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Abstract

Multi-user augmented reality (AR), where multiple co-located

users view a common set of virtual objects, is becoming increas-

ingly popular. For example, Google Just a Line allows multiple

users to draw virtual graffiti in the same physical space. Multi-user

AR requires network communications in order to coordinate the

positions of the virtual objects on each user’s display, yet there

is currently little understanding of how such apps communicate.

In this work, we address this key gap in knowledge by showing

that the communicated data directly impacts the latency and posi-

tioning of the virtual objects rendered on the users’ displays. We

develop solutions to these problems that we find along three facets:

(1) efficient communication strategies that trade off communica-

tion latency for spatial consistency of the virtual objects; (2) a new

metric that enables mobile AR devices to update their virtual ob-

jects as they move around and observe more of the scene; and (3)

a tool to automatically quantify how much the virtual objects’ po-

sitions inadvertently change in time and space. Our evaluation is

performed on Android smartphones running open-source AR. The

results show that our system, SPAR, can decrease the latency by

up to 55%, while decreasing the spatial inconsistency by up to 60%,

compared to baseline methods.

CCS Concepts

·Human-centered computing→ Ubiquitous and mobile comput-

ing; · Networks; · Information systems→Multimedia infor-

mation systems;
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1 Introduction

Augmented Reality (AR) applications have recently exploded

in popularity among smartphone users. In AR, a user’s field-of-

view (FoV) is overlaid with virtual objects, which should remain

fixed with respect to the real world in order to provide a seamless

transition between the real world and the virtual objects. As AR

becomes more popular, a natural question is: can we share the vir-

tual objects with other users? Based on the off-the-shelf AR apps

currently available, the answer is łyesž. For example, Pokemon Go

released the Buddy Adventures feature in December 2019, which

allows multiple users to view their virtual creatures together in the

same real world space. Other multi-user AR applications currently

available include Just a Line, where multiple users can collabora-

tively draw virtual graffiti, and Minecraft, where users can build

structures together from virtual blocks.

Yet despite their emerging popularity, little is known about the

network communications of multi-user AR apps. The fact that these

apps involve multiple users clearly indicates that some form of net-

work communication is required. However, it is currently unknown

how these apps communicate, what they are communicating, and

how the data communications impact user experience. This work

seeks to address this key gap in knowledge, and propose solutions

to the problems that we find in this space.

Through our measurements of off-the-shelf multi-user AR apps

(detailed in Sec. 2), we find that users experience multiple seconds

of latency between one user placing a virtual object to it appearing

on another user’s display. Moreover, the virtual objects can appear

at different locations, with respect to the real world, on each user’s

display. These two problems ś latency and spatial inconsistency

ś are key factors in AR user experience [13, 29, 51], and we find

that they depend on the communicated information between the

AR devices. Thus the goal of this work is to optimize the network
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communications of multi-user AR apps, to enable fast and accurate

coordination of the virtual objects across AR displays. For example,

in a classroom, students equipped with AR devices should be able to

see the same virtual chemistry molecule and manipulate it, with the

virtual molecule remaining consistent across students. However,

uncoordinated or laggy updates to the virtual molecule would break

the illusion of seamless integration with the real world, and result

in artifacts such as other users appearing to touch non-existent

parts of the virtual molecule.

We meet and address several technical challenges towards real-

izing this vision. (1) Firstly, multi-user AR apps share a large initial

data burst containing information about the real world environ-

ment, in order to render the virtual objects at the correct locations

on each AR display. This leads to multiple seconds of latency when-

ever users move to a new area and wait for virtual objects to appear.

To address this, we propose communication strategies that adapt to

the positions of the virtual objects in order to reduce communication

latency. (2) Next, as the user moves around, the AR device con-

tinuously observes new information about the real world. These

observations can be processed to update the virtual objects’ posi-

tions with respect to the real world, but the update may actually

harm the positioning accuracy if the wrong information is used.

To address this, we propose a new łfeature geo distancež metric that

allows the AR app to select the right camera frames to re-align the

virtual objects’ positions with other users. (3) Finally, multi-user AR

apps do not know if their virtual objects are drifting in time or in

space. Without knowing that the virtual objects are experiencing

positioning issues, these apps does not know when problems need

to be corrected. To address this, we develop a methodology and tool

to automatically quantify spatial inconsistency issues of the virtual

object across time and across users.

While there has been research on object detection and cloud/edge

offloading for AR (e.g., [27, 32, 42]), these works typically consider

a single user viewing the virtual objects, rather than multi-user co-

ordination. They also do not incorporate simultaneous localization

and mapping (SLAM), which is part of off-the-shelf AR systems

today to enable 3D understanding, but contribute to the latency and

spatial inconsistency issues that we observe. Industry players have

started to look at multi-user AR [8, 20, 35], but focus mainly on

application development and not the communication aspects of the

underlying platform. To the best of our knowledge, no prior work

has systematically examined AR spatial consistency issues when

there are multiple users, and their dependency on the network data

transmissions between the devices.

In summary, we study the emerging application of multi-user

AR and its networking aspects. In particular, we focus on rendering

virtual objects that are clustered around a common łanchorž point

in the real world [20]; this is common in typical multi-user AR

apps (e.g., all the virtual Pokemon or virtual graffiti are placed near

each other). We call our system SPAR (SPatially Consistent AR). Our

contributions include:

• We measure the performance and network usage of off-the-shelf

AR apps, and identify problems of high latency, spatial drift, and

spatial inconsistency of the virtual objects over time and across

users.

x

y

z

x
y

z
x

y

z

<(-15,0,-1), 15°>

<(17,0,3), 17°>

<(1,0,10), 12°>

device A

device B

device C

Virtual object

Figure 1: Multiple AR devices try to ensure consistent views

of a virtual object, despite different coordinate systems.

• We develop new methods for efficient communication and com-

putation of the AR devices. Specifically, SPAR performs the fol-

lowing: (i) it adapts the communicated information to the virtual

object positions, to reduce latency; (ii) it efficiently computes the

virtual objects’ positions in each user’s display through light-

weight coordinate system alignment, to create spatial consis-

tency; (iii) it continuously updates the positions of the virtual

objects with respect to the real world using a new update metric,

to maintain spatial consistency; and (iv) it automatically quan-

tifies the spatial drift and consistency of the virtual objects, to

evaluate performance.

