
RealityCheck: A Tool to Evaluate Spatial
Inconsistency in Augmented Reality

Carter Slocum, Xukan Ran, Jiasi Chen
Department of Computer Science and Engineering

University of California, Riverside
Riverside, CA, USA

Abstract—In augmented reality (AR), virtual objects can
drift away from their original intended locations, significantly
impairing a user’s experience. Traditionally, a virtual object’s
drift is approximated by the device localization drift, which
is measured using specialized hardware such as 3D scanners
or laser-based positioning systems. However, with AR rapidly
becoming more popular, there is a need for a lightweight,
software-based approach to evaluate the drift of virtual objects.
This software should be easy for researchers and developers
to use, without requiring specialized hardware or extensive
environment setup.

Towards this, this paper presents RealityCheck, an open-
source AR evaluation tool that reports the drift of AR virtual
objects in the world coordinate system, requiring only paper
printouts and minimal modifications to the AR app. Reality-
Check is designed to measure the drift of a virtual object across
time of a single user, as well as the positioning differences of the
same virtual objects as seen by multiple users. Our prototype
is implemented on an Android smartphone running the ARCore
platform, and evaluated in indoor and outdoor scenarios under
a variety of user mobility patterns with traces of different
lengths. We compared the results of RealityCheck with the
ground truth position of the virtual object, and showed that
RealityCheck matches the ground truth within 1.5 cm on average.

Index Terms—augmented reality, spatial drift, evaluation tool

I. INTRODUCTION

Mobile Augmented Reality (AR) is becoming increasingly
popular, with the AR market estimated to grow to $61 billion
by 2023 [1]. Many companies are developing AR platforms
and integrating AR into their products. For example, Apple
announced its mobile AR platform, ARKit, in 2017 and Google
introduced ARCore for Android in 2018 [2], [3]. IKEA has
developed a virtual furniture placement app to let users visualize
virtual furniture at home [4].

In AR, virtual objects are rendered on the display and
overlaid on top of a user’s field of view (FoV). To provide
a seamless integration with the real world, the AR app
needs to have an understanding of the surrounding real-world
environment [5]; for example, in order to place a virtual cup on
a real table, rather than drawing the cup unrealistically floating
in the air. AR algorithms to understand the environment can
be categorized into three types: (1) object detection based
AR (e.g., Snapchat Lenses [6]) in which machine learning or
computer vision is used to classify objects in the real world
and overlay on top of them; (2) SLAM based AR (e.g., Just A
Line [7]) in which visual-inertial sensors are used to create a

(a) Virtual object at time 1. (b) Virtual object at time 2.

Fig. 1: Example of a virtual object (Android character)
inadvertently drifting to the right over time.

3D map of the real world; and (3) marker based AR, which
relies on fiducial markers placed in the scene.

However, an AR app’s understanding of the environment
can be sometimes wrong or inconsistent, particularly if an AR
user moves, and the virtual object may unintentionally drift
away from its original position. This can significantly disrupt
the connection between the virtual object and the real world
and thus impair user experience. Fig. 1 shows an example from
Android ARCore, where the virtual character drifted to the right
on top of the keyboard between time 1 and time 2. A related
problem happens when multiple co-located users participate
in a shared AR experience and the virtual objects drift across
users, appearing to have different locations in the displays
of each user [8]. In our experience, such drifts manifest in
popular mobile AR platforms, such as Google ARCore and
Apple ARKit.

To improve AR applications, it is necessary to measure and
evaluate the spatial drift of these virtual objects. However,
current methods of doing so suffer from several limitations.
Subjective evaluation through user questionnaires is time-
consuming and cannot provide real-time feedback or exact
quantitative numbers. Objective methods to measure spatial
drift are time-consuming, rely on specialized hardware, and/or
only work in constrained testing environments. For example,
manual labeling of virtual object’s position in the scene is
time-consuming, requiring multiple seconds for a human to
label every single frame when the AR app is running. The
most relevant comparison is probably to SLAM performance
evaluation, which typically uses Absolute Trajectory Error
(ATE) [9], but which suffers from the following limitations.
Firstly, ATE measures the difference between the device’s

estimated location and the ground truth location, which is
different from the location drift of the virtual object (as shown
in Section II). Secondly, computing ATE requires knowledge
of the ground truth device location, which requires special
equipment such as a 3D scanner or motion capture system that
only works in a designated testing area, or offline datasets [10]
that may not exemplify typical AR use cases. Thirdly, factors
such as latency or graphical effects that can affect the final
rendered AR object take place after the estimated device
trajectory has been recorded, and thus are not accounted for
by ATE. Finally, ATE is designed to measure performance of
SLAM for an individual user, and does not provide information
in the multi-user scenario. Such requirements pose great
inconvenience to researchers who wish to experiment with
and evaluate AR.

