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Abstract—Augmented reality (AR) apps where multiple users
interact within the same physical space are gaining in popularity
(e.g., shared AR mode in Pokemon Go, virtual graffiti in
Google’s Just a Line). However, multi-user AR apps running
over the cellular network can experience very high end-to-
end latencies (measured at 12.5 s median on a public LTE
network). To characterize and understand the root causes of
this problem, we perform a first-of-its-kind measurement study
on both public LTE and industry LTE testbed for two popular
multi-user AR applications, yielding several insights: (1) The
radio access network (RAN) accounts for a significant fraction
of the end-to-end latency (31.2%, or 3.9 s median), resulting in
AR users experiencing high, variable delays when interacting
with a common set of virtual objects in off-the-shelf AR apps;
(2) AR network traffic is characterized by large intermittent
spikes on a single uplink TCP connection, resulting in frequent
TCP slow starts that can increase user-perceived latency; (3)
Applying a common traffic management mechanism of cellular
operators, QoS Class Identifiers (QCI), can help by reducing
AR latency by 33% but impacts non-AR users. Based on these
insights, we propose network-aware and network-agnostic AR
design optimization solutions to intelligently adapt IP packet sizes
and periodically provide information on uplink data availability,
respectively. Our solutions help ramp up network performance,
improving the end-to-end AR latency and goodput by ∼40-70%.

Index Terms—Augmented reality, Mobile communication,
Cross layer design, Radio access networks

I. INTRODUCTION

Augmented reality (AR), with its premise of virtual ob-
jects integrated with our physical environment, promises new
immersive experiences, and the market is forecast to reach
100 billion dollars by 2021 [1], [2]. AR applications such as
navigation, entertainment (e.g., Pokemon Go), and field service
involve multiple users, co-located in the same shared outdoor
environments, relying on low latency communication over the
cellular network to obtain a consistent view of virtual objects.
In this paper, we consider scenarios where multiple users are
co-located in the same real physical space, and wish to view
a common set of virtual objects. Our measurements of such
off-the-shelf AR apps over cellular networks show that the
user-perceived end-to-end AR latencies are extremely high.
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Fig. 1. Multi-User AR latency

For example, Fig. 1 shows the
CDF of the AR latencies of the
Google CloudAnchor AR app [3],
running on a 4G LTE production
network of a Tier-I US cellular
carrier at different locations and
times of day (details in §IV). The
results show a median 3.9 s and
12.5 s of aggregate radio access
network (RAN) latency and end-to-end AR latency (as ex-
plained below), respectively. As latency is a key contributor
to AR quality-of-experience (QoE) [4], a deeper understanding
of the root causes of these high latencies is needed in order to
improve AR’s end-to-end performance over cellular networks,
which is the key focus of our paper.

In this context, end-to-end AR latency is the total time from
when one User Equipment (UE) places a virtual object in the
real world until when another UE can view the object on her
screen. Aggregate RAN latency is defined as the subset of this
time for over-the-air transmissions.

Why is AR different?: While the cellular network is relatively
well equipped to handle traditional applications such as web
and video, AR presents new challenges because of its unique
application and communication characteristics, as discovered
in this paper. In brief, AR differs from other multimedia appli-
cations such as video or 360◦ Virtual Reality (VR) streaming,
short-form video uploads (e.g., Snapchat or Instagram Stories)
and video conferencing in the following key ways:
• Lack of playback buffers and latency-sensitivity: In video
and 360◦ VR streaming, the length of the playback buffer,
which caches the yet-to-be-played video chunks for the
player, impacts streaming patterns and traffic burst periods.
We observe that off-the-shelf AR apps do not continuously
upload data, and they consume AR data holistically, unlike
in video/VR, where the player consumes data frame-by-
frame. Hence, AR data objects need to be delivered quickly
to the AR device (user equipment, or UE), in order to
avoid latency-based QoE issues. While video conferenc-
ing similarly lacks playback buffers and has tight latency
deadlines, delayed frames can be skipped or played back978-1-7281-6630-8/20/$31.00 2020 c© IEEE



