
Frugal Following: Power Thrifty
Object Detection and Tracking
for Mobile Augmented Reality

Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen,
Srikanth V. Krishnamurthy, Amit K. Roy-Chowdhury

ACM SenSys, November 10-13, 2019, Columbia University, New York, USA1

Augmented Reality (AR)

• AR devices are forecast to be a $100 billion market by
2021

• AR is a killer app, with diverse applications
• Pokemon Go, Google Translate, etc.

• In AR, virtual objects are overlaid onto real world
objects to provide information

2

Motivation

• Object detection is an important task in the AR pipeline
• Estimate object locations and their classes to overlay virtual holograms

• Deep Neural Networks (DNNs) yield highly-precise object
detection but are energy-heavy on mobile devices

Ba
!e

ry
 P

er
ce

nt
ag

e (
%)

60

80

100

Time (Minutes)
0 20 40 60

Energy drain from
continuous DNN
executions

Printer

Example of Object
Detection-based AR

3

Design Goals
• Precise classification of real-world objects (e.g., cat vs dog)

• Real-time, accurate tracking of multiple, potentially
moving objects à seamless user experience

• Effective with other energy-saving techniques such as
mobile CPU throttling, mobile GPU, compressed DNNs

• Cope with dynamic camera sensor inputs due to
handheld/wearable AR devices

4

Problem Statement

• Key Idea
• Interleave heavyweight DNNs with lightweight methods (object tracking

and change detectors)

• Challenges
• How to design trackers and change detectors that are lightweight yet

effective?
• How often to trigger lightweight methods?
• How to cope with automatic CPU throttling?

How can AR apps achieve good object detection and
tracking performance and yet consume low energy?

5

Contributions
• Develop MARLIN framework to mediate between DNNs and lightweight

methods

• Design a lightweight change detector to determine when to trigger DNNs

• Evaluate on Android smartphones with standard datasets and live
experiments
• Dataset: up to 73.3% energy savings, losing at most 7.36% accuracy for most cases
• Live: up to 81% energy savings with negligible accuracy loss

• Compatible with a developer’s chosen DNN
• E.g., Tiny YOLO, MobileNets, MobileNets w/ GPU, quantized (compressed) MobileNets
• Up to 45.1% energy savings, beyond what GPU or quantization already saves

6

Design of MARLIN
Framework
• MARLIN Architecture
• MARLIN Manager
• Real-time Object Tracker
• Lightweight Change Detector
• DNN Object Detector

ACM SenSys, November 10-13, 2019, Columbia University, New York, USA7

MARLIN Architecture

u
MARLIN
Manager

(MM)
Object
Tracker

Change
Detector

DNN Object
Detector

Overlay
Drawer

𝑓"

𝑓"

𝑓"

𝑓"

change_status

track_status

𝑓" +
object

locations

Overlay
on
𝑓"

Lightweight methods

track_status OR
change_status

MARLIN is thrifty in triggering DNNs
and only does so on a need-to basis.

Frame

8

Real-time Object Tracker
• What tracking algorithm to use?
• ORB image features + Lucas-Kanade optical flow
• Real-time (update in < 10ms) and low power (0.2-0.3 W)

• How to know if the tracker failed?
• Use normalized cross correlation (NCC) to estimate tracking accuracy

• Because we do not know the ground truth object locations a priori
• NCC measures object feature similarity between two frames

Frame 1 Frame 2 Frame 3

NCC
0.92

NCC
0.69

9

Lightweight Change Detector
• Requirements: real-time, low-power, low false positive rates, ignore existing

objects

• Existing methods: Background subtraction is susceptible to camera motion à
frequent DNN triggers à high energy consumption

• Our method: Random forest with image features (color histogram)
• Fast (~ 4ms), low-power (< 0.1 W), accurate compared to other lightweight ML techniques
• Color existing objects with a “white box” to avoid triggering changes on them

change_status=true change_status=false

ML techniques Precision (%) Recall (%)
Random Forest with color
histogram (MARLIN)

88.0 81.7

SVM using HOG features 64.9 61.4 To avoid triggering on existing
objects, they are "whited out”.10