To address these issues, in this paper we propose an
evaluation tool, called RealityCheck, for SLAM-based AR
to directly and conveniently measure the drift of virtual
objects in both single-user and multi-user cases. We propose
a methodology that does not require specialized hardware
or special lab testing environments, making AR evaluation
easier and more accessible to general engineers and computer
scientists. Our key idea is to temporarily replace the virtual
object in the AR app with a virtual marker (e.g., an ArUco
marker), and use more accurate computer vision techniques
(i.e., PnP) to localize the virtual object/marker in 3D space.
By recording the location of the virtual object over time and
across users, RealityCheck can compute the spatial drift seen
by a single user, or the spatial inconsistency of a virtual object
seen by multiple users. We envision such a tool being used
by researchers and developers to receive feedback from their
AR apps on spatial drift, paving the way for corrections to
be made. We focus on SLAM-based AR because it is the
foundation of commercial off-the-shelf AR systems, such
as Google ARCore, Apple ARKit, and Microsoft Hololens,
although the methodology can be extended to other types
of AR. We also focus on positioning errors as opposed to
rotation errors because they tend to be larger in SLAM-based
systems [11].

Overall, RealityCheck makes the following contribu-
tions:

• RealityCheck directly measures the spatial drift/inconsistency
of a virtual object through a lightweight software-based
approach that does not require specialized hardware or testing
environments. It only needs a printed marker board, the
device camera calibration parameters, and minimal changes
to the AR app. This is contrast to measuring the ATE of
the device, as typically done in SLAM evaluation, which
cannot directly measure a virtual object’s position.

• RealityCheck works in both single-user and multi-user
scenarios. In a single-user scenario, RealityCheck evaluates
the spatial drift of a virtual object over time. In a multi-user
scenario, RealityCheck evaluates the spatial inconsistency
of a virtual object when viewed by multiple users with
different FoVs. The key idea in our methodology is to

temporarily replace a virtual object with a virtual marker,
and use computer vision techniques to accurately track the
position of virtual object with respect to the real world.
• RealityCheck achieves 1.5 cm estimation error on average

across 22 total trials, compared to the ground truth position
of a virtual object. We perform these trials under various
experimental conditions: indoor and outdoor environments,
changing visibility of the virtual object, different user
mobility patterns, and app usage length ranging from 30
seconds to 2.5 minutes.

The open-source code of RealityCheck and a video demonstra-
tion of its operation are provided through a website [12]. In the
remainder of this paper, we discuss motivation (Section II), the
design of RealityCheck (Section III), quantitative evaluations
(Section IV), discussion (Section V), related work (Section VI),
and finally conclude (Section VII).

II. MOTIVATION: ISSUES WITH MANUAL LABELING AND
ABSOLUTE TRAJECTORY ERROR

In this section, we provide insight into why manual labeling
or ATE are insufficient for measuring drift of an AR virtual
object. Note that neither manual labeling nor ATE measure-
ments are needed for casual users of RealityCheck, but are
only needed to evaluate RealityCheck in this paper.

Manual Labeling: In the case of manual labeling, in our
experience, it took approximately 10-30 seconds to hand-
annotate the position of a virtual object in each frame. For an
AR app updating its display at 30 frames per second (FPS)
running for 5 minutes, this could take up to 1.25 hours to
measure a virtual object’s drift for the duration of a user’s
experience. Clearly, this is infeasible and unwieldy, particularly
if multiple users are participating in the AR experience and
each of their frames need to be annotated.

Absolute Trajectory Error: In the case of ATE, as men-
tioned in Section I, ATE does not provide sufficient information
about the position of the virtual object, since the device
trajectory and ATE only have information about the position
of the device. The device position is insufficient knowledge
about the virtual object, because rendering the virtual object
involves projecting the virtual object onto the AR display,
which requires both device position and rotation provided by
SLAM. Therefore, ATE alone cannot tell the AR device where
the virtual object is rendered on the display, and hence what
its spatial drift is.

