set of items, each with an
associated value and weight. The objective is to pick a sub-
set of the items such that the total value is maximized while
not exceeding the knapsack capacity. In our stream selec-
tion problem, the items are the individual bit rate versions
of the videos, and the multiple choices arise because exactly
one version of each video must be selected.

The traditional offline version of the MCKP, where all the
input items are known in advance, is well-studied. The prob-
lem is NP-hard, but pseudo-polynomial time dynamic pro-
gramming (DP) solutions exist [7]. Contrary to this offline
version, the SS module does not know the video requests
in advance, and so needs to make decisions in an online
fashion. This requires a modification to the formulation to
handle online requests.

3.2.2 Online Stochastic Knapsack Problem

Unlike the traditional offline MCKP, in our scenario, the
video requests are revealed one-by-one online. Thus, exist-
ing DP solutions to the offline knapsack problem cannot be
used. Online algorithms handle this situation by making a

126

xt = (1,0,0)

Figure 4: Stream selection modeled as a finite-
horizon Markov decision process. A one step state
transition is shown with 3 bit rate choices.

decision on-the-fly when a new video request arrives, with-
out any prior knowledge of future requests. However, once
a decision is made, it cannot be revoked or changed in the
future.

Finite-Horizon Markov Decision Process: Since the
data quota resets after the billing cycle is over, there is a
time deadline before which all actions must be made. We
also note that the bit rate decisions for future intervals
should not depend on the decisions taken at previous inter-
vals, given the current remaining budget. This implies the
Markov property. The problem can naturally be modeled as
a finite-horizon Markov decision process (MDP). A key as-
sumption is that the video requests are independent of time,
and therefore the transition probabilities are stationary.

The MDP formulation allows the SS module to make fore-
sighted bit rate selection decisions by taking into account the
future impact of its current decisions on the long-term util-
ity. This is better than just an online algorithm which makes
myopic decisions at every time step. For example, a greedy
solution might choose a bit rate that maximizes the utility
of the current request without overshooting the quota.

Figure 4 shows a simple example of choosing between
three different bit rates over one time step. The state of
the system is defined as the four-tuple s; = (&, bt, ue, ¢t),
comprising the current time interval ¢, the remaining quota
bt, and the utility and cost vectors u; and c;. There are
three possible actions: (i) choose the lowest bit rate, i.e.,
x: = (1,0,0); (ii) choose the second bit rate, i.e., x; =
(0,1,0); or (iii) choose the third bit rate, i.e., x, = (0,0, 1).
If the lowest bit rate is chosen, the system moves to time
t + 1 with remaining budget b; — ¢/1. The algorithm col-
lects utility (reward) us and receives the new video request
with utility and cost vectors us+1 and c¢y1. If the second
bit rate is chosen, the system moves to time ¢ + 1, but now
subtracts the cost c:;2 from its remaining budget, leaving it
with by — cta. It also collects utility usz. A similar state
transition results from choosing the third bit rate.

The set of actions {x1,...,x7r} taken by the algorithm
at every time step is called a policy. A policy that solves
the MCKP of (1) is called an optimal policy. If the arriving
video requests were known, an optimal policy can be de-
termined using the traditional offline techniques previously
mentioned. However, since the video requests are not known
a priort, the MDP finds a policy that instead maximizes the
expected sum utility. We develop a solution using DP and
online optimization.

3.3 Solving Finite-Horizon MDP

Online Optimization: The optimal policy can be found

using standard backward induction techniques for finite-horizon

MDPs [8]. We first define Uy (b;) as the expected utility ac-
cumulated from time ¢ until the end of the billing cycle at
time T, when the remaining quota is b;. This expected util-
ity assumes that the optimal action is applied in each state.
Then, the optimal action at each time step t is found by
solving:

maximize ugTtj; + Urp1(be — cejxe;)
subject to cijTe; < by
M
2
>y =1 ®
Jj=1
variables x; € {0,1}, Vj,

where the first constraint ensures that the cost of the se-
lected bit rate is less than the remaining quota. The ob-
jective function has an intuitive meaning: It maximizes the
current utility plus the sum of the expected utilities, subject
to the remaining quota. The problem can be solved in O(M)
time by discarding the bit rates that violate the constraints,
and then picking the bit rate j7* that maximizes the objective
function. It is solved every time a video is requested.