• Weperform evaluation onAndroidAR devices, extending VINS [31],

a 6DoF-based AR platform, with multi-user capabilities. We work

with open-source systems because existing AR platforms from

Android, Apple, and Microsoft [8, 20, 35] are closed source and

thus their internal code cannot be modified for experimentation.

Our results show that SPAR can decrease the total latency by up

to 55%, while decreasing the spatial inconsistency of the virtual

objects by up to 60%, compared to a baseline method of com-

municating the full data or off-the-shelf AR platforms. We also

show that our tool can estimate a virtual object’s spatial drift

and inconsistency with a low RMSE of only 0.92 cm, compared

to manual human labeling.

In the remainder of this paper, we discuss the measurements that

motivate this work (Sec. 2), a brief background (Sec. 3), the over-

all system architecture (Sec. 4), and the design of the individual

components (Sec. 5). We then evaluate the system (Sec. 7), discuss

related work (Sec. 9), then conclude (Sec. 10).

2 Motivation: Spatial Drift, Inconsistency, and

Latency of Off-the-Shelf Mobile AR
To showcase the issues of virtual object spatial inconsistency

and latency in multi-user AR, we examined several off-the-shelf

AR Android apps. The four Android apps we tried were Google

CloudAnchor [20], Google Just a Line [21], Minecraft [37], and

Pokemon Go [39], running on Pixel 4 smartphones. We have two

users, Alice and Bob, who perform the following sequence of user

interactions:

(1) Place initial virtual object: Alice places a virtual object by

tapping the screen.
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Alice’s view: Bob’s view:

(a) Spatial inconsistency across two AR devices.
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Figure 2: Quantifying spatial drift and inconsistency. The resolving devices suffer from spatial drift of 2-4 cm and fail to resolve

if their orientation with respect to the host is more than 60◦.

(2) Render initial virtual object: Bob waits for it to appear on his

screen.

(3) Subsequent user interactions: Alice taps the screen to move a

virtual object or place new virtual objects (only Just a Line

and Minecraft have this feature). Bob waits for the update

to be reflected on his screen.

Our main finding is that there is significant delay and spatial in-

consistency between when Alice places the first virtual object and

Bob renders it on the screen (steps 1 and 2 above), thus motivating

the work in this paper. Similar results hold when there are multiple

receiving users (i.e.,multiple Bobs) who wish to view Alice’s virtual

objects. Below, we detail our quantitative measurements.

Spatial drift and inconsistency: We experimented 5 times

with CloudAnchor, with each trial lasting 1minutewith Bobmoving

1 m (small area) to 4 m (large area) in the real world. In these

experiments, we observed two types of spatial issues relating to

the virtual object’s position:

• Spatial drift: For a single user, the virtual object can drift in

position over time.

• Spatial inconsistency: When there are multiple users, the virtual

object can appear in a different location, relative to the real world,

on each user’s display, as shown in Fig. 2a.

In the single-user case (Fig. 2b), the spatial drift is around 2-3 cm

in both the large and small areas, for both ARCore [19] and VINS-

AR [31] platforms. In the multi-user case, spatial inconsistency

results are larger (results later in Sec. 7), and moreover we observe

that when the two devices are placed more than 60◦ apart, the

virtual object fails to resolve, as shown in Fig. 2c. We also observed

similar issues with Magic Leap, but focus on smartphone-based

AR in this work due to the ubiquity of smartphone devices. These

spatial drift, inconsistency, or failure to resolve a virtual object can

cause serious issues when multiple users interact in a shared AR

session (e.g., multiple users jointly building a tower of building

blocks), and are key contributors to user experience in AR [29, 51].

This motivates SPAR’s goal of reducing spatial drift and inconsis-

tency. Similar to prior work [47], we focus on positioning errors, as

we did not observe much rotational error our experiments. The low

rotational error we observe may be due to our use of visual-inertial

SLAM as the basis for our AR system, which generally has less

rotational error than pure visual SLAM [28].

Additionally, from running these experiments, we found that

manually measuring the position of the virtual object is laborious

and time-consuming, with each measurement requiring several

seconds per frame for a human to examine the image and record

(a) Just a Line network trace.

(b) Communication latency.

Figure 3: AR apps transmit a large amount of environment

data for the initial virtual object, resulting in mult-second

communication latency.

the virtual object’s position. This motivates SPAR’s spatial drift and

inconsistency estimation tool, to reduce the amount of human labor

and enable AR apps to automatically quantify these issues.

Communication latency:We next examine the data transfer

between the AR users. Fig. 3 shows a representative network trace

from Just a Line (other apps have a similar pattern, not shown for

brevity). We observe a large data transfers for the initial object

placement (steps 1 and 2), 9-20 Mb, and smaller data transfers

during the subsequent user interactions (step 3), <100 kb. These

large initial data transfers prolong the communication latency.With

an upload bandwidth of 8 Mbps (the average in our lab), the initial

communication latency is plotted in Fig. 3b. The communication

latency of >2 s for the ARCore-based apps (CloudAnchor and Just

a Line) is a lower bound on the user-experienced delay (while

Minecraft and Pokemon Go have lower communication latency,

they suffer from higher spatial inconsistency). This latency is a
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key contributor to user experience in multi-user AR [13, 51], thus

motivating SPAR’s goal of reducing user-perceived latency.

Connection between latency and spatial inconsistency:We

discover there is a critical connection between the aforementioned

spatial inconsistency and latency issues we observed. Off-the-shelf

AR platforms use similar methods [8, 20, 35] to share real world en-

vironment information between users during step 1, resulting in the

large spikes of data observed in Fig. 3. This environmental informa-

tion helps align the coordinate systems of the AR devices, enabling

each device to render the virtual objects at fixed positions in the real

world. In other words, the data communicated during the placement

of the initial virtual object (step 1) directly impacts the spatial drift

and inconsistency. This motivates SPAR’s communication-efficient

strategies to decrease communication latency, while trading off

with spatial drift and inconsistency.

3 Brief Background on AR
Current AR platforms such as Google ARCore, Apple ARKit, and

Microsoft Hololens rely on simultaneous localization and mapping

(SLAM). SLAM solves the problem of when a device is in an un-

known environment, how to build a consistent map and localize

itself at the same time [15]. In a typical single-user AR scenario,

the AR device uses SLAM to construct a point cloud representing

the 3D coordinates of features in the real world, and also estimates

its own location and orientation (known as pose). To compute the

point cloud, SLAM selects a subset of camera frames (known as

keyframes), extracts features from the keyframes, runs SLAM al-

gorithms on the features, and outputs the 3D coordinates of the

features in each keyframe (i.e., the point cloud) and the estimated de-

vice pose. These SLAM algorithms includes keyframe matching to

localize the device with respect to its past trajectory. Each keyframe

data structure contains feature descriptors, 2D feature coordinates

with respect to the camera image, and 3D feature coordinates with

respect to the real world. The 3D feature coordinates are relative to

an origin point in the real world, which is called the device’s world

coordinate system.