We next describe an experiment we conducted to illustrate
why ATE cannot be used to evaluate the spatial drift of an AR
virtual object; i.e., why ATE or the device trajectory does not
accurately capture the spatial drift of an AR virtual object. This
experiment is illustrated in Fig. 2. We use ARCore as the AR
platform. We started the experiment by creating a virtual object
(the tower of shapes) on the floor, and then move backward
(in the y direction), without any left/right movement (in the
x direction). The height of the device is also fixed so there is
also no up and down movement (z direction). In the 3D plot
of Fig. 2, we plot the SLAM-estimated device trajectory (blue

M
ove direction

Time 1, Virtual
object is created

Time 2, Virtual object drifts backward

Time 3, Virtual object drifts forward

Fig. 2: The virtual object drifts back and forth as the user
moves. However, simply looking at the device trajectory/ATE
alone gives little information about how the virtual object drifts.

line), which is a straight line in the XY plane. The SLAM-
estimated trajectory matches well with the ground truth device
trajectory (red line). Intuitively, we might expect this accurate
device position estimate to mean the virtual object won’t drift.

However, the SLAM-estimated device trajectory gives us
no information about the position of the virtual object on
the display, and the virtual object does in fact drift, despite
the accurate device position estimates. In Fig. 2, we show
screenshots of the virtual object at 3 different times. At time 1,
the virtual object is directly above the piece of paper. At time
2, the virtual object drifts backward from the paper (towards
the user), and at time 3 it drifts forward (away from the user).
We don’t know where the virtual object is or how much the
virtual object drifts by looking at the device trajectory alone,
until we see the screenshots of the virtual object. In other
words, the accuracy of the device trajectory estimation is not
tightly correlated with the drift of the virtual object.

Moreover, in the multi-user scenario, each AR app can
update its virtual object position, and then our tool can compute
the position difference (spatial inconsistency) of the virtual
object between any two users. However, we can’t compute the
spatial inconsistency across multiple users just from ATE or
the trajectory because of the lack of time synchronization and
rotation information from ATE alone.

III. DESIGN OF REALITYCHECK

The key idea behind the design of RealityCheck is that
an AR virtual object can be any object that can be rendered
to a screen. Thus it is possible to render a known, easy to
detect object into the scene, such as an ArUco marker board
[13], and accurately determine its location using computer
vision techniques. Combined with a real marker board placed
in the scene, these known objects allow measurement of the
spatial consistency between the real world and the virtual
objects rendered onto the screen. Fig. 3 illustrates the design

Time=T1

Virtual markerboard
seen at time=T1

ArUco markerboard

a

b
a’

b’

c

c’

Spatial drift

Virtual markerboard
seen at time=T2

Time=T2

d

(a) Single user case: The user moved from time T1 to T2, and the
virtual object also drifted.

camera 1 camera 2

Virtual markerboard
seen by camera 1

ArUco markerboard

a

b

a’

b’

c c’

Spatial
inconsistency

Virtual markerboard
seen by camera 2

d

(b) Multiple users case: Two users view a common virtual object, but
see it at different positions with respect to the real world.

Fig. 3: Design of RealityCheck.

of RealityCheckfor the single- and multi-user scenarios. In both
cases, we place a real marker board in the physical world and
create a virtual marker board as the virtual object for rendering.
We next describe this general idea in further detail for each of
the scenarios.

Single user scenario: The spatial drift in the single user
scenario is determined as follows. As labeled on Fig. 3a, we
define the vector from the device’s physical position to the
virtual marker board’s designated physical position at time T1
as a, the vector from the device to the real marker board at time
T1 as b, and the vector from the real marker board to the virtual
marker board at time T1 as c. At time T2, due to registration
errors in the AR app, the virtual marker drifted to another
physical location. At time T2, we label the corresponding
vectors a′, b′, c′, analogous to a, b, c. Then to compute the
spatial drift (the vector d in Fig. 3a), we can see that d = c′−c.
Since c = a− b and c′ = a′ − b′, we have d = a′ − b′ − a+ b.
The vectors a, a′, b, b′ can be relatively easily computed using
the perspective-n-point (PnP) method to determine the pose
of the camera with respect to the virtual/real marker boards.
This method obtains the detected corners of the marker boards
in the current FoV, and along with knowledge of their size
and shape and the camera calibration matrix, solves the PnP
problem to obtain the desired vectors a and b for the respective
marker boards. Finally, we compute d = a′− b′−a + b, which
is the spatial drift. The complete algorithm is summarized in
Alg. 1.