DP Computation: Solving (2) requires the computa-
tion of Us(b:). Since U(-) is an expectation over all future
requests, it does not change with every new request, and
thus can be pre-computed using DP before running the on-
line algorithm.

Suppose we are at time ¢ with remaining budget b;, and
a new video request arrives. Assuming that the algorithm
chooses an optimal bit rate j* by solving (2), the expected
accumulated utility is equal to the utility of the current re-
quest, plus the future utility accumulated from time ¢ 4 1
onward, given that we have already spent c;;= of our budget.
This utility from time ¢+ 1 onward is unknown because the
future video requests are unknown, and so we must take the
expectation. Mathematically, this translates to:

Ui(by) = pe (Utj* + Eu,e) [Ues1 (be — Ctj*)])
+ (1 = pt) Usga (be).

The (1 — p¢) term represents the probability that no video
request arrives, and so no bit rate decision is made. The
accumulated utility at time ¢ is then equal to the utility at
time t + 1.

A crucial component of any DP solution is the bound-
ary condition that allows the initial values of U(-) to be
calculated. Our boundary condition is that the expected
accumulated utility is 0 when the billing cycle is over, or
the remaining budget is less than 0. The optimal action at
time 7" — 1 is to accept any video that fits in the remaining
budget, and thus Ur—_1(br—1) is known. Then using (3), the
remaining entries of U(-) can be calculated. In this work, we
choose the budget granularity to be 1, so b; takes on pos-
sible values 1,...,B. The running time of computing the
U(+) matrix is O(TBMT), where I is the cardinality of the
set {(u,c)} in the video type distribution.

The online and offline components of the MDP stream se-
lection algorithm are summarized in Algorithm 1. In the
special case of two bit rates (M = 2), our algorithm reduces
to that of Papastavrou et al. [10]. With accurate user and
video profiling, Algorithm 1 maximizes the sum utility while

®3)

127

Algorithm 1 MDP Stream Selection Algorithm

DP Computation of Utility Matriz

Input: Video type distribution P(u,c), quota B, and
billing cycle length T'.

Output: A matrix U of size T x B.

1. Compute each entry U;(b;) of U, using (3).

Online Bit Rate Selection
Input: Utility and cost vectors u; and ¢, remaining capac-
ity by, billing cycle length 7', and matrix U.

Output: Optimal bit rate j*.
1. Discard the bit rates with cost greater than b;.

2. For each of the remaining bit rates, compute 5 that
maximizes the objective function of (2).

staying under the quota. In the case of inaccurate inputs,
however, the algorithm may exceed the quota. In that case,
the algorithm should simply choose the lowest bit rate, al-
though this case never occurs in our numerical simulations.

4. USER AND VIDEO PROFILERS

In this section, we detail the functionality of the UP and
VP modules. We first describe different patterns in user
behavior and tastes, and then propose the user profiler al-
gorithm. The VP module is also briefly explained.

4.1 Profiling User Behavior

The user profiler runs on the client device and character-
izes each user through (i) the video request probability at
each time interval, and (ii) the distribution of video types
preferred by the user.

User Viewing Pattern and Taste: Depending on their
lifestyles, different users have different time preferences for
watching videos. For example, some users prefer watching
videos on weekends rather than on weekdays, while others
watch more in the evening after working hours than in the
mornings. The taste in content of the users can also be dif-
ferent. For example, some users watch sports videos more
often than movie trailers, while some others watch more
news clips than music videos. Such preferences in user be-
havior can lead to well-defined patterns, both in terms of the
viewing times and the types of the videos being watched.

The job of the user profiler is to estimate these temporal
viewing patterns and video type preferences for each user.
The UP module does this based on the user’s past video
request records, spanning either the previous billing cycle,
or the entire history. In this work, we consider requests from
the last billing cycle.

Computing Video Request Probability: In each time
interval t, there is a certain probability p; that the user
requests a video. This request probability can either vary
with each interval or be constant. As a first attempt, we
compute the average request probability per interval, and
set p; for each interval equal to this average. The average
request probability is computed by summing the number of
requests in the previous billing cycle and dividing by the
number of periods T'. The time interval should be set small

Algorithm 2 User Profiling Algorithm

Input: Time stamps and utility—cost vectors (ug, c:) of each
video request in the previous billing cycle.