To render virtual objects for AR, the device records the pose of

the virtual object (defined as its location and orientation, which

can be provided by user input or by an object detector). The AR

device runs SLAM continuously to update its own pose estimate

and the 3D coordinates of the features in the point cloud, and then

draws the virtual object on the display when its FoV overlaps with

the virtual object’s pose.

4 System Architecture
SPAR consists of the following components that work together

in concert, as shown in Fig. 4. For illustrative purposes, we describe

a hosting device (Alice, the łhostž) who places the virtual objects,

and a resolving device (Bob, the łresolverž) who wishes to view

the same virtual objects. When there are multiple resolvers (i.e.,

multiple Bobs), each Bob performs steps 2 and 3 below.

(1) Adaptive AR communications: A naive approach to share AR

information between Alice and Bob would be sending all of Alice’s

SLAM data to Bob(s). However, this approach is not cognizant of AR,

and can be very slow; To reduce this communication latency, we

design an intelligent mechanism that adapts the data transmissions

to the content of the AR scene. Specifically, only areas of the real

Host (“Alice”) Resolvers (“Bobs”)

3. Updated AR rendering

Initial 

render

Selected 

keyframes + 

associated 

point cloud

Camera 

frames

4. Spatial consistency & 

drift estimation tool

1. Adaptive AR 

communications

2. Coordinate 

system alignment

Camera 

frames

Device 

logs

Device 

logs

Figure 4: SPAR system overview. The modules work together

for fast multi-user AR with spatially consistent virtual ob-

jects.

world in which Alice was near the virtual objects, and the virtual

objects were visible, are sent to Bob(s).

(2) Coordinate system alignment: Using the received information,

Bob next desires to render the virtual objects at the correct loca-

tions in the real world. However, since Bob and Alice can open

the AR app from different positions in the real world, they lack

a common frame of reference to accurately describe the pose (lo-

cation and orientation) of the virtual objects. Current single-user

AR does not have this problem because there is only one device

and thus one world coordinate system. We propose a lightweight

coordinate system alignment method, which allows Bob to align

himself inside Alice’s coordinate system. The key idea is to reuse

some functionality from single-user AR for path loop detection [41],

which that is already running on the device, making our method

very lightweight yet accurate.

(3) Updated AR rendering: After the initial rendering of the vir-

tual objects, Bob may continue to move around the world. As Bob

observes new information about his environment, he can use this

information to re-align his coordinate systemwith Alice and update

the positions of virtual objects. But how can Bob know if these up-

dated positions are more or less accurate? To enable Bob to predict

whether the spatial inconsistency improved with the new obser-

vations, we propose a new metric, feature geo distance, which has

good correlation with spatial inconsistency. The intuition behind

this metric is that if Bob observes areas close to the virtual objects,

these observations can likely improve spatial consistency.

(4) Spatial inconsistency and drift estimation tool: The above op-

erations can affect where the virtual object is rendered on Bob’s

display. We develop a spatial inconsistency and drift estimation

tool to quantify these impacts on the rendered virtual objects. This

tool runs as an overlay in SPAR, collecting logs from the AR devices,

and computing the drift and spatial inconsistency offline. The chief

challenge lies in finding a fixed real-world reference point from

which to accurate measure how the position of the virtual object

changes over time or across users.

5 System Design
In this section, we discuss the mainmodules of SPAR: adaptive AR

communications (Sec. 5.1), coordinate system alignment (Sec. 5.2),

updated AR rendering (Sec. 5.3), and the spatial inconsistency and

drift estimation tool (Sec. 5.4).
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Figure 5: AdaptiveARcommunication strategies. SPAR-Small

selects keyframes and point clouds from when the host cre-

ates a virtual object. SPAR-Large selects information from

when the host is near a virtual object and it is visible.

5.1 Adaptive AR Communications (Host)
To align the positions of the virtual objects with respect to the

real world in each AR display, the host sends a set of keyframes, the

associated point cloud with those keyframes, and the virtual objects’

coordinates to a resolver. A virtual object’s coordinates are a small

4 × 4 transformation matrix, but set of keyframes can become very

large if many keyframes are sent. While a simple strategy is to send

all of the keyframes, this can grow very large as the hosting device

continues to collect more data, incurring significant communication

latency. For example, in our experiments (details in Sec. 7), the host

collects approximately 110 keyframes after 1-2 minutes, consuming

40 Mb even after applying standard compression techniques [1],

resulting in 5 seconds of communication latency on an 8 Mbps

uplink connection. Note that these 110 keyframes were already

downsampled by SLAM; in other words, the basic downsampling

done by SLAM is insufficient and still results in high communication

latency. We therefore ask: Can we adapt which keyframes and

associated point cloud information are sent, in order to decrease

the communication latency?

Our idea is to intelligently adapt what information is sent based

on the AR scene, balancing between sending enough information

to enable good coordinate system alignment between the host and

resolver, but less information to reduce the communication latency.

We base our strategies on an insight unique to the AR setting: only

keyframes close to the virtual object in time and space are needed.

We propose two adaptation strategies: (1) an aggressive SPAR-Small

strategy (yellow outline in Fig. 5), which only selects the keyframes

that are close in time to when the virtual object was created, and (2)

a more comprehensive SPAR-Large strategy (red outline in Fig. 5),

which only selects keyframes from when the host is near the virtual

object, and the virtual object is visible on the display.

The intuition behind the SPAR-Small strategy is that when the

host creates the virtual object by tapping on the device’s display,

the information about the scene observed around this time is likely

sufficient for a resolver to recreate the same virtual objects. The

intuition behind the SPAR-Large strategy is two-fold: visibility is

important because if the virtual object is not visible on the screen,

yWorld 
coord. 
system 
(resolver)

Device 
coord. 
system 
(host)

World 
coord. 
system 
(host)

output: pB
world

input: pA
world

RP, tPRA, tA

(a) Overall process.