As an illustration of our approach, we plot the vectors a and

Fig. 4: Example paths of the real/virtual marker boards over
time (meters), relative to a moving camera. The red (blue) line
represents the position of the real (virtual) marker board over
time, vector b (a). Any change in their difference (c) is the
spatial drift.

b in Fig. 4 from a real trace captured by RealityCheck. The
blue line represents the position of the virtual marker board (a)
over time with respect to the camera. The red line represents
the position of the real marker board (b) over time with respect
to the camera. Their difference c = b−a should ideally remain
constant over time even as the camera moves, meaning that
the real and virtual marker boards remain fixed with respect to
each other, and there is no spatial drift. However, in practice
there is spatial drift, which is reflected as changes in c. We
see this in Fig. 4: while the general trajectory of the two lines
are similar, they are not identical – their differences are the
spatial drifts we are interested in.

Multi-user scenario: The multi-user scenario, shown in
Fig. 3b, is analogous to the single user scenario, except that
drift is measured across space, rather than across time. a is
the defined as the vector from the phone 1’s camera to the
virtual object, and a′ is defined as the vector from phone 2’s
camera to the same virtual object. b is defined as the vector
from phone 1’s camera to the real marker board, and b′ is
defined analogously for phone 2. Then c = a− b is the vector
from the real marker board to the virtual marker board as seen
by device 1, and c′ = a′− b′ is the vector from the real marker
board to the virtual marker board as seen by device 2. Their
difference, d = c′ − c, represents the spatial inconsistency,
i.e., the difference in the position of the virtual object as seen
by the two devices. We follow the same computation method
using PnP as in the single-user case. Thus, the same overall
method is general enough to be used for the single and the
multi-user scenarios.

IV. EXPERIMENTAL EVALUATION

A. Implementation and Test Methodology
1) Implementation

A picture of our implementation is shown in Fig. 5, with
the major components described below.
Devices. The AR test application is built on the Android
ARCore platform [3] and run on a Samsung Galaxy S20 mobile

Algorithm 1: Computation of spatial drift

Inputs: camera frame f1 and f2;
Outputs: spatial drift d;
Compute a and b in f1 using PnP;
c← a− b;
Compute a′ and b′ in f2 using PnP;
c′ ← a′ − b′;
Return d← c′ − c;

Fig. 5: Evaluation setup. The position of the virtual object
(the virtual marker board) is evaluated with respect to the
real marker board on the table. The graph paper aids in hand-
annotating the ground truth position of the virtual object.

phone. RealityCheck itself runs on a separate laptop with an
Intel Core i7 2.8Ghz CPU.

Real marker board. An ArUco marker board comprised of 9
unique markers arranged in a 3×3 grid is printed on standard
printer paper. The real marker board is 0.2 m × 0.2 m in
our experiments so it could fit on the paper, but in general,
it may be of any size small enough to fit in the FoV of the
device camera, and large enough for the marker patterns to be
recognized.

Virtual object (marker board). We create our virtual marker
board similarly to the real marker board. The virtual board
is textured using 9 ArUco markers (different from the 9 in
the real marker board) and arranged in a 3x3 grid. The virtual
marker board is created in Blender [14] and imported into
Android Studio. We set the size of virtual marker as 0.4 m
× 0.4 m. It is important that the virtual marker board is not
so large as to obstruct the real marker board, although this
could be solved by simply recording the image both before and
after the virtual marker board is drawn to the screen. Special
attention is paid to make sure no additional graphics effects
are drawn, such as drop shadows or specular maps, as they
may affect the visibility of the real or virtual markers.

Graph paper. To compare RealityCheck’s measurements to
the ground truth, a piece of paper of the same dimensions as
the real marker board is placed adjacent to it in the scene. This
paper has printed on it a grid of 1 cm × 1 cm squares for use
in hand annotating the position of the virtual object offline (as
described in the next subsection).

2) Test Methodology

AR app recording. The AR test application is run on
the mobile device, and the user taps the screen to place the
virtual marker board in the scene. The user then moves around
the environment and captures what is shown on the display,
either using screen capture software [15] or simply taking
screenshots at regular intervals to obtain the data needed to
run RealityCheck.
Mobility patterns. To examine the efficacy of Reality-
Check with respect to user mobility, we evaluated three different
walking patterns.
• Side-to-side: The user moved side to side a distance of

approximately 1.5 meters without rotating, keeping the real
marker board and the virtual object in the device’s FoV.

• Look-Away-and-Back: The user started the trial with the real
marker board and virtual object in the FoV, then walked
away about 15 meters keeping them out of the FoV, and
finishing the trial by returning to them.