Output: Video request probability p:, V¢, and the video
type joint probability distribution P(u,c).

1. Count the number of requests n,, and the number of
time intervals 7" in the previous billing cycle.

2. Compute average request probability as p = n. /T, and
set pr = p, Vt.

3. Count the number of times each (u¢,ct) pair appears
in the past; denote this count by n(y, c,)-

4. Construct the joint probability distribution by com-
puting the individual probabilities as: p(u¢,c:) =

n(utvct)/ Z(u;,cé) n(uéacfﬁ)

enough so that the average request probability is less than
1, but not so small as to inhibit the computation of (3).

There are several alternative approaches, including fitting
distributions and prediction-based techniques. The arrival
rate of videos might follow a particular known distribution
(e.g., Poisson), in which case the probability of an arrival
can be computed directly from the distribution itself. Alter-
natively, one can use more sophisticated time series analysis
techniques. For example, at the beginning of the billing cy-
cle, one can predict the sequence of future viewing times
in the upcoming billing cycle, then compute the average re-
quest probability by adding up the predicted number of re-
quests, and finally dividing that by the number of intervals.
One can also design online algorithms, such as predicting
the sequence of viewing times for intervals t+1,t+2,..., T,
while at interval ¢, and updating the predictions when a new
video request arrives. Such alternatives trade off accuracy
versus computation need.

We have developed one such online algorithm based on
“triple exponential smoothing” [11]. However, here we will
employ the simple averaging technique previously mentioned.
The resulting computation requires less memory and power,
and can be performed easily on a resource-constrained (in
terms of battery and memory) client device. Our goal is not
necessarily to develop the best user profiler, but to find a
method that works well in the system as a whole. To es-
tablish this, we run trace-drive simulations in Section 5 to
compare the performance of QAVA when the UP module
uses the average request probability, to a scenario when the
UP module has perfect knowledge of future arrivals. We find
that our technique, while simple, achieves close to optimal
performance (more than 95% on average).

Computing Video Type Distribution: The joint prob-
ability distribution P(u,c) reflects a user’s preference for
watching different types of videos. For example, a user who
watches a lot of sports videos (which are not-so-compressible)
will have a different distribution from a user who watches
a lot of talk shows (more compressible). This video type
distribution can remain the same over the length of a billing
cycle, or can be time-dependent, reflecting, for instance, the
fact that a user watches more sports videos at night and
more news clips in the morning. As a first-order approxima-

128

tion, we assume that the distribution does not change with
time. The distribution is computed once at the beginning of
a billing cycle based on the video requests in the last billing
cycle.

Our method is as follows: Each video request arriving at
time interval ¢ in the previous billing cycle has a (u,ct)
pair associated with it. The probability distribution is cal-
culated by counting the frequency of each (u¢, ¢;) pair from
the last billing cycle, and then normalizing appropriately to
form a probability distribution. Since the utility and cost are
continuous variables, they can be binned for greater compu-
tational efficiency; however, in our dataset we find this op-
timization unnecessary. Through simulation, we show that
this estimate performs very well, compared to the ideal sce-
nario when the distribution of the requested videos is per-
fectly known ahead of time. Our user profiling algorithms
are summarized in Algorithm 2.

4.2 Profiling Video Cost and Utility

The purpose of the video profiler running on the VP mod-
ule is to estimate the utility and cost for all the bit rate ver-
sions of all videos stored on the content provider’s server.
There are many estimation techniques for computing the
quality of a video. One standard objective metric is the
PSNR, which we employ. The PSNR is a well-known ob-
jective metric for measuring video quality. A video typi-
cally comprises a sequence of images, and the PSNR for
each image is defined as a function of the mean square error
(MSE) between the original and compressed image. Math-
ematically, it is expressed in the logarithmic unit of decibel
(dB) as PSNR = 101log,,(Q*/D), where D is the pixel-wise
MSE between the original and reconstructed image, and Q
is the maximum pixel value (usually 255). We compute the
video PSNR as the PSNR averaged over all images in the
sequence. Typical PSNR values for lossy video compression
are between 20 and 30 dB, where higher is better. To ac-
count for the duration of the video, we set the utility equal
to the PSNR x the video duration. An example utility-cost
curve is shown in Figure 3.