Resolver

Resolver

Host

Traditional single-user PnP Proposed multi-user PnP
Point cloud Point cloud

(b) Multi-user PnP to compute Rp, tp

Figure 6: Coordinate system alignment to transform a vir-

tual object from the host’s world coordinate system to the

resolver’s world coordinate system.

the camera is usually facing another direction and the observed

features may not be useful; and nearness is important because if the

host moves in a large environment, the number of keyframes may

be large, so nearness can filter out far-away keyframes. The output

of this module is a reduced set of keyframes and their associated

point clouds, FA, sent from the host to a resolver.

5.2 Coordinate System Alignment (Resolver)
Next, given that a resolver has received the set of keyframes

and associated point cloud FA and the virtual object’s coordinates

pworld
A

in the host’s world coordinate system, how can a resolver

determine the position of the virtual objects in its own world coor-

dinate system, which is needed for rendering? The main challenge

is that each device’s world coordinate system is initialized at an

arbitrary origin point (typically wherever the device is when the

AR application is launched), and the devices may be launched ran-

domly by users from different locations in space. Some existing AR

apps [21, 39] side step this problem by requiring that the users open

their AR apps when the phones are exactly side-by-side, but this is

an unnecessary burden on user experience. The goal of the SPAR’s

coordinate system alignment module is to enable the AR apps to

launch from arbitrary starting points, while correctly positioning

the virtual objects in each user’s AR display.

Multi-user PnP: The specific technical goal is to transform a

virtual object’s coordinates, which are provided in the host’s world

cooordinate system (left circle in Fig. 6a) to a resolver’s world

coordinate system (right circle in Fig. 6a). An intermediate step is

the host’s device coordinate system (middle circle in Fig. 6a). Since

the host knows the definitions of its own world coordinate system

and its device coordinate system (left to middle circle in Fig. 6a), it

can estimate the appropriate transformation RA, tA (i.e., its pose)

using SLAM (line 5 in Alg. 1). However, the missing transformation

is from the host’s device coordinate system to a resolver’s world

coordinate system, Rp , tp (middle to right circle in Fig. 6a).
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Our key idea is to use real-world features, which remain fixed,

to estimate this transformation. Specifically, we propose a multi-

user PnP method, which is a re-purposing of the single-user PnP

method [52] that already runs on AR platforms. We utilize existing

functions in a new way in order to avoid implementation of com-

plex new functionality and keep the system lightweight. However,

the existing single-user PnP function can only query for a given

keyframe within a device’s own world coordinate system, not be-

tween two devices’ coordinate systems. For example, when running

on Bob’s device, the inputs to single-user PnP are a query keyframe

with associated point cloud, and the output is the an estimate of

Bob’s pose in Bob’s world coordinate system (left side of Fig. 6b).

However, for multi-user PnP, we realize that we can query one of

Alice’s keyframes instead, and compute the pose of Alice’s device

in Bob’s coordinate system (right side of Fig. 6b), using exactly the

same PnP function. This gives us the transformation Rp , tp (line 6

in Alg. 1), and enables us to compute the complete chain of transfor-

mations Rp (RAp
world
A

+ tA) + tp (line 7 in Alg. 1) needed to render

the virtual objects in Bob’s display.

Algorithm 1: Coordinate System Alignment

Inputs: set of keyframes and associated point clouds from

host FA, virtual object coordinates in host’s world

coordinate system pworld
A

, set of incoming keyframes { fB }

Parameters: feature geo distance threshold Tfeature
Outputs: virtual object coordinates in resolver’s world

coordinate system pworld
B

1: DBoWA ← ConstructDBoW(FA) // receive FA + process

2: for each new keyframe fB do

3: fA ← MatchKeyframe(DBoWA, fB )

4: if fA , null then

5: (RA, tA) ← DevicePose(fA)

6: (Rp ,Tp ) ← MultiUserPnP(fA, fB )

7: pworld
B

← Rp (RAp
world
A

+ tA) + tp // coordinate system

alignment

8: if FeatGeoDist(fB ,p
world
B
) < Tfeature then

9: return pworld
B

// feature geo distance filter

10: end if

11: end if

12: end for

5.3 Updated AR Rendering (Resolver)
Given the initial rendered virtual objects from Sec. 5.2, we next

discuss what happens as a resolver moves around and collects more

information about the real world. Can this new information be

used to re-compute the coordinate system alignment and update

the poses of the virtual objects for improved spatial consistency? A

naive solution of using the most recent keyframe and associated

point cloud to update the poses of the virtual objects can lead to bad

results, however, if the keyframe was observed at a distant point

far from the virtual object. This is because the coordinate systems

would be well aligned at that distant point, but lose alignment in

areas closer to the virtual objects, resulting in spatial inconsistency

with other users. So when should the new information be used?

Resolver
Point cloud keyframe features

(xi,yi,zi)
(xi+1,yi+1,zi+1)

(xi+2,yi+2,zi+2)
pB = (xB,yB,zB)

Figure 7: Feature geo distance is the average distance from

real world features to a virtual object.

Our approach is to develop a new metric to help estimate which

new keyframes and associated point clouds will produce the best

alignment and improve the spatial consistency. Simple estimation

schemes such as selecting keyframes from the host and resolver

with the lowest pixel-by-pixel differences or Hamming distance are

possible, but in our experience, this results in keyframe matches

that are distant from the virtual object, resulting in poor coordinate

system alignment and thus spatial inconsistency issues.

Instead, we leverage our understanding of the AR scenario: fea-

tures near the virtual object are more important for coordinate system

alignment. We propose a new metric based on this, łfeature geo

distancež. The feature geo distance is defined as the average dis-

tance to a virtual object over the common features in a pair of

matched keyframes, as illustrated in Fig. 7. Specifically, given a set

of features i with coordinates (xi ,yi , zi ) from keyframe fB , and the

3D coordinates of the virtual object pworld
B

, we compute the feature

geo distance as:

FeatGeoDist(fB ,p
world
B ) =

∑
i ∈fB | |(xi ,yi , zi ) − p

world
B
| |

M

whereM is the number of common features.We compute the feature

geo distance on each pair of matched frames, and only update the

pose of a virtual object if the feature geo distance is less than a

threshold (line 8 in Alg. 1). Essentially, we use feature geo distance

as a predictor of spatial inconsistency (this correlation is evaluated

in Sec. 7.3).