• Around-in-a-Circle: The user walked a complete 1.15 meter
radius circle around the real marker board and virtual object,
keeping them in view.

We conducted 22 total trials. First, we conducted 5 indoor trials
of each mobility pattern, for a total of 15 trials. Each trial lasts
for 12-36 seconds. These indoor trials were performed without
direct sunlight with the real marker board and graph paper
placed on a short table. An additional 4 trials were performed
in an outdoor environment in direct sunlight with one of each
mobility pattern, plus an additional circular walk trial. Finally,
3 trials lasting 2.5 minutes each were performed in the same
indoor environment with the 3 mobility patterns.
Running RealityCheck. To process the results, the recorded
video is partitioned into its individual frames. RealityCheck per-
forms the steps described in Section III for each frame or frame
pair, and saves the resulting c vectors to a file for analysis.
Ground truth via manual labeling. Finally, in order to check
the results of RealityCheck against the ground truth, it is
necessary to hand annotate the position of the virtual object
(specifically, the virtual marker board relative to the real marker
board). The graph paper assists in this by allowing easy visual
counting of the distance to the virtual marker, with a resolution
of 0.5 cm. For every frame we wish to evaluate, we measure
the Euclidean coordinates in terms of grid squares, then convert
the grid squares to cm in order to obtain the ground truth vector
between the virtual and real marker boards, which we call ctrue.
This is then compared against the estimated c vectors output by
RealityCheck. We then repeat this measurement over multiple
frames to compute spatial drift dtrue. A similar approach is
followed for the multi-user scenario. Note that this manual
labeling is only performed by us to evaluate RealityCheck, and
does not need to be performed by general users of the tool.

Using this method, we hand annotate every 30 frames (∼1 s)
across the 15 indoor trials, resulting in a total of 191 annotated
frames, plus 77 annotated frames for the outdoor trials. Since
the hand-annotated virtual object positions are in the real marker

Fig. 6: Cumulative Distribution Function of the difference
between RealityCheck’s estimated position of the virtual object
and the ground truth (||c− ctrue||) of a single user.

board coordinate system, but RealityCheck’s output is in camera
space, to compare their results, a transformation (obtained from
the PnP method) is performed to convert RealityCheck’s output
from camera space to real marker board space, in order to
make the vectors comparable.
B. Evaluation Results

In this section, we discuss RealityCheck’s performance in
terms of how accurately it reports the drift of a virtual object,
compared to the ground truth.

Position of the virtual object. We first report the distance
between where RealityCheck reports the virtual object is, versus
the ground truth (||c− ctrue|| in the notation of Section III). A
low distance indicates that RealityCheck matches more closely
with the ground truth. The Cumulative Distribution Function
(CDF) of the distances for the indoor and outdoor trials are
shown in Fig. 6. The mean of the indoor errors is 1.5 cm,
whereas the outdoor errors average at 4.6 cm. The median
distance in the indoor scenarios is 1.36 cm, and 90% of the
samples fall within 2.5 cm. RealityCheck tends to perform
slightly worse outdoors, possibly due to noise, and were biased
by one particular trial that performed particularly badly. For
example, outdoors, the lighting changes more frequently than
indoors, or a strong wind shaking leaves on a tree can break
the static environment assumption of SLAM-based AR, giving
rise to larger virtual object drift and resulting in a slightly
larger difference between RealityCheck’s estimate and the
ground truth. Overall, though, the distance between the ground
truth estimates and RealityCheck’s estimates are 2.4 cm on
average across all indoor and outdoor scenarios, suggesting
that RealityCheck is reporting accurate results.

RealityCheck can accurately report the position of a virtual
object both when the virtual object drifts slightly, or when it
jumps significantly. To illustrate this, in Fig. 7 we show an
example time series of the distance between the virtual object
and the real marker board, as output by RealityCheck (blue
dots, ||c||) and by the ground truth hand annotations (red dots,
||ctrue||). The point of interest is just past the 455th frame, where
the virtual object “jumps” nearly 6 cm, as a more extreme
example of spatial drift. RealityCheck is able to detect the

Fig. 7: Example time series of the distance of the virtual object
from the real marker board, as estimated by RealityCheck (blue,
||c||) and the ground truth (red, ||ctrue||). RealityCheck is able
to capture the large “jump” of the virtual object between frame
455 and 456.