There exist other, potentially more accurate, metrics of
video utility (e.g., Mean Opinion Scores [12] or MOS), as
well as means of calculating subjective metrics from objec-
tive measurements [13,23,26]. However, we choose PSNR
as it can be easily computed using a mathematical formula
(in constrast to MOS that requires time consuming human
experiments) and is very well known to the multimedia com-
munity.

Measuring the cost of a video in bytes naturally follows
from the fact that the data quota is measured in bytes. The
video profiler calculates the utility and the cost in MB for
all the videos only once. These utility and cost vectors are
stored alongside the videos on the content provider’s server.

S. PERFORMANCE EVALUATION

We evaluate the performance of QAVA stream selection by
comparing it with three alternatives: (i) a hindsight-based
offline, optimal algorithm that knows all the video requests
in a billing cycle ahead of time; (ii) a worst-case online al-
gorithm; and (iii) a naive method (used by, for example,
Netflix). We also explore the sensitivity of QAVA to user
profiler prediction errors.

o 400 % 400
2 O
2 S

200 =200
8 8
£ gL

0 100 200 @ o 100 200
Time (hours) Time (hours)

X 400 ’ac?4oo
2 5
& 200 & 200
o} 2
© S
= 0 = 0
@ T 100 200 @ "o 100 200

Time (hours) Time (hours)

Figure 5: Bit rate selection by different algorithms
for a single user. The MDP and MCKP algorithms
choose different bit rates over time, while Netflix
chooses a constant bit rate and the offline algorithm
chooses the optimal bit rates.

5.1 Experimental Setup

Our simulations are based on the public-domain traces of
2 weeks of YouTube video requests from a wireless campus
network [14]. The data comprises 16,337 users making a to-
tal of 611,968 requests over 14 days. YouTube is the largest
source of video traffic, so the dataset captures a major por-
tion of video viewing behavior [25]. The first week of trace
data is used to train both video and user profilers. The sec-
ond week emulates a billing cycle where the stream selector
is run for each user’s requests.

Each video is encoded in H.264/AVC at 100, 200, 300,
400, and 500 Kbps. The stream selector chooses one bitrate
from the first four choices. The 500 Kbps version is treated
as a reference for computing the PSNR of the other bit rates.
The cost of each video is its size in MB. We set the user’s
quota at the halfway point between the minimum data usage
(always selecting 100 Kbps) and the maximum data usage
(always selecting 400 Kbps), and also sweep across quotas
when appropriate. The period length is set to 30 minutes,
since we experimentally find that varying the period length
does not greatly change system performance.

One limitation of this evaluation is that not all videos were
available from YouTube at the time of this study. In the
training phase, missing videos are not included while gen-
erating the video type probability distribution. In the test
phase, the utility—cost curves of missing videos are sampled
from the video type distribution of the training phase. This
gives an advantage to our algorithm, because the probabil-
ity distribution of the training phase is similar to that of the
test phase. We also examine the effect of misestimation of
the distribution.

5.2 Comparing Stream Selection Algorithms

We first evaluate the offline algorithm that solves prob-
lem (1) with the knowledge of all future video requests. It
achieves the best possible performance and is treated as the
benchmark against which we compare the performance of
the online algorithms. We call this the hindsight offline op-
timal algorithm.

129

4500

0

.9

40001

Utility

= MDP
-9-MCKP
— Netflix
. ‘ Hindsight offline optimal
1000 1200 1400 1600 1800 2000 2200
Quota (MB)

35%%0

Figure 6: Quality—cost tradeoff for a single user with
different quota and fixed video requests. MDP ob-
tains close to optimal utility, while MCKP and Net-
flix perform sub-optimally.

Zhou et al. present an online algorithm to solve (1) with a
worst-case performance guarantee regardless of the sequence
of video requests [15]. We call this the online MCKP algo-
rithm and chose this to compare with our MDP algorithm
because it optimizes for the worst-case performance, while
our algorithm optimizes for expected performance. The MCKP
algorithm, however, uses less information than our MDP al-
gorithm, needing only the maximum and minimum utility-
to-cost ratio across all requested videos, and an estimate of
the sum data of the smallest bit rates. The MCKP algorithm
does not use prediction or time deadlines, but requires only
the quota.