5.4 Spatial Inconsistency and Drift Estimation

Tool
The last module of SPAR seeks to quantify the impact of the

above modules on spatial inconsistency and drift. This is contrast

to typical AR error estimation, where human eyes can be used,

which can be inefficient [23]; Manual labeling by human eyes is

time consuming if the virtual object’s position needs to be labeled

every frame, and also be inaccurate, if there are no real-world

distance measures visible in the frame (e.g., a meterstick). In this

section, we discuss our design of a tool to automate and improve

human eyeball-based accuracy estimation.

Overall idea: Our method, in short, is to place one or more

markers (e.g., ArUco markers [44]) into the real world before run-

ning the AR app. The markers’ location and orientation can be

accurately estimated by the devices using PnP [2, 52], and used

as reference points from which to measure and compare the vir-

tual object’s position as rendered by each device. We use ArUco

markers as opposed to natural features in the scene because pose
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Figure 8: Conceptual example of computing spatial drift and

inconsistency.

estimation from natural features is not accurate enough for our

purposes, resulting in extremely noisy tool output.

As shown in Fig. 8, Alice and Bob will draw the virtual object

at a and a′, respectively, relative to their current pose. In an ideal

multi-user AR scenario, the virtual object’s resulting locations (end

of a and a′ arrows) are exactly the same; however, in practice they

can be spatially inconsistent (red line in Fig. 8). In order to measure

the difference between the endpoints of a and a′ (i.e., the spatial

inconsistency), the marker is used as a common reference point.

Specifically, we develop the following methodology:

(1) Using the keyframe f and f ′ from the host and a resolver,

respectively, the tool calculates the b and b ′ vectors from the

device to the marker (see Fig.8) using the marker present in

the keyframe and the single-user PnP method. (lines 1-2 in

Alg. 2)

(2) The c and c ′ vectors from the real-world marker to the virtual

anchor are computed as c = a − b, c ′ = a′ − b ′. (lines 3-4 in

Alg. 2).

(3) The tool outputs | |c − c ′ | | (length of the red line in Fig. 8),

which is the magnitude of the spatial inconsistency between

the two devices. (line 5 in Alg. 2).

The above procedure estimates the spatial inconsistency of multiple

users at a single instance in time. A similar procedure can be used to

compute the spatial drift of a single user over time, by letting a,b, c

be Alice’s observations at t = 0, and a′,b ′, c ′ be Alice’s observations

at t = 1. The output | |c − c ′ | | in that case represents the spatial

drift between t = 0 and t = 1. An additional wrinkle is that the

above steps rely on a,b, c being in the same coordinate system.

However, because they are computed by different functions in the

AR platform, they typically are not output in the same coordinate

system, because of the way that the real world and the devices are

modeled and stored in AR/VR systems [30, 45]. We use a variation

of the techniques described in Sec. 5.2 to reconcile these coordinate

systems and produce the spatial inconsistency and drift estimates.

6 Implementation

AR devices:We use Samsung Galaxy S7 smartphones running

Android 8 as the AR devices. Our AR system is developed in C++

with the Android NDK on top of VINS [31, 36, 41], an open-source

AR platform, which we extend with multi-user capabilities with

3000 additional lines of code. VINS has comparable baseline spatial

drift issues as ARCore, as shown in Fig. 2b, so we believe it is a

reasonable platform on which to test our proposed systems. We

Algorithm 2: Spatial Inconsistency Estimation

Inputs (device 1): virtual object coordinates a, coordinate

system transformation д0, frame f

Inputs (device 2): virtual object coordinates a′, coordinate

system transformation д′
0
, frame f ′

Outputs: Spatial inconsistency | |c − c ′ | |

1: (д2,b) ← SingleUserPnP(f ) // device 1 estimate

2: (д′
2
,b ′) ← SingleUserPnP(f ′) // device 2 estimate

3: c ← д1(д0(a)) − д2(b)

4: c ′ ← д1(д
′
0
(a′)) − д2(b

′)

5: return | |c − c ′ | | // output spatial inconsistency

use FAST feature and BRIEF descriptors. For coordinate system

alignment, we use DBoW2 [17] to speed up keyframe matching,

OpenCV [9] for basic PnP functionality, and Boost [1] for data

serialization and compression for efficient network transmissions.

Communications are accomplished through sockets, where the host

acts as a socket server and the resolvers connect to download the

set of keyframes via a TCP connection. The devices are connected

to a TP-Link AC1900 WiFi router.

Replay framework: To enable experimentation with different

algorithms under repeatable conditions (e.g., the same mobility pat-

terns of the users), we developed a replay framework that replays

the same sequence of camera frames from the host and a resolver,

and allows SPAR or other baselines to be run on top. This involves

saving the host’s point cloud, keyframes, and virtual objects’ co-

ordinates, along with the resolvers’ point clouds and keyframes.

Then for each trial, the framework loads the host’s point cloud and

keyframes, run the desired algorithms, and emulates a resolver’s

experience as new camera frames arrive one-by-one, adaptive com-

munications occur, and coordinate system alignment and updated

AR rendering are performed. If successful, the virtual object will be

drawn on the resolver’s keyframes and we record the latency and

spatial inconsistency.

Tool: The spatial drift and inconsistency tool runs offline on an

edge server in our implementation; in general, it could be run on any

device, including one of the AR devices themselves. It is written in

Python3 using OpenCV [10], Numpy, and its quaternion library. The

tool takes as input the keyframes from each AR device, the AR app’s

log of the corresponding virtual object positions and orientations,

themeasurements of the ArUcomarker, and the calibrationmatrices

of AR device cameras. Since that different AR platforms (e.g., VINS,

ARCore) typically output data in slightly different formats, we

wrote ad hoc parsing and conversion functions for VINS.

7 Evaluation
We evaluate SPAR’s performance in terms of computation and

communication latency, bandwidth consumption and spatial incon-

sistency. The main findings are that SPAR-Small and SPAR-Large

lower average latency by up to 55% on average, and provide im-

proved spatial inconsistency, especially when a virtual object first

appears, by 11%-60%, compared to baseline approaches.
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Figure 9: User mobility pattern test cases.

7.1 Setup
Scenarios:We perform experiments in the lab and in a home en-

vironment. A host places a virtual object (in our case, a virtual

cube), walks around the area, and sends the relevant data once to

a resolver. This resolver then walks around the scene and tries to

render the virtual cube at the correct location. We evaluate the per-

formance from the point of view of a resolver at two time instances:

(i) initially, when the virtual object is first displayed (Sec. 7.2), and

(ii) subsequently as the resolver continues to move around and

update the virtual object’s position (Sec. 7.3). We also evaluate the

performance of the tool to estimate spatial drift and inconsistency

during these two phases (Sec. 7.4). The average WiFi speed was 8

Mbps upload and 50 Mbps download in the lab, and 8 Mbps upload

and 20 Mbps download at home.