Fig. 8: Distance error (||c − ctrue||) as a function of a
user/camera’s distance to the real marker board. Reality-
Check works even when the camera is further away.

virtual object’s sudden change in position quite accurately (as
the blue dots line up with the red dots).

Finally, we ask whether RealityCheck’s output has low error
even as the camera moves farther away from the virtual object
and real marker board. In Fig. 8, we plot the difference between
RealityCheck and the ground truth’s estimate of the virtual
object’s position (||c − ctrue||), as a function of the distance
between the camera and the real marker board. The trend in Fig.
8 is essentially flat, indicating that RealityCheck is robust to
distance from the virtual object within typical AR application
ranges.

Position drift over time. We are not only interested in
RealityCheck’s ability to estimate the location of a virtual
object at a single point in time, but also in its ability to track
the change in that position over time. To evaluate this, we
define the drift as the distance that a virtual object moves
during one second (d). We also compute the ground truth drift
(dtrue). Fig. 9 shows the difference in the drift measurement
from RealityCheck and the ground truth (||d− dtrue||), for each
user mobility pattern. Overall, the average difference across all

Fig. 9: Average difference between RealityCheck and the ground
truth, with standard deviation, when computing the per-second
drift of a single user (||d− dtrue||).

Fig. 10: Example time series from a longer 2.5-minute trial of
the distance of the virtual object from the real marker board,
as estimated by RealityCheck (blue, ||c||) and the ground truth
(red, ||ctrue||) for a single user.

trials was 0.86 cm. The trials where the user moved and looked
away from the virtual object and returned later (look-away-
and-back) had the least drift difference (0.52 cm on average),
because there was usually only one large drift as the user
returned, but nearly no drift for the rest of the video, and
hence little drift difference. On the other hand, in the trials
where the user faced the virtual object from different angles
(side-to-side), the average drift difference was higher (0.87 cm).
The trials where the user moved in a complete circle around
the markers (around-in-a-circle) experienced the most extreme
angles and, correspondingly, the greatest drift error (1.02 cm
on average).

Longer length trials. To evaluate performance over longer
runs of the AR app, to see if the tool performs correctly, 3
additional 2.5-minute trials were performed, using the same
three movement strategies as in the shorter videos. Overall,
the results were similar to those of the shorter-length trials
discussed so far. Fig. 10 shows an example time series of one
of the longer-length trials. The y-axis is the distance between

Fig. 11: Average difference between RealityCheck and ground
truth, with standard deviation, when measuring the position of
a virtual object as viewed by two emulated users (||d− dtrue||).

the virtual object and the real maker board, as output by
RealityCheck (blue dots, ||c||) and the ground truth (red dots,
||ctrue||. Despite the virtual object coming in and out of view,
RealityCheck is capable of maintaining accuracy even during
longer AR sessions, as RealityCheck and the ground truth
match up well. The average difference between the vectors
received from RealityCheck and the ground truth was 1.6cm
across all the longer-length trials.

Spatial inconsistency across multiple devices. Reality-
Check is able to take in any recording of an AR app along with
the board configurations and camera parameters and perform
the estimations, regardless of when or what device the images
came from, as long as the image shows both marker boards
and the camera calibrations are known. To emulate a multi-
user scenario, we consider the first half of a video trace as
originating from one device, and the second half as originating
from a second device, then compare the drift across these two
halves of the video. Fig. 11 shows the average difference in the
position of the virtual object as measured by RealityCheck and
the ground truth, as seen by each of our two emulated users.
The difference is 1.3 cm on average. As the change in the
virtual object’s position is larger in this scenario than in the 1
second scenario previously considered (Fig. 9), we therefore
see the average error per video increase accordingly, but stay
within a reasonable 1-3 cm range.

V. DISCUSSION

In this section, we briefly discuss several assumptions of
RealityCheck. Firstly, RealityCheck relies on marker detection
and pose estimation (via PnP), which have been shown to
have good accuracy [16]. We also use a marker board, which
consists of 9 markers, to increase the detection accuracy [17].
RealityCheck can fail to output measurements if visibility is
poor; for example due to insufficient lighting, motion blur,
poor resolution, or extreme viewing angles of the virtual object
(e.g., 90◦ to the side, causing the virtual marker board is too
thin to be detected).

Secondly, the addition of a marker board to the scene, as
required for RealityCheck to work, can add additional features
to the scene for the AR system to use, thus impacting the

spatial drift of a virtual object. However, since the amount
of added features can be quite small compared to the natural
visual features available elsewhere in the scene, we believe the
effect on the AR application to be small, if any. Moreover, our
experiments show that even with these few additional features,
the AR app still experiences spatial drift (see Fig. 7).