The second online algorithm we compare with is the naive
solution currently used by Netflix. Netflix allows subscribers
to select a default streaming bit rate. We assume that a
Netflix user chooses one bit rate for the entire billing cycle,
and is also intelligent enough to presciently choose the max-
imum bit rate that fits all videos in the quota. Clearly, this
algorithm is an ideal algorithm and not suitable for practi-
cal use, because it assumes advance knowledge of the num-
ber of videos to be watched. Comparison with this Netflix
method allows us to evaluate how our MDP algorithm per-
forms against an existing practical solution.

5.3 Single User Examples

To understand the operation of the stream selector, we
first run the algorithm for a single user with a target quota
of 1426 MB (see Figure 5). The video requests arrive in
bursts, and each algorithm selects bit rates. The Netflix
method always chooses 200 Kbps. The MDP algorithm has
foresight and thus chooses lower bit rates in the beginning
of the billing cycle, knowing to save for later. The MCKP
algorithm does not use time deadlines, only the remaining
quota, and so it chooses high bit rates in the beginning be-
fore cutting back as it starts depleting the quota. The offline
optimal algorithm chooses a variety of bitrates over time.

We also sweep across different monthly quotas and mea-
sure the utility obtained by each algorithm (see Figure 6).
The offline algorithm performs the best, with MDP and
MCKP close behind. The Netflix method exhibits a staircase-
like shape because as the quota increases, the default user-
selected bit rate can increase. In all cases, the algorithms
use less data than the target quota.

=

5 095

=

£

a

O o9]

2 0

© -=-MDP

° -O-MCKP

—Netflix

0884 05 07 08 09 1

0.6
Normalized Quota

Figure 7: Quality—cost tradeoff averaged and nor-
malized over multiple users. The MDP algo-
rithm achieves nearly optimal performance, with the
MCKP algorithm close behind. Both algorithms
outperform the naive Netflix method.

5.4 Multi-User Stream Selection

Average Performance: We now present the evaluation
results of the MDP algorithm for multiple users. Each trial
takes as input a fixed set of video requests and a quota,
and computes the utility obtained by each algorithm. Some
input combinations achieve higher utility than others. In or-
der to fairly compare across multiple trials, we normalize the
utility across different users by measuring the utility of the
online algorithm as a fraction of the offline optimal utility.
To normalize the quota, we measure data as a fraction of
the total data if the 400 Kbps bit rate were always selected.

Figure 7 shows the average utility across 10 different users.
We observe that, on average, the MDP algorithm performs
better than the MCKP algorithm. The Netflix method re-
sembles a staircase function as in the single-user case, and
obtains especially low utility for low quotas. This is arguably
the most important scenario: When the user’s quota is small
compared to the number of videos she wishes to watch. For
these low quotas, the MDP has a definite advantage over
MCKP, which in turn outperforms the Netflix method.

Performance Variability: To examine the utility dis-
tribution, and not just the average, we plot their cumulative
distribution functions (CDFs) in Figure 8(a) across multi-
ple quotas and users. The ideal result is a step function
at 1, indicating 100% of the trials result in optimal utility.
We see the Netflix method performs the worst, obtaining,
for example, less than 95% utility 50% of the time. The
MCKP curve is steeper, indicating it has less performance
variation, which makes intuitive sense as the algorithm op-
timizes for the worst-case. The MDP algorithm optimizes
for the average-case performance but not the spread, and
thus exhibits greater variation, but is closer to the ideal step
function.

The MDP and MCKP algorithms are further compared in
Figure 8(b), which shows the CDF of their percentage utility
difference. If the MDP were always better than the MCKP,
we would see a step function at 0. However, we observe that
the MCKP sometimes outperforms the MDP algorithm.

On the surface, these simulations seem to suggest the Net-
flix method performs reasonably well in general. It achieves
above 85% of the optimal utility, suggesting that this naive
solution is acceptable for most users. However, the caveat is

130

1 1
—MDP

0.8j***MCKP
- Netflix

0.8

0.6

CDF

0.4

0.2

% 0 5
MDP vs MCKP Utility % Differenc:

(b)

0.9 0.95
% of Optimal Utility

(a)

Figure 8: (a) CDF of the utility achieved by MDP,
MCKP, and Netflix algorithms. (b) Distribution of
MDP performance improvement over MCKP.