quickly later, whereas delayed AR transmissions can lead to
inconsistent user manipulations of the virtual objects (e.g.,
user A touches a non-existent virtual object that has already
been moved by user B).
• Lack of application adaptation mechanisms: Video and
360◦ VR streaming make use of adaptive bit rate (ABR)
mechanisms, such as MPEG-DASH, which adapt the
streaming resolutions of the video chunks to avoid video
QoE issues. However, off-the-shelf AR currently does not
use ABR, and cannot be modified to do so in closed source
commercial AR systems. Additionally, even if such systems
were transparent, it is unclear how such application-layer
adaptations should be done in AR. (discussed in §V-C)
• Uplink-heavy TCP traffic: In multi-user gaming, the traffic
is comprised of small uplink UDP [5] data (mainly from
user movements/actions) with stringent latency require-
ments. For short-form video uploads (such as Instagram
Stories or Snapchat), live video upload or conferencing,
even though the traffic is uplink-heavy, latency tolerance
is higher than AR [4]. Live or buffered video streaming
apps such as YouTube use downlink QUIC [6] instead of
TCP, and are more latency-tolerant than AR. In contrast, we
observe that AR network traffic is different from all these,
since it is uplink-heavy, TCP-based and latency-sensitive.
Hence, TCP performance for the AR session is critical to
its end-to-end latency and throughput, and we investigate
its interactions with the RAN and AR in this work.

Contributions: Motivated by these unique characteristics of
multi-user AR, we perform the first detailed experimental
study across the application, IP, and RAN layers to char-
acterize how the cellular network impacts AR applications.
We provide crucial insights on cross-layer inter-dependencies
involved in multi-user AR streaming. Existing work on AR
either focuses on real object detection with cloud/edge sup-
port [7], [8], [1] over WiFi, or efficient device localization [9]
while neglecting the communication aspects. Works involving
multiple AR devices [10], [11], [12] focus on application layer
performance, without quantifying the interactions between AR
application, the cellular network, and cloud processing.

Our main contribution in this paper is a measurement-driven
characterization of multi-user AR on both (i) public 4G LTE
cellular carriers of a Tier-I US mobile network operator to
capture realistic network, RF, and traffic conditions, and (ii)
an experimental LTE industry testbed with fully-implemented
RAN protocol stack and virtual EPC that allows us to vary
network settings (such as cell load, radio bearer QoS class,
etc.) for controlled testing, in order to quantify their impact on
AR performance. We study widely-used AR apps in the market
utilizing an off-the-shelf AR platform, Google ARCore [13].
This platform is broadly representative since it provides multi-
user AR capabilities in Android devices and analogous APIs
are provided by Apple ARKit [14], Microsoft Hololens [15],
and Magic Leap [16] (see §III for methodology details).

Our measurement study leads to several insights:

• To quantify differences between multi-user AR and other

multimedia applications, we compare the user-perceived
latencies across these apps in §IV-A. Then, we provide a
component-wise breakdown of the end-to-end (E2E) AR
latency and show that the RAN accounts for ∼31.2% of
the overall latency on average over public LTE (∼3.9s).
This causes the AR devices to experience high delays when
interacting with the virtual objects (§IV-B). We also char-
acterize the performance of RAN optimization techniques
such as QoS Class Index (QCI) adaptation to serve AR
traffic. While QCI adaptation improves the E2E latency for
AR users by ∼33%, it reduces the throughput of non-AR
users by ∼31.6% (§IV-D).
• We show that AR traffic is bursty with large time gaps be-

tween successive bursts of uplink data (e.g., 20s on average
for CloudAnchor with burst sizes of ∼2.5 MB) whenever
a virtual object is placed. This causes the TCP congestion
window (cwnd) to enter slow-start before the beginning
of each burst. We show that RAN segmentation latency
at the RLC layer significantly impacts TCP performance,
especially during the slow-start phase (§IV-E).
• We propose a network-aware AR app design optimiza-

tion technique that intelligently adapts IP packet sizes for
the AR app, based on the underlying RAN conditions.
Our methodology in selecting packet sizes addresses the
trade-off between minimizing segmentation of packets at
the RAN (caused by larger IP packets), which adversely
impacts network latency, and minimizing network overhead
(caused by smaller IP packets), which adversely impacts
application goodput. Our technique improves the aggregate
RAN latency, end-to-end AR latency, network throughput
and application goodput by ∼40-70% (§V-A).
• We propose a network-agnostic AR app design optimiza-

tion technique that periodically updates the LTE base station
(eNB) of the uplink RAN buffer status of the hosting AR
device, even during gaps between AR bursts. We achieve
this by generating negligible, periodic amounts of dummy
data, which enables constant UE buffer status updates to the
eNB. This results in improved RAN resource allocation for
the AR device and minimizes uplink signaling latencies.
Our technique improves the aggregate RAN latency by
∼50%, at a marginal cost of additional bandwidth (§V-B).
Since existing AR apps are closed-source and their data

transmissions being opaque, our work focuses on network-
layer characterizations and solutions. However, we provide a
brief discussion on how one can adapt the AR application
content to reduce latency, potentially with other user-perceived
performance costs that may be acceptable (§V-C).