DNN Object Detector

• DNNs provide high classification
and detection accuracy
• extract image features

automatically
• pass through convolutional layers
• output class labels + object

locations

• We use off-the-shelf DNNs
• They can be plugged into

MARLIN to save energy

11

Trained and tested
DNNs

Abbreviatio
n

YOLO -

Tiny YOLO TYL

MobileNets MNet

GPU-assisted
MobileNets

MNet-GPU

Quantized MobileNets MNet-Q

MARLIN
Evaluations
• Offline evaluations

• Comparing multiple DNN baseline approaches
• Comparing with the best baseline
• Case study: zoomed-in video
• Impact of mobile CPU throttling

• Online (live) evaluations

ACM SenSys, November 10-13, 2019, Columbia University, New York, USA12

Experimental Setup
• Devices: Google Pixel 2 running Android 8.0 and LG G6 running Android 7.0

(for automatic CPU throttling)

• Datasets
• ImageNet-Video for offline experiments
• VOC-2007, VOC-2012, and Penn-Fudan Pedestrian to train DNN for live experiments

• Training/validation/test
• 350 videos for offline training and validation
• 15-80 other videos for online testing

• Baseline
• Continuous executions of DNN (DNN triggered immediately after previous one)

13

0
10
20
30
40
50
60
70
80

M
ARLIN

-M
Net

-Q

M
ARLIN

-M
Net

-G
PU

M
ARLIN

-M
Net

Bas
eli

ne-M
Net

-G
PU

Bas
eli

ne-M
Net

-Q

Bas
eli

ne-M
Net

Bas
eli

ne-Y
OLO

M
ARLIN

-T
YL

Bas
eli

ne-T
YL

IO
U

 (%
)

Accuracy
How much energy does MARLIN save?

• In terms of accuracy, Tiny YOLO (TYL) is the best baseline to compare with MARLIN.

0

1

2

3

4

5

Bas
eli

ne-Y
OLO

Bas
eli

ne-T
YL

Bas
eli

ne-M
Net

Bas
eli

ne-M
Net

-Q

Bas
eli

ne-M
Net

-G
PU

M
ARLIN

-T
YL

M
ARLIN

-M
Net

M
ARLIN

-M
Net

-G
PU

M
ARLIN

-M
Net

-Q

Po
w

er
 (W

)

Energy Further power savings

14

MARLIN saves power consumption by 45.1%, compared to baseline quantized
DNN or GPU-assisted DNN, while suffering 8.3% accuracy loss

IO
U

 A
cc

ur
ac

y
(%

)

Default-DNN MARLIN

Ac
cu

ra
cy

 (%
)

20
40
60
80

100

ACP IOU

Default-DNN MARLIN

Po
w

er
 (W

)

2

3

4

Ba!ery Life (H
our)1

2

3

4

5

PW BL

CD
F

0

0.5

1.0

Relative ACP (%)
−200 −100 0 100

• MARLIN extends battery life by 1.85×, with a small accuracy
loss

• In terms of relative accuracy per video #$$%&'$()*+,#$$%&'$(-./+01
#$$%&'$()*+

for 46.3% of the videos, MARLIN can even improve accuracy!
15

TYLTYL

Comparing with the best baseline (Tiny YOLO)

Relative accuracy per video (%) Classification
precision

Detection
accuracy (IOU)

Battery
life

Power

A case study of a zoom-in video
Surprisingly, accuracy increases sometimes… why?

• Baseline Tiny-YOLO sometimes yields false results due to
frequently executing DNNs and tracking bad features

• MARLIN tracks good, stable image features found by the object tracker and change
detector

* ACP = Average Classification Precision

Classification Precision = 0.5 Classification Precision = 1.0

16

Tiny YOLO

• For this video, MARLIN has 55% ACP accuracy gain, and saves 2.5 W of power
and extends battery life by 3.5 hours!

Tiny YOLO

Automatic CPU throttling can save energy –
Does MARLIN still help?