% of Optimal Utility
% of Optimal Utility

estavg

(a) Arrival rate

tueavg true

random estimate

(b) Video type

true

Figure 9: Effect of user profiler prediction error.

that our simulated Netflix method assumes perfect knowl-
edge of the number of video requests in the billing cycle, so
that the user knows how to correctly set the default bit rate
given the quota. This is represented by the sharp jumps
with increasing quota in Figure 6 and 7. If the user sets
the default bit rate too high, she will overshoot her quota.
If the user sets the default bit rate too low, she will obtain
suboptimal utility. A main advantage of QAVA is that it au-
tomatically adjusts the bit rate, so the Netflix user does not
need to estimate her usage to set her default bit rate, which
might result in these over- or under-shooting problems.

5.5 Sensitivity to Prediction Error

It is important to examine how errors from the UP mod-
ule affect the performance of the stream selection algorithm.
There are two possible sources of error: video request prob-
ability and video type distribution. To test sensitivity to
request probability error, we measure the utility obtained
by the MDP algorithm when it uses (1) the estimated aver-
age arrival rate trained on historical data, (2) the true av-
erage arrival rate of the test data, and (3) the true request
times. These results are averaged across multiple users and
shown in Figure 9(a), with the error bars indicating stan-
dard deviation. We observe that the greater the information
accuracy, the greater the average utility. The performance
difference is quite small, which suggests that the MDP algo-
rithm performs well independent of arrival probability accu-
racy. Moreover, the average percentage difference between
the true and estimated arrival rate is 8%.

To analyze the sensitivity of the stream selector to video
type prediction errors, we perform the following experiment.
We calculate the true video type distribution of the test
data, and also randomly generate a video type distribution.
This random distribution has both random videos (drawn
from the pool of requested videos from all users), and ran-
dom probabilities. The utility obtained by the MDP algo-
rithm using the random, estimated, and true distributions,

QAVA
video server User

database

User and video info -

MOS feedback

Figure 10: Android implementation of QAVA for
running real-world trials within the Princeton Uni-
versity community.

averaged across all users, is shown in Figure 9(b) with the
error bars indicating standard deviation. We find that the
average utility increases only slightly as more accurate in-
formation is known, suggesting robustness of the MDP al-
gorithm to video type distribution errors.

6. DISCUSSION ON IMPLEMENTATION

6.1 Implementation on Android

In addition to evaluating QAVA through simulations with
YouTube video request traces, we have implemented QAVA
to run on the Android platform. This enables us to evaluate
the performance of QAVA on a commercial operating system
using real users’ video requests. We are currently conducting
a trial, starting with 15 community volunteers.

In this section, we briefly summarize the implementation
of QAVA, as shown in Figure 10. Approximately 500 videos
are stored in our server, each with a resolution of 640 x 480
pixels and encoded using H.264/AVC in 5 different bitrates:
100, 200, 300, 400, and 500 Kbps. Participants can install
the QAVA application on their mobile devices and request
any of the stored videos. The videos are streamed from
our server at a bit rate determined by the SS module on
the server. The server also logs the time stamp, user 1D,
video name, and video utility and cost in a database. When
the user stops watching the video, she is asked to provide a
feedback on the video quality by choosing a rating on a scale
of 1-5, where 1 indicates “very annoying”, and 5 indicates
“imperceptible distortion”.

Screenshots of the GUI are shown in Figure 11. When the
users opens the QAVA application, she is presented with the
screen in Figure 11(a), which lists different video categories,
such as music, movies, cartoons, etc. Each category contains
a list of videos, which is shown on the second screen in Fig-
ure 11(b) once the user selects a category. By selecting any
of the videos listed under that category, the user can start
watching the video. The last screen in Figure 11(c) shows
the feedback mechanism, where the user rates the video by
selecting one of the 5 stars. A video demonstrating our GUI
can be found at http://snipurl.com/23upjft.

To increase the choice of content available to trial partic-
ipants, we have also used the YouTube API to implement
a feature that allows users to access any YouTube video
through the QAVA application. We first store a large num-
ber of YouTube videos on our server. If the user requests a
YouTube video that was already pre-fetched, we run QAVA;
otherwise, the video is streamed from YouTube.