The user mobility pattern test cases are illustrated in Fig. 9 and

described below.

• Scenario 1: Small area: The host and a resolver are mostly station-

ary, and move within a 1 m × 1 m area.

• Scenario 2: Large area + same initial position: The host and a

resolver start at the same place facing the same direction. Each

user moves independently within a 4 m × 4 m area.

• Scenario 3: Large area + different initial position: The host and

resolver start at different places. They both move independently

within a 4 m × 4 m area.

Each scenario is repeated 25 times, with each trial lasting 40-90

seconds.

Baselines: Along with the SPAR-Large and SPAR-Small strategies

proposed in Sec. 5.1, we compare against several baselines, All and

ARCore:

• All: The host sends all keyframes and associated point clouds

(already downsampled by SLAM) to a resolver.

• SPAR-Small: The host sends 5 keyframes and their associated

point clouds from before and after creating a virtual object (10

time instances total). This strategy geared towards small envi-

ronments.

• SPAR-Large: The host sends keyframes and associated point clouds

for which the virtual object is visible within the FoV and the host

is within Tkeyframe = 3 m of the virtual object. This strategy is

more conservative and geared towards large environments.

• ARCore [19]: ARCore is a highly optimized, closed-source pro-

duction level AR platform with cloud processing. We include

Figure 10: SPAR reduces total latency by up to 55% compared

to All and ARCore baselines, on average. Note that the la-

tency here is the initialization latency, when the user first

loads the AR app. Once this initialization has happened, sub-

sequent updates to the virtual objects’ locations and orien-

tations happen in real-time.

this comparison for reference; our goal is to showcase the im-

provements of our proposed methods in the open-source VINS

platform, which could then be incorporated into optimized pro-

duction platforms. Due to API restrictions, the ARCore experi-

ments differ slightly in that VINS creates a virtual object before

the host moves, while ARCore creates it after the host moves.

We also experimented with two other baselines using the individual

nearness and visibility criteria from SPAR-Large, but their results

were similar to the other baselines and omitted. We didn’t compare

performance with other AR platforms such as Hololens or ARKit

because they run on different hardware (Hololens, iPhone/iPad),

so it is difficult to have a fair comparison with SPAR, which is

prototyped on Android (although its methods are generalizable).

Metrics:We evaluate several metrics:

• Latency of Initial Virtual Object Appearance (s): This latency con-

sists of several components:

• Save: The time the host spends to adapt the AR data in prepa-

ration for transmission.

• Communication: The time spent to communicate the selected

data to a resolver. For ARCore, this includes the cloud process-

ing time.

• Load: The time a resolver spends to load the host’s data and

initialize SLAM processing.

• Resolve: The time for a resolver to move close to a virtual object

and perform coordinate system alignment.

• Spatial drift and inconsistency (cm): As discussed in Sec. 2, spatial

drift is defined as the distance that a resolver’s virtual object

changes over time(assuming a ground truth stationary virtual

object). Spatial inconsistency is defined as the distance between

a host and resolver’s virtual object instances at a given time.

• Failure rate: A virtual object can fail to appear on a resolver’s

screen if the coordinate system alignment cannot find similar
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Figure 11: SPAR scales communication time with the number

of resolvers.

enough matching frames. We count the number of times this

failure occurs.

7.2 Initial AR rendering
We first discuss the initial rendering of the virtual object on the

resolving user’s display. We seek to answer the following questions:

Does the adaptive AR communication strategy reduce latency? Are

the virtual objects rendered with low spatial inconsistency?

Latency:We plot the average latency of a virtual object’s initial

appearance, along with its breakdown, in Fig. 10 for each scenario

and baseline method. The SPAR-Large and SPAR-Small strategies

generally have lower latencies than the All and ARCore baselines,

with SPAR-Small performing well in small environments like sce-

nario 1, and SPAR-Large generally performing well in larger en-

vironments such as scenarios 2 and 3. The All baseline generally

has higher latency than SPAR because it sends the full AR data,

resulting in more than 3 seconds of communication latency. One

exception is scenario 3, where SPAR takes more time than All. This

is because the latency measurement includes the time for the user

to walk closer to the virtual object. SPAR uploads fewer keyframes

and typically needs more time to find a keyframe match in sce-

nario 3, but once the virtual object does appear, it has significantly

lower spatial inconsistency, as discussed later on in Fig. 12a. This

illustrates the tradeoff between latency and spatial inconsistency.

We also note that scenario 3 is considered a challenging scenario,

with many off-the-shelf AR apps (such as Pokemon Go and Just a

Line) simply avoiding such scenarios by asking players to stand

side-by-side during initialization.

Finally, the ARCore baseline also has high total latency, because

it sends large amounts of data for cloud processing. In general,

there is a tradeoff between the communication and resolve latency:

a low communication latency (as in SPAR-Small) implies scanty

information for coordinate system alignment, so a resolver has to

take more time to find a match before coordinate system alignment

is successful, resulting in higher resolve latency.

In summary, the SPAR-Large strategy achieves good balance of

communication and resolve latency, and can save an average of

15% total latency compared to All and 40% compared to ARCore,

on average across all scenarios.

(a) First appearance of virtual object.

(b) Resolver 1 m away from virtual object.

Figure 12: SPAR improves spatial inconsistency, especially in

large areas (scenarios 2, 3) by 11%-60% on average, compared

to All and ARCore.

Scalability:We also examine how SPAR scales as the number of

resolvers increases, by varying the number of resolvers from 1 to 4.

Since all of the resolvers communicate with the host simultaneously

over a shared bottleneck wireless connection, we focus on the

communication latency only, as the save, load and resolve processes

run in parallel on the individual devices and thus scale up easily.

The average communication latency across all scenarios is shown

in Fig. 11. Both SPAR-Small and SPAR-Large scale well with the

number of resolvers, with approximately 0.5 s of latency for each

additional resolver. However, All suffers from long communication

latency when there are more than 2 resolvers.