We release our RAN latency analysis tool, which runs on
client devices (UEs), as open source [17]. It can be used
by researchers with data captured on public LTE networks,
without any modifications needed to the eNB.

II. AR BACKGROUND AND RELATED WORK

Background on AR: When current AR devices (e.g., those
running the Apple ARKit, Google ARCore, or Microsoft
Hololens AR platforms) wish to place virtual objects in the



Fig. 2. Cloud-based multi-user AR. Use of the cloud is mandated for multi-user AR apps in Android.

real world, they first perform device localization in order to
create a consistent 3D coordinate system of the real world. The
real-world coordinate system (called the world frame) provides
a common reference for the devices to place the virtual
objects, and is constructed using Simultaneous Localization
and Mapping (SLAM) techniques [18]. Once the devices have
a common world frame and know the poses (location and
orientation) of the virtual objects, the virtual objects can
be drawn on each device’s display when it is within the
user’s field-of-view. Below we describe the steps involved
in synchronizing the world frame between device A (which
places a virtual object), and device B (which receives and
renders that virtual object), as illustrated in Fig. 2.

1) Hosting (device A): (a) Handshakes: Device A initiates
connections with the cloud: a Firebase database, and
two Google Cloud instances for visual positioning. (b)
Visual Data Tx: Device A sends real-world visual
data and information about the virtual objects (position,
orientation, 3D sprite/texture maps) to the cloud. (c)
Cloud Process: The cloud processes A’s visual data
using SLAM to compute the world frame.

2) Resolving (device B): (a) Data Preprocess: Device B
scans and retrieves camera frames and pre-processes the
data. (b) Visual Data Tx: Device B sends its visual data
to the cloud. (c) Cloud Process: The cloud matches B’s
visual data against the world frame computed in step
1c, and computes B’s location and orientation in the
world frame. (d) Local Render: B uses the information
from the cloud to render the virtual object at the correct
position and orientation on the display.

Related Work: To the best of our knowledge, we are
the first to perform an in-depth measurement study of AR
applications operating on cellular networks.

Mobile AR: Many works study object detection for single-
user AR [1], [8], [19], [20], [21], [22], with cloud/edge
processing to reduce latency and/or energy. A few papers [11],
[12], [10] discuss multi-user AR with focus on the application-
layer sharing. In this work, we focus on SLAM-based AR,
prevalent in off-the-shelf AR systems, and the communication
aspects of multi-user AR when operating on cellular networks.

Multi-user SLAM: Some work has been done on multi-

user SLAM in the robotics context [23], [24]. These works
mainly focus on the SLAM algorithms themselves, and not
their communication aspects.

QoS for cellular networks: Work on service-level QoS
for the cellular network allocates physical resource blocks
(PRBs) for users through smart eNB schedulers, QCI selection,
or combinations thereof [25], [26], [27]. However, naively
applying these techniques may not work well for AR’s bursty
traffic patterns (§IV-D).

III. METHODOLOGY, TESTBEDS, AND TOOLS

Multi-User AR apps: We investigate multi-user AR with
the Cloud Anchor [3] and Just a Line [28] demo apps provided
by Google. Cloud Anchor allows one user to place a virtual
object in the scene and a second user to view it. Just a Line
allows two users to draw virtual graffiti in a shared physical
space. These apps all rely on Google’s CloudAnchor API [29],
which is a key API to provide multi-user capabilities for
Android AR apps. Thus, our observations across different apps
are corroborated as they all rely on this fundamental API. The
experiments in this paper are done using Cloud Anchor, except
where it is specified otherwise.