131

(c)

Figure 11: Screenshots of QAVA Android app. (a)
Different video categories; (b) List of videos within
a category; and (c) Feedback screen.

6.2 Client-based Architectures

Our trial architecture of Figure 10 is sufficient when the
SS module is located on the CP and can choose which bit
rate video to stream to the user. In a practical scenario,
it may be that the bit rate selected by the SS module can-
not be streamed by the CP, either due to unavailability of
video versions, or lack of support from the CP. To address
this, we are exploring options for a client-based implemen-
tation architecture for QAVA. There are two possibilities: a
transcoding-based system, and a throttling-based system.

In the transcoding-based solution, all traffic from the client
is routed through a web proxy. By inspecting the packets,
video traffic may be distinguished and transcoded on-the-fly
by the proxy server to the correct bit rate. This approach
has the advantage of using standard web proxy technology,
and can handle all types of videos as long as the transcoder
has the appropriate codec. However, there are significant
implementation challenges in terms of latency minimization:
the proxy and transcoder must perform quickly in order to
satisfy the demands of delay-sensitive video traffic. More-
over, implementing a transcoder for HTTP video streams is
also difficult.

The throttling-based solution leverages the emerging pop-
ularity of adaptive HTTP video streaming [20]. In this
technology, the videos automatically adjust their bit rate
based on their estimate of TCP throughput. By limiting
the bandwidth observed by the rate switching algorithm,
QAVA can force the video bit rate to automatically settle
to the rate determined by the SS module. This throttling
can be performed on the client device or on a web proxy. In
terms of implementation, this approach is simpler than the
transcoding-based solution, but it suffers from the limitation
that only adaptive HTTP video streams can be modified in
this way.

7. RELATED WORK

Adapting video quality with respect to resource constraints
and user utility has been extensively studied since the 1990s,
as surveyed for example by Chang and Vetra [16]. The
algorithms and systems to perform such video adaptation
have long been studied in the research community [9,18,19,
24]. There has also been increasing interest from industry:
Apple, Microsoft, and Adobe have developed proprietary
HTTP video streaming protocols that perform intra-video
bit rate switching to adapt to varying channel conditions.

Recent progress by an industrial consortium has resulted
in the MPEG-DASH standard [20], which aims to address
the lack of inter-operability between current video stream-
ing protocols by providing an open interface to access the
quality levels of a video. However, these lines of work still
focus on channel-based video adaptation. To the best of
our knowledge, video adaptation with respect to each user’s
data quota in the context of usage-based pricing has not
been systematically investigated prior to this work.

Jan et al. [21] developed a system for compressing images
on webpages under a data quota. Although the motivation
is similar, the application to images and webpages is dif-
ferent. It also differs in that the decisions are made with
full knowledge of the images to be compressed. Compared
to this, QAVA needs to make online decisions without the
knowledge of future video requests.

Recently, systems like Onavo [22] enable users to save on
data plans by forwarding all data through a proxy server
and compressing images and text. However, they do not
exploit consumer usage patterns or the dynamic range of
video compressibility. To this end, QAVA offers substantial
data saving opportunities, because video traffic is much more
compressible (than images and text), and comprises the bulk
of mobile data consumption.

8. CONCLUSIONS

The continuous rise of mobile video traffic and the $10
per GB usage-based pricing are at odds. Managing de-
mand through Smart Data-Pricing (SDP) is a possible solu-
tion approach, e.g., time-shifting delay-tolerant traffic [17].
Adapting video quality offers another approach, especially
for streaming video traffic. We presented QAVA, a system to
mediate the conflicting trends of increased video streaming
on mobile devices vs. usage-based pricing by cellular and
broadband ISPs. QAVA automatically selects the best bit
rate to enable the consumer to stay under her data quota,
while suffering minimal distortion. By evaluting the perfor-
mance on real video traces, we demonstrated that QAVA
performed better than existing approaches in literature and
practical solutions.

Our major ongoing work is the development and testing
of user trials, in collaboration with several carriers and con-
tent providers in the US, as well as improvement of the
UP and VP algorithms. A future area of exploration is
the longer timescale problem of video bit rate selection and
placement on limited capacity servers. Another interest-
ing issue is the feedback between user behavior and QAVA
bit rate delivery, which we have ignored so far, but merits
further study. Other possible extensions include more so-
phisticated user and video profiler methods; bit rate selec-
tion with respect to heterogeneous devices and quota; and
integration of the QAVA algorithms with upcoming video
streaming standards.

