Reality Check: A Tool to Evaluate Spatial Inconsistency in Augmented Reality

Carter Slocum, Xukan Ran, Jiasi Chen
Presentation Overview:

1. AR Background
2. Problem
3. Method
4. Method Background
5. Experiments Setup
6. Results
7. Acknowledgements
What Is Mobile Augmented Reality?

Overlaying real scene, captured by a mobile camera, with virtual objects in such a way as to appear in the real world

• Requires “understanding” the real world
• Typically needs to be done in real time
• Multiple methods
• On mobile devices, usually rely on one RGB camera and a low quality Inertial Measurement Unit (IMU)
Marker Based AR Methods

Device looks for known fiducial markers from the camera image in order to gain pose and scene understanding

- Requires physical alteration of the scene
- Marker must remain visible for the whole session
- Highly accurate, not prone to jumps and drift
Marker-less AR Methods

Track image features over time to simultaneously map the surrounding scene and localize the camera within it.

- No need for prior knowledge or alteration of scene
- Less accurate and prone to drift/jumping virtual objects
The Problem

How do we measure the drift of virtual objects in a way that is neither expensive nor labor intensive?
Absolute Trajectory Error (ATE) is not sufficient! Must take into account ALL factors that affect the final Image.
The Problem

The same object viewed from two devices at the same time may also suffer from spatial inconsistency.
High Level Idea:

Key idea: Use easy to detect, known markers in the scene to measure spatial inconsistency.

Compare distance to marker over time or across devices to measure spatial inconsistency.
Method Background: ArUco Marker Board

ArUco: 2D square representations of binary matrices.

Known image and size

Easy to detect in images

Used to find correspondences between real world points and their projection to the 2D AR display.

Our setup in the lab:

- ArUco marker
- Grid paper
- AR devices with virtual objects
Method Background: Perspective-n-Point

PnP solves for the pose (rotation, translation) of the camera relative to the detected ArUco marker board.

Solve for r,t given many P(x,y,z) → P'(u,v) correspondences

\[
\begin{pmatrix}
 u \\
 v \\
 1
\end{pmatrix} =
\begin{bmatrix}
 f_x & \gamma & u_0 \\
 0 & f_y & v_0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 r_{11} & r_{12} & r_{13} & t_1 \\
 r_{21} & r_{22} & r_{23} & t_2 \\
 r_{31} & r_{32} & r_{33} & t_3
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Spatial Inconsistency

Virtual object seen at T1

Spatial inconsistency

Virtual object seen at T2

Viewing the same static object from two times or at the same time from two different devices.
Two Marker Method Idea

Why not make the virtual object itself a marker board?
Two Marker Method Idea

1. Place a real ArUco marker board in the scene
2. Run desired AR-framework
3. Record video including the real and virtual marker boards
4. Run PnP and compare measurements
Experiment Setup:

- Tested on Samsung Galaxy s7 and Galaxy S20
- Tested on knee-high tables.
- Tested both indoors in house and backyard (Campus Shutdown)
 - Using ARCore
- Multiple movement strategies:
 - Side to side (markers visible)
 - Full rotation (one marker only visible half the time)
 - Leave and return (markers visible at beginning and end with walking)
- 15 videos between 30-60 seconds at 30fps
- 3 videos approximately 2:30 at 30fps
- 268 hand-annotated frames
Experiment Setup for RealityCheck

Virtual Marker Board Rendered in Scene

Real Marker Board Placed into Scene

Graph Paper for ground truth annotation Purposes
Example Result:

- Blue virtual marker estimate vs red real marker
- RealityCheck is able to track both markers.
Example Result:

- RealityCheck successfully catches large jumps
Main Results:

- Median indoor error of 1.36cm
- Over 90% of frames have less than 2.5cm error
- Poor lighting outdoors with moving objects
Effects Under Movements

- Most accurate when markers are viewed at non-extreme angles
Multi-User Experiment

- Randomizing image pairs to simulate virtual object spatial inconsistency across different users
Conclusions

- Spatial inconsistency of virtual objects over time/space is a problem in mobile augmented reality
- We propose a method using real and virtual fiducial markers to measure the spatial inconsistency
- Our evaluation, using Google ARCore, shows an accuracy of 1.5 cm on average in indoor scenarios
- RealityCheck open source at: https://sites.google.com/view/arrealitycheck/home
Thank you!
Questions?
Thanks

This work is supported in part by:
NSF CAREER 1942700
U.S. Department of Education GAANN fellowship.

Prof. Jiasi Chen
Xukan Ran, PhD
Kittipat (Patrick) Apicharttrisorn, PhD
Yi-Zhen (Angela) Tsai
Prof. Maria Gorlatova
Prof. Craig Schroeder