Spatial inconsistency: We next examine the virtual objects’

spatial inconsistencies, and plot their mean and standard deviation

at two time instances: when a virtual object initially appears on a

resolver’s display, typically far away (Fig. 12a), and later when a re-

solver moves closer, around 1 m from a virtual object (Fig. 12b). The

reason we plot two different time instances is because as a resolver

moves closer to a virtual object, it observes more information about

the environment and can update the position of the virtual object,

changing the spatial inconsistency values.

SPAR-Small performs well at the initial appearance of the virtual

object (<8 cm spatial inconsistency in all scenarios), and reduces
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the spatial inconsistency as the resolver gets closer to the virtual

object. One drawback of SPAR-Small is that it has high latency

in the large environments it was not designed for (see Fig. 10).

In large environments (scenarios 2 and 3), SPAR-Large has lower

spatial inconsistency than the All baseline when the virtual object

first appears (Fig. 12a), and compared to the ARCore baseline when

close to a virtual object (Fig. 12b). Hence SPAR-Small and SPAR-Large

work well for the respective environments they were designed for.

Examples from scenario 2 are shown in Fig. 13.

(a) Host (b) SPAR-Small (c) SPAR-Large

Figure 13: Screenshots of the virtual object seen by the re-

solver under different adaptive AR communication strate-

gies.

Surprisingly, the All baseline does not have the lowest spatial

inconsistency, despite communicating full information about the

environment. This is because the abundance of information some-

times results in coordinate system alignment far from the virtual

object, leading to poor alignment near the virtual object and thus

spatial inconsistencies. ARCore performs worse in the larger sce-

narios 2 and 3 when a resolver is close to the virtual object (Fig. 12b).

Note that we do not record ARCore’s initial spatial inconsistency

because the resolver is too far away from the virtual object to mea-

sure clearly (SPAR does not have this issue because it can produce

detailed logs for analysis).

In summary, SPAR-Small’s spatial inconsistency in small scenar-

ios ranges from 2-3 cm at a virtual object’s first appearance, which

is 20% better than the All baseline; while SPAR-Large achieves 6-9

cm spatial inconsistency in large scenarios, which is 11%-35% better

than ARCore when near a virtual object. SPAR’s accuracy in sce-

nario 1 and 2 is generally consistent with or improves over ARCore,

with most challenging scenario being scenario 3, where SPAR still

outperforms ARCore on average.

Failure rates: In our experiments, SPAR-Small failed to resolve

twice in scenario 2. Since we have 75 trials total across scenarios,

this gives a failure rate of 2.7%. The cause of failure may be be-

cause SPAR-Small too aggressively reduces the amount of AR data

transmitted, as it only save 10 keyframes and their associated point

cloud, making it hard to perform coordinate system alignment and

render a virtual object. The other baselines did not fail throughout

our experiments, so on the whole, despite SPAR-Small having lower

spatial inconsistency and good latency, SPAR-Large is preferable in

general for its more consistent performance.

7.3 Subsequent AR rendering
In this section, we isolate the impact of SPAR’s łUpdated AR Ren-

deringž module (Sec. 5.3). To validate our hypothesis that feature

geo distance correlates with spatial inconsistency (see Sec. 5.3), we

plot the spatial inconsistency versus feature geo distance in Fig. 14a

over 3 trials. Each point on Fig. 14a represents a specific pair of

matched keyframes; the y-axis records the spatial inconsistency

resulting from coordinate system alignment with that matched pair.

We can see that as the feature geo distance increases, spatial in-

consistency gets worse. This suggests that feature geo distance can

be used to select good keyframes for coordinate system alignment,

and thus improves the virtual object’s spatial inconsistency.

Since we use a feature geo distance threshold Tfeature = 3 m in

Alg. 1, in Fig. 14b we plot the average spatial inconsistency and

standard deviation when the feature geo distance is less than and

greater than the threshold. It includes 6 trials and 310 matched

keyframes, with 170 frames having geo distance less than 3 m, and

140 frames greater than 3 m. The average spatial inconsistency

for frames with feature geo distance greater than 3 m is nearly 40

cm, but applying the threshold filters out those frames and reduces

spatial inconsistency bymore than 50%. This reinforces ourmessage

that the feature geo distance can be an efficient way to filter out

keyframe matches that result in larger spatial inconsistency.

Finally, to illustrate how the feature geo distance metric impacts

AR rendering, in Fig. 14c we plot the time series of a particular

trial in scenario 2. We compared our łfeature geo distance filterž

approach (blue line) to a simple łno filterž baseline (red line) that

updates a virtual object’s position using the resolver’s most recent

keyframe. Since in scenario 2, a resolver is initially near the virtual

object, then moves away, then moves close again, the expectation is

that the feature geo distance of the most recent keyframe will follow

a similar pattern, first being low, then high, then low, Because the

baseline approach uses the most recent keyframe for matching,

this suggests that the virtual object’s spatial drift will get worse

and then better. Fig. 14c shows the baseline approach matches our

expectation, while our proposed approach achieves a better (lower)

spatial drift by intelligently selecting the right keyframes according

to the feature geo distance metric.

In summary, the feature geo distance metric provides a good

way to select which keyframe the resolver should use to update

the virtual object’s position, and can reduce spatial drift by 50% on

average compared to a baseline łno filterž approach of using the

most recent keyframe for coordinate system alignment.

7.4 Spatial Drift and Inconsistency Tool
In this section, we evaluate the final component of SPAR, the

spatial drift and inconsistency tool proposed in Sec. 5.4. We wish to

compare the drift/inconsistency values reported by the tool vs. the

human-observed values, in order to evaluate the tool’s accuracy.

We first evaluate the tool’s performance qualitatively. We plot an

example time series of the tool’s output in Fig. 15b. This time series

shows that the virtual object moves by less than 3 cm every 1

second or so, which we qualitatively observe to be true during the

experiment. To understand these results, in Fig. 15c we plot the

trajectory of the resolver in space, with respect to the virtual object

(blue line, a from Fig. 8) and ArUco marker (red line, b from Fig. 8).

These trajectories are identical, except for an offset, as expected

since they are with respect to different reference points. However,

it is when this offset changes over time (c = a − b) that spatial drift

occurs. We can see this in Fig. 15b and Fig. 15d, where the circled

points correspond to varying offset and thus higher spatial drift.

To evaluate the tool’s performance quantitatively, we prepare

the following test setup. We place a real 1 cm × 1 cm grid paper
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Figure 14: The feature geo distance metric filters good keyframes for coordinate system alignment, resulting in lower spatial

inconsistency for a resolver.
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Figure 15: Spatial drift and inconsistency estimation tool.