Acknowledgements

This work was supported by AFOSR FA9550-09-1-0643, NSF
CNS-1011962, and PECASE N00014-09-1-0449. We would
like to thank our colleagues, Sangtae Ha, our shepherd Oliver
Spatscheck, and the anonymous reviewers for their valuable
comments.

132

9. REFERENCES

[1] “Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update”, 2011-2016.

[2] “Rogers Hi-speed Internet FAQ”,

<http://www.keepingpace.ca/faq.html>

“Reliance 3G Plans & Pricing”, <http://www.rcom.co.in/

Rcom/personal/3G/HTML/PostpaidDataPlans.html>.

DataWiz, <http://www.datami.com/>.

Troianovski A, “AT&T May Try Billing App Makers”, Wall

Street Journal, Feb. 28 2012.

Bovik A, The Essential Guide to Video Processing, Elsevier

20009.

Kellerer H, Pferschy U, Pisinger D, Knapsack Problems,

Springer 2004.

Puterman ML, Markov Decision Processes: Discrete

Stochastic Dynamic Programming, Wiley 2005.

Liu C, Bouazizi I, Gabbouj M, “Rate Adaptation for

Adaptive HTTP Streaming”, ACM MMSys, 2011.

[10] Papastavrou JD, Rajagopalan S, Kleywegt AJ, “The
Dynamic and Stochastic Knapsack Problem with
Deadlines”, Management Science, 1996.

[11] Winters PR, “Forecasting Sales by Exponentially Weighted
Moving Averages”, Management Science 6(3):324-42, 1960.

[12] “Recommendation BT.500: Methodology for the subjective
assessment of the quality of television pictures”,
International Telecommunication Union, 2012.

[13] Wang Y, Schaar M, Chang S, Loui AC,
“Classification-Based Multidimensional Adaptation
Prediction for Scalable Video Coding Using Subjective
Quality Evaluation”, in IEEE Trans. Circuits Sys. Video
Tech., 15(10):1270-8, 2005.

[14] Zink M, Suh K, Gu Y, Kurose J, “Watch Global Cache
Local: YouTube Network Traces at a Campus Network -
Measurements and Implications”, IEEE MMCN, 2008.

[15] Zhou Y, Chakrabarty D, Lukose R, “Budget Constrained
Bidding in Keyword Auctions and Online Knapsack
Problems”, WWW, 2007.

[16] Chang SF, Vetra A, “Video Adaptation: Concepts,
Technologies, and Open Issues”, in Proc. IEFE,
93(1):148-58, 2005.

[17] Ha S, Sen S, Joe-Wong C, Im Y, Chiang M, “TUBE:
Time-Dependent Pricing for Mobile Data”, ACM
SIGCOMM, 2012.

[18] Rejaie R, Handley M, Estrin D, “Quality adaptation for
congestion controlled video playback over the Internet”,
ACM SIGCOMM 1999.

[19] Liu J, Li B, Zhang Y, “An End-to-End Adaptation
Protocol for Layered Video Multicast Using Optimal Rate
Allocation”, in IEEE Trans. Mult., 6(1):87-102, 2004.

[20] MPEG-DASH, <http://dashpg.com/>.

[21] Jan RH, Lin CP, Chern MS, “An optimization model for
Web content adaptation”, Computer Networks 50(7):953-65,
2006.

[22] Omavo, <http://www.onavo.com/>.

[23] Dobrian F, Sekar V, Awan A, Stoica I, Joseph DA, Ganjam
A, Zhan J, Zhang H, “Understanding the Impact of Video
Quality on User Engagement”, ACM SIGCOMM, 2011.

[24] Liu X, Dobrian F, Milner H, Jiang J, Sekar V, Stoica I,
Zhang H, “A Case fo a Coordinated Internet Video Control
Plane”, ACM SIGCOMM, 2012.

[25] ”Global Interet Phenomena Report”, Sandvine, 2012.

[26] Chen KT, Huang CY, Huang P, Lei CL, “Quantifying
Skype User Satisfaction”, ACM SIGCOMM, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

