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Augmented Reality (AR)

• AR devices are forecast to be a $100 billion market by 
2021

• AR is a killer app, with diverse applications
• Pokemon Go, Google Translate, etc.

• In AR, virtual objects are overlaid onto real world 
objects to provide information
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Motivation

• Object detection is an important task in the AR pipeline 
• Estimate object locations and their classes to overlay virtual holograms

• Deep Neural Networks (DNNs) yield highly-precise object 
detection but are energy-heavy on mobile devices
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Design Goals
• Precise classification of real-world objects (e.g., cat vs dog)

• Real-time, accurate tracking of multiple, potentially 
moving objects à seamless user experience

• Effective with other energy-saving techniques such as 
mobile CPU throttling, mobile GPU, compressed DNNs

• Cope with dynamic camera sensor inputs due to 
handheld/wearable AR devices
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Problem Statement

• Key Idea
• Interleave heavyweight DNNs with lightweight methods (object tracking 

and change detectors)

• Challenges
• How to design trackers and change detectors that are lightweight yet 

effective?
• How often to trigger lightweight methods?
• How to cope with automatic CPU throttling?

How can AR apps achieve good object detection and 
tracking performance and yet consume low energy?
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Contributions
• Develop MARLIN framework to mediate between DNNs and lightweight 

methods

• Design a lightweight change detector to determine when to trigger DNNs

• Evaluate on Android smartphones with standard datasets and live 
experiments
• Dataset: up to 73.3% energy savings, losing at most 7.36% accuracy for most cases
• Live: up to 81% energy savings with negligible accuracy loss

• Compatible with a developer’s chosen DNN
• E.g., Tiny YOLO, MobileNets, MobileNets w/ GPU, quantized (compressed) MobileNets
• Up to 45.1% energy savings, beyond what GPU or quantization already saves
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Design of MARLIN 
Framework
• MARLIN Architecture
• MARLIN Manager
• Real-time Object Tracker
• Lightweight Change Detector
• DNN Object Detector
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MARLIN Architecture
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Real-time Object Tracker
• What tracking algorithm to use?
• ORB image features + Lucas-Kanade optical flow
• Real-time (update in < 10ms) and low power (0.2-0.3 W)

• How to know if the tracker failed?
• Use normalized cross correlation (NCC) to estimate tracking accuracy 

• Because we do not know the ground truth object locations a priori 
• NCC measures object feature similarity between two frames 

Frame 1 Frame 2 Frame 3

NCC
0.92

NCC
0.69
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Lightweight Change Detector
• Requirements: real-time, low-power, low false positive rates, ignore existing 

objects

• Existing methods: Background subtraction is susceptible to camera motion à
frequent DNN triggers à high energy consumption

• Our method: Random forest with image features (color histogram)
• Fast (~ 4ms), low-power ( < 0.1 W), accurate compared to other lightweight ML techniques
• Color existing objects with a “white box” to avoid triggering changes on them

change_status=true change_status=false 

ML techniques Precision (%) Recall (%)
Random Forest with color 
histogram (MARLIN)

88.0 81.7

SVM using HOG features 64.9 61.4 To avoid triggering on existing 
objects, they are "whited out”.10



DNN Object Detector

• DNNs provide high classification 
and detection accuracy
• extract image features 

automatically
• pass through convolutional layers
• output class labels + object 

locations

• We use off-the-shelf DNNs
• They can be plugged into 

MARLIN to save energy
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Abbreviatio
n

YOLO -

Tiny YOLO TYL

MobileNets MNet

GPU-assisted 
MobileNets

MNet-GPU

Quantized MobileNets MNet-Q



MARLIN 
Evaluations
• Offline evaluations

• Comparing multiple DNN baseline approaches
• Comparing with the best baseline 
• Case study: zoomed-in video
• Impact of mobile CPU throttling

• Online (live) evaluations
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Experimental Setup
• Devices: Google Pixel 2 running Android 8.0 and LG G6 running Android 7.0 

(for automatic CPU throttling)

• Datasets
• ImageNet-Video for offline experiments
• VOC-2007, VOC-2012, and Penn-Fudan Pedestrian to train DNN for live experiments

• Training/validation/test
• 350 videos for offline training and validation
• 15-80 other videos for online testing

• Baseline
• Continuous executions of DNN (DNN triggered immediately after previous one)
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• In terms of accuracy, Tiny YOLO (TYL) is the best baseline to compare with MARLIN. 
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MARLIN saves power consumption by 45.1%, compared to baseline quantized 
DNN or GPU-assisted DNN, while suffering 8.3% accuracy loss
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Default-DNN MARLIN
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• MARLIN extends battery life by 1.85×, with a small accuracy 
loss

• In terms of relative accuracy per video #$$%&'$()*+,#$$%&'$(-./+01
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for 46.3% of the videos, MARLIN can even improve accuracy!
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A case study of a zoom-in video
Surprisingly, accuracy increases sometimes… why? 