Finally, while all tests were performed using SLAM-based
AR on mobile devices, RealityCheck generalizes beyond SLAM-
based AR, because it only needs the video of the AR app’s
operation, camera calibration parameters, and known markers as
inputs. Recording screenshots of a non-SLAM AR framework
(a machine learning-based framework, for example), will not
prevent RealityCheck from measuring the spatial consistency
of the virtual objects. RealityCheck is agnostic to the internals
of the AR platform, and only needs the final rendered images
to run successfully.

VI. RELATED WORK

Specialized hardware: Yagfarov et al. [18] evaluate SLAM
performance against results from a laser tracker in a static
indoor environment. However, such method requires extra
equipment(laser), and can’t evaluate camera rotation, whereas
our method can work in indoor, outdoor, or even dynamic envi-
ronments provided that the ArUco marker in our system remain
stationary. Other evaluation methods include constructing a 3D
model of the real scene, requiring a 3D scanner [19].

Pixel differences: Several works [20], [21], [22] measure
the pixel difference between where the virtual object is and
where it should be on the device screen (e.g., screen-space
error). We note that RealityCheck also projects the virtual object
to the device screen, and could calculate the drift in terms of
pixels. However, pixel drifts can tell us how much drift the
virtual objects have on the device screen, but they can have
significantly different meanings in 3D space.

Statistical analysis: Faion et al. [23] compute camera
translation and rotation multiple times using different set of
markers, and then use the standard deviation of the results as
the estimation reliability. However, such methods provide only
camera pose but not the drift of virtual objects. MacIntyre et
al. [24] propose a statistical method to estimate the error bounds
of 3D points and then calculate the mean and covariance of
the drift in the screen coordinates. However, this requires
knowledge of the individual sensor errors, which can be
difficult to obtain for heterogeneous AR hardware. Ran et
al. [25] design a marker-based method using mobile devices,
but require modification to the AR app, while our method
requires only screenshots and camera parameters. Scargill et
al. [26] develop an alternative methodology requiring more
extensive user interaction.

User participation: Some AR evaluation methods involve
user participation, rather than the objective feedback studied in
this paper. Peillard et al. [27] and Rosales et al. [28] measure
the difference between the distance the user perceives from
the device, and the distance designed by the program. While
RealityCheck is not evaluating the perceived position by users,
the drift of virtual object we measure will affect the perception

of the observer. Lehman et al. [29] and Bork et al. [30] evaluate
AR performance by asking users to give feedback or fill out
questionnaires. Such methods can provide direct feedback from
users, which is complementary to our approach, but can be
time-consuming.

VII. CONCLUSIONS

Tools to measure spatial inconsistency and other metrics of
interest are necessary for AR to improve. RealityCheck is an
accurate, fast, and cheap way to check the spatial inconsistency
of an AR system. Our evaluation of RealityCheck showed that
it can measure the spatial drift of a virtual object with 1.5 cm
error on average, compared to the ground truth. We release the
code as open-source in the hope that it will be useful to other
researchers and developers. In the future, RealityCheck could
be extended into a suite of tools to measure additional AR-
relevant metrics such as appropriate rendering of virtual objects
in different real world lighting conditions, appropriate shadow
placement, and proper occlusion of virtual objects.

ACKNOWLEDGEMENTS

This work is supported in part by NSF CAREER 1942700
and a U.S. Department of Education GAANN fellowship.

REFERENCES

[1] G. Goswami, “Council Post: Augmented Reality’s
Applications And Future In Business,” https://www.
forbes.com/sites/forbescommunicationscouncil/2020/10/15/
augmented-realitys-applications-and-future-in-business, year=2020.

[2] Apple, “Arkit - apple developer,” https://developer.apple.com/arkit/.
[3] Google, “Arcore overview,” https://developers.google.com/ar/discover/.
[4] IKEA, “Ikea place,” https://apps.apple.com/us/app/ikea-place/

id1279244498.
[5] R. L. Holloway, “Registration error analysis for augmented reality,”

Presence: Teleoperators & Virtual Environments, vol. 6, no. 4, pp. 413–
432, 1997.