Default-DNN MARLIN

Non-throttle-CPU

Ac
cu

ra
cy

 (%
)

0

50

100 Pow
er (W

)

1
2
3
4

ACP IOU Power

Default-DNN MARLIN

!rottle-CPU

Ac
cu

ra
cy

 (%
)

0

50

100 Pow
er (W

)

1
2
3
4

ACP IOU Power

• Default throttled CPU à tracking latency increased à tracking accuracy reduced

• MARLIN reduces DNN executions à fewer throttling instances à improved tracking
accuracy and reduce power consumption

17

Tiny-YOLO Tiny-YOLO

* ACP = Average Classification Precision
IOU = Intersection Over Union

Live experiments

Live

• AR user holds two Google Pixel 2 phones
• One device runs Tiny YOLO, the other MARLIN
• Ttrack 2-3 people in the field-of-view

• MARLIN achieves similar tracking accuracy to Tiny-YOLO , while using only ~20%
(Live 1) and ~50% (Live 2)* of the power

*In Live 2, there are more subjects with more movements than Live 1

Sets Methods IOU (%) Power (W)

Live 1
Tiny-YOLO 61 1.724
MARLIN 61 0.319

Live 2
Tiny-YOLO 56 1.710
MARLIN 51 0.880

18

Conclusions
• Energy consumption is a major concern for AR

• Battery percentage drops 45% after 60 minutes

• We design MARLIN as power-thrifty framework for object detection
and tracking for AR that is compatible with multiple DNNs

• MARLIN intelligently alternates between DNNs and lightweight
methods to achieve high accuracy while saving ~45% energy

• Future work includes using inertial odometry to further save energy

19

Thank you.

ACM SenSys, November 10-13, 2019, Columbia University, New York, USA20

Backup Slides

21

MARLIN
Manager (MM)

change_status ==
True

track_status >= THRES

DNN is ready DNN is not ready

Start DNN thread

track_status < THRES

change_status ==
False

DNN is ready DNN is not ready

Start DNN thread

Skipping DNN, this case allows
MARLIN to save energy significantly.

These cases allow MARLIN to maintain good
accuracy by triggering DNN when needed.

22

MARLIN Architecture

u

Frame Bu!er

MARLIN
Manager (MM)

Object
Tracker

Overlay
Drawer

Change
Detector

Deep Neural
Network

Object Detector

Frame,
fj

Detected
object locations

Frame +
object locations

fj
Overlaid

frame

Tracked
object locations

change_status

track_status
Display

Camera

fj

fj

• MARLIN Manager (MM) receives frame from camera and
feed it to object tracker and/or change detector, which
provide feedback to MM to decide whether or not to feed the
frame to DNN (energy-heavy but may recover the system
from low accuracy)• MM first looks at track_status (how much a tracked object change in appearance compared to that in a previous frame)
• If track_status < threshold, check DR flag and send this frame to DNN
• Otherwise, send this frame to change detector and if there is a significant change (e.g. likely to have objects of interest in

the scene) outside of the tracked object, check DR and send this frame to DNN
23

Real-time Object Tracker
• ORB feature extraction can be done in near-real-time
• Object tracking by optical flow (of ORB features)

• Extraction + tracking can be done < 10ms with 0.2-0.3 W, so this is
practical for a 30-fps 640x480 camera

• Calculate normalized cross correlation (NCC) of a tracked object
from a previous to the current frame
• NCC is a good estimation of tracking quality (NCC is low when there is

an occlusion or object deformation)
• Ex. NCC from frame 1 to 2 = 0.92, and NCC from 2 to 3 = 0.69
• Send this information as track_status to MM

Frame 1 Frame 2 Frame 324

Lightweight Change Detector
• A supervised learning agent that takes a vector of floating-point

numbers (compressed from an image frame) and returns a binary
decision as change_status back to MM
• Input vector represents color features in the frame after the

areas of the tracked objects have been removed (whited out)
• Train the agent to learn color features of foreground (tiger or

elephant etc.) and background (sky or grass etc.)
• It uses random forest (the best among different ML techniques

tested), consisting of 50 decision trees
• It works very fast (~ 4ms per frame) and is very low-powered (<

0.1 W)

change_status=true change_status=false 25