Experimental setup: (a) Industry LTE testbed: We use an
in-house outdoor 10MHz LTE testbed (operating on Band 30,
2.3 GHz) with a virtual EPC core and an LTE eNB, having
2 LTE cells with 2×2 MIMO capability. Each cell yields
peak uplink and downlink rates of 25 Mbps and 50 Mbps,
respectively. The AR UE pair (hosting UE, rendering UE)
and the load phones are connected to the eNB. We use a
pair of OnePlus 5T phones as AR test devices and Samsung
Galaxy S7 phones as load UEs to provide background traffic.
The phones can support 2x2 MIMO. We varied the RF
conditions of the AR UEs resulting in uplink SINR values
ranging from 5− 17 dB and RSRP values ranging from -
85 dBm to -105 dBm. The eNBs are running on HP380
servers with WindRiver Linux and transmission power of 26
dBm using 2T2R antennas. The eNBs are connected to the
vEPC core, and further to the public IP network. The testbed
also allows controlling the user and traffic load on the cells,
and modifying parameters like QoS Class Identifier (QCI) for
service differentiation of traffic classes (see Sec. IV-D).
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(b) Public LTE network: We perform experiments over a
public 20 MHz LTE network with 2× 2 MIMO and Carrier
Aggregation capability on a Tier-I US carrier. We use a pair
of Google Pixel 2 phones as AR test devices1. We perform
experiments on public LTE measurements with RSRP and
SINR values of the AR UEs ranging from -85 to -110 dBm and
5−17 dB, respectively. We perform measurements in different
locations: a campus cafeteria, a public mall, downtown and
residential areas, and commercial business, with 5-12 trials
per location during daytime or nighttime.

Measurement Tools: 1) Application layer: We instrument
the AR apps to synchronize and log Unix timestamps of
application events. For web and video applications, we profile
the latencies on Android devices using Chrome’s remote
debugging developer tools [30]. 2) TCP/IP layer: We use
tcpdump to capture IP packets with timestamps. 3) RAN
layer: We measure the RAN latency by running MobileIn-
sight [31] (MI) to capture LTE PDUs on the test UEs. We
develop a custom analyzer [17] to parse the MI logs, extract
PDU-level information and compute RAN latency.

IV. MEASUREMENTS OF AR OVER CELLULAR NETWORKS

A. Application-layer performance

AR streaming vs other applications: Latency is a key
metric for multi-user AR. If the users experience disparate
latencies, consistency issues may result, such as one user
placing a virtual object and another user not being able to
view it quickly, or one user attempting to manipulate a virtual
object that has already been moved by another user.

From Fig. 1, we have shown that the end-to-end latency
has a very high median value of 12.5 s, resulting in poor QoE
for the AR user [4]. Here, we discuss why other applications,
such as web, on-demand video and live streaming uploads over

1Different UE device models do not make a significant difference in the
experiments because AR cloud servers perform the heavy computations and
AR UEs only send data to the cloud and render virtual objects.

cellular networks, do not suffer from similar QoE problems.
For this, we conduct a set of experiments where a user
surfs www.cnn.com, streams an MPEG-DASH video, hosts
a live video stream on Instagram, and plays multi-user AR
on public LTE (all experiments were conducted in sequence
within a one-hour duration). Fig. 3 shows screenshots from
the perspective of the user, and Fig. 4 shows the latency
of each application-level event. For web browsing, although
the complete content is only loaded (onLoad event) 8.6 s
after the user starts browsing , the first contentful paint and
first meaningful paint happen at 2.8 s and 3.8 s respectively.
Similarly, for on-demand video, the user sees the first frame
rendered on the screen after 1.6 s, due to video rate adaptation
by MPEG-DASH. On-demand video also has playback buffers
for pre-fetching video chunks and so is not latency-critical,
as AR is. Similar video rate adaptation mechanisms apply to
Instagram Live. The stream goes live within 3.1s (as notified
by the server), and a viewer can view the first frame 3.4s later
(6.5s after the host started the stream).

In summary, even though it takes 5-8s to download the full
web or video content, user experience is not impacted because
web and video have application-layer adaptation mechanisms
(e.g., paint the visible part of the webpage as soon as possible,
adapt the video quality to have a low time-to-first render, or
cache frames in the video buffer). In contrast, in multi-user
AR, which lacks application-layer adaptation mechanisms, the
resolving user can only see the content after the hosting user
finishes its entire data transmission, which takes ∼15s.