• Baseline Tiny-YOLO sometimes yields false results due to 
frequently executing DNNs and tracking bad features

• MARLIN tracks good, stable image features found by the object tracker and change 
detector

* ACP = Average Classification Precision

Classification Precision = 0.5 Classification Precision = 1.0
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Tiny YOLO

• For this video, MARLIN has 55% ACP accuracy gain, and saves 2.5 W of power 
and extends battery life by 3.5 hours! 

Tiny YOLO



Automatic CPU throttling can save energy –
Does MARLIN still help?

Default-DNN MARLIN
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• Default throttled CPU à tracking latency increased à tracking accuracy reduced

• MARLIN reduces DNN executions à fewer throttling instances à improved tracking 
accuracy and reduce power consumption
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Tiny-YOLO Tiny-YOLO

* ACP = Average Classification Precision
IOU = Intersection Over Union



Live experiments

Live

• AR user holds two Google Pixel 2 phones
• One device runs Tiny YOLO, the other MARLIN
• Ttrack 2-3 people in the field-of-view

• MARLIN achieves similar tracking accuracy to Tiny-YOLO , while using only ~20%
(Live 1) and ~50% (Live 2)* of the power 

*In Live 2, there are more subjects with more movements than Live 1

Sets Methods IOU (%) Power (W)

Live 1
Tiny-YOLO 61 1.724
MARLIN 61 0.319

Live 2
Tiny-YOLO 56 1.710
MARLIN 51 0.880
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Conclusions
• Energy consumption is a major concern for AR

• Battery percentage drops 45% after 60 minutes

• We design MARLIN as power-thrifty framework for object detection 
and tracking for AR that is compatible with multiple DNNs

• MARLIN intelligently alternates between DNNs and lightweight 
methods to achieve high accuracy while saving ~45% energy

• Future work includes using inertial odometry to further save energy
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Thank you.
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Backup Slides
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MARLIN 
Manager (MM)

change_status == 
True

track_status >= THRES

DNN is ready DNN is not ready

Start DNN thread

track_status < THRES

change_status == 
False

DNN is ready DNN is not ready

Start DNN thread

Skipping DNN, this case allows 
MARLIN to save energy significantly.

These cases allow MARLIN to maintain good 
accuracy by triggering DNN when needed.
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MARLIN Architecture
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• MARLIN Manager (MM) receives frame from camera and 
feed it to object tracker and/or change detector, which 
provide feedback to MM to decide whether or not to feed the 
frame to DNN (energy-heavy but may recover the system 
from low accuracy)• MM first looks at track_status (how much a tracked object change in appearance compared to that in a previous frame)
• If track_status < threshold, check DR flag and send this frame to DNN
• Otherwise, send this frame to change detector and if there is a significant change (e.g. likely to have objects of interest in 

the scene) outside of the tracked object, check DR and send this frame to DNN
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Real-time Object Tracker
• ORB feature extraction can be done in near-real-time
• Object tracking by optical flow (of ORB features)

• Extraction + tracking can be done < 10ms with 0.2-0.3 W, so this is 
practical for a 30-fps 640x480 camera

• Calculate normalized cross correlation (NCC) of a tracked object 
from a previous to the current frame
• NCC is a good estimation of tracking quality (NCC is low when there is 

an occlusion or object deformation)
• Ex. NCC from frame 1 to 2 = 0.92, and NCC from 2 to 3 = 0.69
• Send this information as track_status to MM

Frame 1 Frame 2 Frame 324



Lightweight Change Detector
• A supervised learning agent that takes a vector of floating-point 

numbers (compressed from an image frame) and returns a binary 
decision as change_status back to MM
• Input vector represents color features in the frame after the 

areas of the tracked objects have been removed (whited out)
• Train the agent to learn color features of foreground (tiger or 

elephant etc.) and background (sky or grass etc.)
• It uses random forest (the best among different ML techniques 

tested), consisting of 50 decision trees
• It works very fast (~ 4ms per frame) and is very low-powered ( < 

0.1 W)

change_status=true change_status=false 25