[6] Google, “Snapchat lenses,” https://www.snapchat.com/.
[7] Google Creative Labs, “Just a Line - Draw Anywhere, with AR,” https:

//justaline.withgoogle.com/.
[8] K. Apicharttrisorn, B. Balasubramanian, J. Chen, R. Sivaraj, Y.-Z. Tsai,

R. Jana, S. Krishnamurthy, T. Tran, and Y. Zhou, “Characterization of
multi-user augmented reality over cellular networks,” in IEEE SECON,
2020.

[9] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in IEEE/RSJ IROS,
2012.

[10] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,”
The International Journal of Robotics Research, vol. 35, no. 10, pp.
1157–1163, 2016.

[11] L. Jinyu, Y. Bangbang, C. Danpeng, W. Nan, Z. Guofeng, and B. Hujun,
“Survey and evaluation of monocular visual-inertial slam algorithms for
augmented reality,” Virtual Reality & Intelligent Hardware, vol. 1, no. 4,
pp. 386–410, 2019.

[12] “Realitycheck project website,” https://sites.google.com/view/
arrealitycheck/home.

[13] R. M.-C. Francisco J.Romero-Ramirez, Rafael Muñoz-Salinas, “Speeded
up detection of squared fiducial markers,” in Image and Vision Computing,
vol. 76, 2018, pp. 38–47.

[14] Blender, “Blender overview,” https://www.blender.org/.
[15] I. Inc., “Xrecorder,” https://play.google.com/store/apps/details?id=

videoeditor.videorecorder.screenrecorder&hl=en US&gl=US.
[16] D. F. Abawi, J. Bienwald, and R. Dorner, “Accuracy in optical tracking

with fiducial markers: an accuracy function for artoolkit,” in IEEE ISMAR,
2004.

[17] “Opencv aruco marker board,” https://docs.opencv.org/master/db/da9/
tutorial aruco board detection.html.

[18] R. Yagfarov, M. Ivanou, and I. Afanasyev, “Map comparison of lidar-
based 2d slam algorithms using precise ground truth,” in International
Conference on Control, Automation, Robotics and Vision, 2018.

[19] F. Zheng, D. Schmalstieg, and G. Welch, “Pixel-wise closed-loop
registration in video-based augmented reality,” in IEEE ISMAR, 2014.

[20] W. A. Weliamto, H. S. Seah, T. Feng, and L. Li, “Enhancement of aligning
accuracy on zooming camera for augmented reality,” in International
Conference on Advances in Computer Entertainment Technology, 2005.

[21] F. Zheng, R. Schubert, and G. Welch, “A general approach for closed-loop
registration in ar,” in IEEE Virtual Reality, 2013.

[22] S. Petrangeli, G. Simon, H. Wang, and V. Swaminathan, “Dynamic
adaptive streaming for augmented reality applications,” in IEEE ISM,
2019, pp. 56–567.

[23] F. Faion, A. Zea, B. Noack, J. Steinbring, and U. D. Hanebeck, “Camera-
and imu-based pose tracking for augmented reality,” in IEEE International
Conference on Multisensor Fusion and Integration, 2016.

[24] B. MacIntyre, E. M. Coelho, and S. J. Julier, “Estimating and adapting
to registration errors in augmented reality systems,” in IEEE Virtual
Reality, 2002.

[25] X. Ran, C. Slocum, Y.-Z. Tsai, K. Apicharttrisorn, M. Gorlatova, and
J. Chen, “Multi-user augmented reality with communication efficient and
spatially consistent virtual objects,” in ACM CoNEXT, 2020.

[26] T. Scargill, J. Chen, and M. Gorlatova, “Here to stay: Measuring hologram
stability in markerless smartphone augmented reality,” arXiv preprint
arXiv:2109.14757, 2021.

[27] E. Peillard, F. Argelaguet, J. Normand, A. Lécuyer, and G. Moreau,
“Studying exocentric distance perception in optical see-through augmented
reality,” in IEEE ISMAR, 2019.

[28] C. S. Rosales, G. Pointon, H. Adams, J. Stefanucci, S. Creem-Regehr,
W. B. Thompson, and B. Bodenheimer, “Distance judgments to on- and
off-ground objects in augmented reality,” in 2019 IEEE VR.

[29] S. M. Lehman, H. Ling, and C. C. Tan, “Archie: A user-focused
framework for testing augmented reality applications in the wild,” in
IEEE Virtual Reality, 2020.

[30] F. Bork, R. Barmaki, U. Eck, K. Yu, C. Sandor, and N. Navab, “Empirical
study of non-reversing magic mirrors for augmented reality anatomy
learning,” in IEEE ISMAR, 2017.