B. Breakdown of end-to-end latency

Latency breakdown: Having shown the detrimental impact
of latency on AR QoE, we seek to understand the key contrib-
utors to the high end-to-end latencies observed in Sec. IV-A.
We plot the constituent components of the latency in Fig. 5a,
descriptions of which are provided in Sec. III. On our industry
LTE testbed, we see that the key latency contributors are on
the hosting side (device A): the handshakes, the visual data
transmission, and the cloud processing all together consume
10s on average (86.6% of the total end-to-end latency), while
the resolving side (device B) includes data preprocessing,
visual data transmission, cloud processing, and local rendering,
and are relatively quick (12.9% of end-to-end latency). On
public LTE, the hosting steps takes 93.3% of the end-to-end
latency because of its long visual data transmission latency.
The visual data transmission is the largest contributor to
latency on public LTE (10.1s on average, or 48.7% of the end-
to-end latency), but consumes less time on the LTE testbed
(17.2% of the end-to-end latency) due to lack of contention
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with other users (we observe similar latency on low congestion
public LTE at a mall in daytime/weekday shown in Fig. 6a).
The high transmission latencies exceed previously observed
communication delays on AR research prototypes [7]; we
hypothesize that this is due to information from multiple
frames being uploaded, as well as additional image features
such as point cloud data (full details are unknown because the
off-the-shelf AR systems that we test on are closed source).

Wireless latency matters: Since we observe above that
the uplink visual data transmission latency by the hosting
device is significant, we further decompose the visual data
transmission time into TCP/IP and radio access network
(RAN) components. This provides an understanding of how
much time is spent on the wireless link, and how much time
is spent in the wired backbone. The aggregate TCP/IP latency
across IP packets is measured as the elapsed time from the
first visual data packet transmission at the TCP layer to the
reception of the last packet’s ACK (step 1b in Sec. III). The
aggregate RAN latency across IP packets is the total time
from when the first visual data packet is received by the RAN
layer (i.e. LTE’s PDCP), until when the last packet is sent
to the MAC layer for transmission. It is subsumed within the
aggregate TCP/IP latency. The results are shown in Fig. 5b.
We observe that the RAN contributes the majority of the visual
data transmission time (71.7% of the visual data transmission
time on LTE testbed, and 98.5% on public LTE), suggesting
that the wireless link is a key contributor to end-to-end latency,
especially on public LTE where the data transmission on the
RAN takes an average of 10.1 s. Hence further optimizations
of the wireless link are needed, as discussed in §IV-D and §V.

In addition to the above results on campus using public
LTE, we repeat the measurements at four other locations with
different wireless signal strengths (RSRP), as shown in Fig. 6a.

RAN latencies at these locations range from 1-10s and seem
to be correlated with the RSRP. The devices with poor signal
strength tend to have fewer uplink resources allocated, as
shown in Fig. 6b. Hence our wireless link optimizations of
Sec. IV-D, particularly the QCI-based adaptations that impact
uplink resources, can potentially provide the most gains for
devices with poor signal quality.

Finally, we examine the impact of background users on
AR performance, and the impact of AR applications on the
background users. In our industry LTE testbed, we set up
background devices uploading iPerf3 UDP traffic with finite
send buffer (12 or 25 Mbps, representing 50% or 100% of the
maximum uplink RAN capacity, respectively), and plot the
results in Fig. 5c. We see one background user cause a 65.5%
increase in RAN latency for the AR user and two background
users cause a 111.3% increase. On the public LTE where the
number of background users and their traffic are uncontrolled
and unknown, the RAN latency for the AR user increases
∼ 10× possibly due to high cellular network congestion.

Resolve latency: While in the majority of cases, the visual
data transmission by the hosting device (step 1b, §II) con-
tributes greatly to the end-to-end latency, in a few cases, we
actually observed that the virtual object resolving process can
cause high delay. This is despite the small amounts of data be-
ing uploaded by the resolving device (step 2b, §II). We observe
that this happens when the user tries to place virtual objects
in real-world environments lacking visual features (e.g., high-
contrast edges, colors, etc.). We experimented with several
real-world environments ranging from simple to complex, as
shown in Fig. 7b. The RSSI remains relatively constant at -66
dBm. We measured the data size, uplink RAN latency, and
resolve latency and plot the results in Fig. 7a. In the simple
grid and floor environments which lack visual features, we
observed relatively less data uploaded by host device A (2.2-
2.34 MB on average) and thus lower uplink RAN latency
(0.88-0.89 s on average). However, these simpler environments
also caused high resolve latency, as shown in Fig. 7a. This
is due to multiple rounds of communication between the
device B and the cloud, unlike the typical scenario of 1-2
rounds of communication we had observed in the non-grid
environments. We hypothesize that the lack of visual features
in the grid environment causes difficulties in the world frame
construction (step 1c, §II) , resulting in these multiple rounds
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of communication (step 2b) as device B uploads additional
visual data to aid in cloud processing (step 2c).