The tool matches manual human labeling with an RMSE of

0.92 cm.

in the scene, initialize the virtual object on top of the grid paper,

and painstakingly go through each keyframe and manually record

the coordinates of the virtual object on the grid paper. We then

choose random pairs of keyframes and plot the spatial drift from

the manual labeling vs. the spatial drift output by the tool. Fig. 15a

shows the results. The RMSE is 0.92 cm. We see good agreement

between the manual labels and the tool’s output, indicating that

our proposed method can successfully estimate spatial drift (spatial

inconsistency is computed in a similar manner). Any disagreement

between the manual labels and the tool’s output are, we believe,

due to fundamental limitations of SLAM in computing the device

trajectory (e.g., Fig. 15c), which the tool relies on. In terms of com-

putation time, the tool is able to generate estimates for tens of

keyframe pairs in about one second, whereas manual labeling by

humans takes several seconds per keyframe pair.

8 Discussion

Multiple virtual objects: Although our experiments focused

on sharing one virtual object between users, SPAR could easily gen-

eralize to multiple virtual objects, because the common coordinate

system it computes (ğ5.2) can be used to represent the poses of

multiple virtual objects. Specifically, for each resolver, coordinate

system alignment would be performed once, and each virtual object

projected and rendered onto the AR display based on its pose in the

computed coordinate system. This would result in the each virtual

object experiencing similar spatial inconsistency and latency as the

single object case.

Scalability:The spatial inconsistency experienced by SPAR users

would not be substantially impacted as number of users increases.

This is because each resolver performs its computations (ğ5.2, ğ5.3)

in parallel with other clients, so the computed coordinate system,

virtual object poses, and hence spatial inaccuracy results of each

resolver are independent of each other. This is similar to performing

a 2-user (a host and a resolver) experiment multiple times. The main

performance bottleneck that depends on the number of users is the

communication bandwidth, which impacts the latency, as shown

in Fig. 11 and discussed in ğ7.2.

SLAM and marker-based AR: SPAR is designed for SLAM-

based AR, which is common in off-the-shelf AR systems such as

Google ARCore, Apple ARKit, and Microsoft Hololens. We use

VINS-MONO [31] as the basis for our AR system, which is designed

for static environments, so SPAR inherits these limitations (SLAM in

dynamic environments is an active area of research). Another class

of AR systems is marker-based AR [18]. Since marker-based AR

only need the marker information to position and render the virtual

objects, the host only needs to distribute the marker information

(e.g.,ArUcomarker), rather than keyframes and features as in SLAM-

based AR. The marker information can be compactly represented

as an image or ID number, and thus is communication-efficient in

which case SPAR is not needed.

Cloud vs. P2P architectures: SPAR currently uses a P2P ar-

chitecture to distribute AR information directly to each resolving

client, as do Apple ARKit and Microsoft Hololens. A P2P architec-

ture is a natural fit for AR, since AR information only needs to be

distributed in a geographically restricted area. However, SPAR could

be modified to run coordinate system synchronization on a central

node, such as a cloud or edge server (for example, Google ARCore
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uses the cloud), although privacy is a concern. In this case, com-

munication latency may increase, but computation latency may

decrease, requiring further evaluation of the tradeoffs.

9 Related Work

Mobile AR systems: Object detection and image recognition

for AR, on device or offloaded to the edge/cloud, has been investi-

gated [7, 12, 22, 26, 32ś34, 42, 49] in order to place virtual objects

in the real world. These works are orthogonal to ours as we assume

that the virtual objects’ locations is given (by object detection or

user input), and we focus on how AR users can coordinate this in-

formation with others. VisualPrint [27] uses visual fingerprints for

localization, whereas we use SLAM for localization as common in

commercial AR platforms.While MARVEL [11] studies 6-DoF based

AR systems, they assume the real world is pre-mapped, whereas we

assume that devices are placed in an unknown environment. Edge-

SLAM [5] considers offloading parts of SLAM to an edge server,

whereas SPAR does not require infrastructure support. GLEAM [40]

focuses on lighting rendering for virtual objects, which is com-

plementary to this work. Recent work [48] proposes geo-visual

techniques for fast localization in urban areas; however, their AR

system is single-user whereas we focus on multi-user scenarios.

Multi-user AR: CARS [50] shares results from object detec-

tion among multiple users, whereas this paper focuses on more

general 3D coordinate system alignment to share virtual objects

including those placed by object detection. CarMap [4] proposes

efficient map compression, without any virtual objects; in contrast,

SPAR uses knowledge of the virtual object positions when deciding

what to communicate. Several works [6, 43] present only prelimi-

nary measurements of multi-user AR. While industry multi-user

AR systems such as Google ARCore [20], Apple ARKit [8], and

Microsoft HoloLens [35] are close-sourced, we study communica-

tion and spacial inconsistency aspects of multi-user AR through an

open-source system [31].

Multi-agent SLAM: Some SLAM systems [3, 24] focus on co-

ordinate system alignment, while other work [14, 25] assumes ad-

vanced sensors such as 2D laser scanner or 3D LiDARs. In contrast,

this paper focuses on efficient SLAM-based communications on

commodity smartphones, which have a large potential user base.

Zou et al. [53] hardcodes transmitting the SLAM data up to every 5

frames, while CCM-SLAM [46] transmits SLAM information when-

ever it is updated. Instead, we select the appropriate keyframes and

their associated point clouds based on the locations of the virtual

objects. This is done on top of the default keyframe selection al-

ready performed by SLAM frameworks such as ORB-SLAM2 [38]

or VINS [41].

In terms of frameworks, we work with VINS-AR [31], which is an

Android version of VINS-Mono [41], both of which are single-user

SLAM and do not consider communication and consistency issues

of multi-user AR. Other open-source SLAM systems are either not

tested on Android [16, 46] or do not utilize IMU sensors [38].

10 Conclusions
In this paper, we investigated communication and computation

bottlenecks of multi-user AR applications. We found that off-the-

shelf AR apps suffer from high communication latency and incon-

sistent placement of the virtual objects across users and across time.

We proposed solutions for efficient data communications between

AR users to reduce latency while maintaining accurate positioning

of the virtual objects, as well as a quantitative method of estimating

these positioning changes.

Our implementation on an open-source Android AR platform

demonstrated the efficacy of the proposed solutions. Future work

includes extending our spatial inconsistency tool to other AR plat-

forms such as ARCore, as well as incorporating depth cameras.
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