C. AR traffic characteristics

Bursty uplink AR traffic: To understand why and how
often the visual data transmissions occur, we examine their
relationship with AR user interactions (e.g., placing virtual
objects, drawing virtual graffiti). Fig. 8a shows a sample
throughput trace of device A running the CloudAnchor app
(other traces are similar; we show one example for brevity).
The large spikes correspond to large data transmission bursts
when the user touches device A’s screen to place a virtual
object. We observe that most of the data transmissions happen
on the uplink from host device A (2.5 MB on average), while
the amount of data generated on the downlink or by device B
is negligible (< 100 KB). These larger data sizes contribute
to the high end-to-end latencies discussed above.

We also observe a second, smaller type of AR user inter-
action data, as exemplified by the throughput trace in Fig. 9
from the Just a Line app. Fig. 9 shows both the large visual
data spikes near t = 170, 200 s, similar to those observed
in the CloudAnchor app in Fig. 8a, and smaller bursts near
t = 230, 295, 340 s, etc. These smaller bursts correspond to

the user touching the screen drawing virtual graffiti (447 bytes
of IP packet length on average), and are smaller than the initial
visual data spikes (1430 bytes on average).

In summary, AR traffic has bursts of both large and
small data, corresponding to different types of user interac-
tions/scenarios. Based on our understanding of ARCore [3],
we posit that the larger spikes correspond to visual data about
the scene, which is necessary whenever the app is initialized
or the user moves to a new location and wishes to place
virtual objects, while the smaller spikes correspond to user
interactions with the virtual objects after the initial visual
data has been uploaded. Time delay between data spikes
depends on the frequency of user interactions, which can be
unpredictable, depending on the application content.

Interaction with TCP: One implication we observe from
the bursty nature of AR traffic is its interaction with TCP
congestion control. All the data spikes happen in the same
TCP stream, and so are affected by the same receive window.
In Fig. 8c, we plot the number of TCP bytes in flight corre-
sponding to the second spike in Fig. 8b, which corresponds
to the first three spikes in Fig. 8a. We observe that each time
a data spike happens (when the AR application has visual
data to send), the number of TCP bytes in flight has to grow
in a slow start phase. This is because the TCP congestion
window decreases when the connection is idle, in between the
AR user’s interactions. On the other hand, applications such as
video live streaming continuously have application-layer video
data ready to upload (we observed this in our experiments with
Instagram Live), and can continuously grow the congestion
window without repeatedly dropping to slow start.

D. Can dedicated QoS classes help AR?

QoS Class Identifiers (QCI) are widely used by network
providers [25] to offer differentiated QoS for services, where
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Fig. 10. Impact of QoS dedicated bearer: Assigning QCI-4 with a guaranteed
bit rate to the AR user reduces its latency, but decreases the throughput of other
users, even if the AR user is not transmitting in between user interactions.

a service is assigned to a bearer with a specific QCI value
for data transmission. In our industry LTE testbed, allowing
control over the QCI classes, we set up one AR pair and one
background user uploading 25 Mbps iperf3 traffic. The AR
users are configured to use QCI-4 with a guaranteed bit rate
(GBR), while the other user remains on the default, best-effort
QCI-9. We configure QCI-4 to have a very high GBR of 25
Mbps (the total available bandwidth), in order to ensure that
the AR users receive prioritization without any limitations.

Fig. 10a shows the latency of the AR user with and
without QCI-4. QCI-4 helps reduce the TCP/IP latency by
33%, which represents an upper bound improvement even if
more users were present. The improvement is due to resource
prioritization for the AR user, because the higher priority of
QCI-4 allows the AR flow to be scheduled on the majority of
available PRBs in the cell, as shown in Fig. 10b, and across
consecutive TTIs contiguously.

While a dedicated bearer such as QCI-4 can help reduce
AR latency, Fig. 10c shows the performance achieved by the
non-AR iPerf user. When the AR flow is assigned to QCI-
9, the iPerf user can obtain most of the available bandwidth
(20 Mbps), with occasional dips due to the AR user’s data
bursts. In contrast, when the AR flow is assigned to QCI-4,
the iPerf user has its throughput reduced to an average of 13
Mbps, even when the AR user is not transmitting, because
the eNB permanently reserves wireless resources for the GBR
user [25]. While a live-streaming video service assigned to a
GBR bearer stream would continuously and predictably utilize
the assigned network resources, the AR flow wastes network
resources due to its bursty and unpredictable nature.

These results suggest several challenges in designing an
“AR-specific” QCI class. The RAN should to be able to predict
when an AR data spike is about to begin, quickly assign this
flow to a dedicated bearer, estimate when the spike is about to
end, and finally remove the dedicated bearer. This can prevent

negative impacts to other users in the network. For example, in
light of the large and small data spikes observed in Sec. IV-C,
we may not need to keep a dedicated bearer after the large
data spikes have occurred.

E. Below the IP Layer: RAN Analysis

In this section, we take a detailed look at AR’s behavior
below the IP layer, in order to understand LTE’s impact on
AR performance. The IP layer passes its packets to LTE’s
PDCP layer, and from there to the RLC, MAC, and finally
PHY layer as PDUs for transmission. The channel conditions
and the traffic load generated by all the users determine the
size of the RLC PDU in the current scheduling period for
a given device. Based on the PDU size, the RLC layer then
performs an important operation: it concatenates or segments
the IP packets to fit into the RLC PDU(s), which is a key
contributor to RAN latency.

Fig. 11a illustrates the relationship between per-packet RLC
latency and IP throughput for the similar test cases as §IV-B.
AR pair (+ #load phones) where load phones generate 12
Mbps finite-buffer traffic are performed on our private LTE
testbed while AR pair + N trails are done in public LTE with
unknown traffic and number of load phones. Across test cases,
we observe that the TCP RTT (first row) increases with RLC
latency (bottom row), especially in the public LTE test case.
The longer RTT can cause the TCP congestion window to
ramp up slowly. This is shown by the relatively smaller rate
of growth in the number of TCP bytes in flight over time
(second row), especially during the slow-start phase when the
RLC latency is higher, subsequently resulting in reduced IP
throughputs (shorter and sparser lines in the third row). The
impact of RLC latency on TCP slow start is crucial in AR
because AR can be prone to frequent slow start phases due
to the time gap between user interactions, as discussed in
Sec. IV-C. The relationship between RLC latency, TCP RTT,
and IP throughput suggests that RLC latency is an important
factor to increase the throughput and improve the latency of
AR applications. We discuss potential solutions below.

V. AR DESIGN OPTIMIZATIONS

In this section, based on the insights gleaned from the traffic
characterization in §IV, we provide AR design optimizations.

A. Network-Aware Optimization: Packet Size Adaptation

When the AR app uses larger IP packet sizes for trans-
mission, it could experience heavier segmentation at the RLC
layer, especially when the RLC PDU sizes are significantly
smaller than the packet sizes. This happens in scenarios when
the RAN is congested and/or when the UE’s RF conditions
are poor, as shown in Fig. 11. As a result, the per-packet RLC
latency and subsequently, the TCP RTT increase, adversely
impacting the growth of the TCP cwnd during an AR burst,
deteriorating the end-to-end performance of the AR session.
While using smaller IP packets can help address this issue,
they increase network overhead due to generation of a higher
number of packets for the same burst and under-utilization
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Fig. 11. Per-packet RLC latency is high at the beginning of the data spike, increasing RTT especially during TCP slow start. A smaller IP MTU reducing
RLC segmentation and small amount of background traffic are possible solutions to help reduce AR latency.

of the available RAN capacity. With sub-optimal, smaller IP
packets, this overhead becomes significantly high, affecting
application goodput (see Fig. 11e). We propose a technique
to optimize the packet sizes of the AR app by heuristically
addressing this non-linear trade-off, based on underlying RAN
conditions. In particular, when there is significant RLC seg-
mentation of the packets, we reduce the IP packet size closer
to a moving average of the instantaneous RLC PDU sizes for
the UE. We carefully adapt IP packet sizes so that the gain
from a quicker increase in the TCP congestion window for an
AR burst offsets the loss from additional overhead of using
more IP packets for the same burst.

Packet sizes can be varied by configuring the Maximum
Segment Size (MSS) of the AR flow or Maximum Transmis-
sion Unit (MTU) of the AR UE. We conduct CloudAnchor
experiments by adapting the IP packet sizes of the AR stream-
ing session over public LTE networks under different network
conditions (both congested and less-congested scenarios) using
our technique and present the results in Fig. 11b. We evaluate
the packet sizes selected by our technique (650 bytes) against
the default large packet size of 1430 bytes and a smaller sub-
optimal packet size of 400 bytes.

In Fig. 11b, for a more congested public LTE network (i.e.,
campus) scenario, the default large packet size of 1430 bytes
undergoes significant segmentation (around 7 RLC PDUs per
packet) and hence, the aggregate RAN latency is high (∼11 s).
The optimal packet size for this scenario, yielded by our
technique, is a smaller value, around 650 bytes. Upon setting
this, the aggregate RAN latency is reduced by 37% and 58%,
when compared to 1430 bytes and 400 bytes, respectively. At
the same time, the network throughput and the AR application
goodput from a 650-byte packet size increases by over 62%

and 150% than the 1430-byte and 400-byte packet sizes,
respectively (Fig. 11b, 11c). The 400-byte packet sizes achieve
lowered throughput despite similar RLC segmentation to 650-
byte is because the former under-utilizes the network capacity,
observed by the maximum TCP cwnd for 400-byte reaching
only 493KB, while 650-byte and 1430-byte can reach 657KB
and 690KB, respectively. However, in low network congestion
environments (i.e., the mall), reducing the packet size has little
impact on aggregate RAN latency because the eNB already
allocates a larger RLC PDU to the device, resulting in little
RLC segmentation. Hence, our technique selects the default
large packet size close to 1430 byes. In conclusion, network-
aware AR app design by choosing smart packet sizes for
the app can improve aggregate RAN latency, end-to-end AR
latency, network throughput and application goodput.

B. Network-Agnostic Optimization: Small Background Traffic

Another AR design optimization we propose is “priming”
the eNB with information about the amount of data that the
AR application will transfer in its next burst. This technique
is network-agnostic, without the need to adapt to variations in
the RAN. Typically, when the hosting device starts sending
either a new uplink AR burst or new data in the middle of
an AR burst after a longer idle period (lasting for tens of
milliseconds), the UE has to request for resources from the
eNB, incurring protocol signaling latency. The eNB is initially
unaware of the uplink sending buffer, and may only allocate
a small uplink grant (max. 125 bytes) for the UE. Then, upon
data PDU transmission, the UE also piggybacks the uplink
buffer size, which the eNB subsequently uses to allocate larger
resource grants. This causes RLC segmentation, increasing the
per-packet RAN latency, especially in congested scenarios.
In order to make the eNB aware of the device’s uplink



buffer during an AR session, we generate small amounts of
background uplink traffic, using an icmp packet of 100 bytes
every 2 − 5ms. Since there is an active small data transfer
even during inter- or intra-AR burst idle periods, the UE is
always scheduled minimal resources and it constantly piggy-
backs information about its uplink sending buffer to the eNB.
This maximizes buffer-aware scheduling for the UE, which
minimizes protocol signaling latency and RLC segmentation.
In Fig. 11d, we plot the aggregate RAN latency and amount
of outgoing data, with and without the additional background
traffic, for an AR session over public LTE network. The results
show that this small background traffic helps reduce aggregate
RAN latency by ∼50% on average, at the cost of a negligible
increase in outgoing data size (including the extra background
traffic). Our UE logs show that the average uplink resource
grant for each MAC PDU during the AR session increases
from 593 bytes to 1191 bytes with small background traffic.

C. Discussion: Application-layer Optimizations

Finally, we briefly discuss other potential application-layer
solutions to reduce AR latency. In our existing experimental
setup, the network data transmissions were opaque due to the
internals of the Google ARCore platform being closed source.
However, we hypothesize that the data transmissions consist
of device data that is used for localization, as localization is
known to be an integral part of AR [18] Reducing the fidelity
of the device localization data, for example by quantizing the
data or sub-sampling the data in time, could reduce the amount
of data requiring transmission and thus the network latency. On
the other hand, this may reduce device localization accuracy
and impact the placement of virtual objects in the user’s
display; thus, we intend to explore such effects in future work,
using open-source AR systems [9] that allow modification of
the application layer.

VI. CONCLUSIONS

The goal of high quality AR has engendered tremendous
amount of research, but there has thus far been little focus on
the impact of the cellular network. In this paper, we show
through extensive measurements on both an industry LTE
testbed and public LTE that RAN latency is a significant part
of the end-to-end AR experience, accounting for nearly 31.2%
of the total latency. Unless this is reduced significantly, there
is little hope for achieving AR with high QoE. However, our
results also provide hope: AR traffic is very bursty in nature,
making it a suitable candidate for practical traffic management
schemes like QCI (which improves latency by up to 33%).
Further, we also design network-aware and network-agnostic
optimizations that improve latency by ∼40-70%. Future work
includes a longitudinal study of AR users to learn specific
AR app behaviors, which can then drive the development of a
smart QCI-based scheduler specifically tailored for AR traffic
characteristics. We will also quantify how 5G technologies can
help close the gap of achieving seamless multi-user AR QoE
by reducing the overall RAN latency.
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