
Viewing the 360◦ Future: Trade-Off Between User
Field-of-View Prediction, Network Bandwidth, and Delay

Shahryar Afzal
Computer Science and Engineering
University of California, Riverside

Riverside, CA, USA
safza001@ucr.edu

Jiasi Chen
Computer Science and Engineering
University of California, Riverside

Riverside, CA, USA
jiasi@cs.ucr.edu

K. K. Ramakrishnan
Computer Science and Engineering
University of California, Riverside

Riverside, CA, USA
kk@cs.ucr.edu

Abstract—Predicting a user’s field-of-view (FoV) accurately
can help to significantly reduce the high bandwidth requirements
for 360◦video streaming, as it enables sending only the tiles
corresponding to the predicted FoV. Since many approaches for
user head-orientation (i.e., FoV) prediction have been proposed
in the literature, ranging from simple linear regression to more
complex neural networks, it is difficult to comprehensively decide
which method to use. Towards resolving this gap in knowledge,
in this work we benchmark user prediction algorithms over an
aggregation of multiple datasets and study the implications of
this analysis. Our results demonstrate that it is indeed difficult
for any prediction algorithm to accurately predict a user’s FoV
beyond a very short future time window of approximately 300
ms. We also observe that users’ viewing behavior is dominated
by sideways head movement, rather than up-and-down. These
findings have implications on network bandwidth, latency, and
playback buffering at the client: (1) Extra “padding” tiles are
needed around the user’s FoV in order to correct for prediction
errors; in particular, a rectangular padding achieves lower stall
rate than square padding, for the same bandwidth usage; (2)
Video playout buffers, network delay, and jitter need to be small
in order to avoid stale predictions of the user’s field-of-view,
which are only valid 300 ms into the future; (3) Per-video and
per-user personalization of the padding can save bandwidth for
slow-moving users or videos. We mathematically quantify these
tradeoffs and present simulation results to demonstrate these
findings and implications. Our results have implications for FoV
prediction methods in future 360◦streaming systems.

I. INTRODUCTION

360◦videos provide a more immersive user experience, and
entertainment providers are increasingly offering 360◦videos
on their online platforms (e.g., YouTube, CNN). However,
from a networking perspective, 360◦videos pose a significant
challenge as they require substantial amounts of bandwidth
(20-30 Mbps) in comparison to standard two-dimensional (3-
6 Mbps). There have been a number of efforts to reduce the
bandwidth consumption for delivering 360◦videos [1], [2], [3].
One of the most common approaches is to deliver only a
portion of the 360◦video. As opposed to regular videos where
the whole scene is viewed by the user, in 360◦videos, only
a portion of the scene – the field of view (FoV) – is viewed
by the user at any given time, reducing the bandwidth usage
by almost 80% [4], [5]. This partial viewing is supported by
modern video codecs such as HEVC [6], [4], which allow for
partitioning the video into tiles (illustration in Fig. 1).

Being responsive to what the user is currently viewing in her
FoV requires the system to support an extreme level of interac-
tivity: the user’s head orientation needs to be determined, the
FoV computed, and the corresponding tiles of the 360◦video
delivered from the server. Academia and industry have been
actively studying FoV prediction (i.e., how to predict the
user’s head orientation at some point in the future), and using
this to request the tiles of the 360◦video encompassing the
expected FoV of the user, thereby both reducing the amount
of bandwidth consumed while at the same time ensuring that
the user’s quality-of-experience (QoE), in terms of infrequent
stalls, is maintained [7], [8], [9], [10]. Most of the systems
designed to efficiently stream 360◦videos [2], [11], [1] depend
on accurate user FoV predictions.

Challenges: Predicting the user’s head orientation/FoV and
choosing which portions of the video to transmit is chal-
lenging, especially as we seek to predict further and further
ahead into the future if the system has a large playback delay.
These challenges are caused by the erratic nature of the user’s
head movement, as the user’s head orientation depends on a
number of characteristics, such as the user’s usual behavior
itself (relatively active users vs. passive users), the nature
of the video (content with lot of action and movement vs.
relatively static content), objects and actions of interest in the
content, location of those interesting objects in the content
(always in front vs. being located all around), the amount of
inherent motion in the content, etc. Tiling of the video helps to
an extent, because of the coarser spatial granularity at which
the prediction can be made, but cannot fully alleviate user
prediction challenges.

Related work: There have been a number of methods
proposed to predict the user’s head orientation or FoV. These
approaches range from simple linear regression methods [2],
[1], [12] or k-nearest neighbor [7], [8] to more sophisticated
machine learning such as decision trees or neural networks [7],
[9]. The inputs to these prediction methods are typically the
recent history of head orientation of the current user, and
optionally the historical data of previous users viewing the
same 360◦video in the past, and the output is the predicted
head orientation/FoV of the current user. These prediction
methods have been typically designed and evaluated ad hoc
across disparate datasets, both public [13], [14], [10] and



proprietary [7], [12], [2], [1].
Goals: Thus, the first goal of this work is to systematically

benchmark the performance of the various user prediction
methods across a large pool of publicly available datasets, to
establish useful guidelines on which user prediction methods
provide the best performance, and is the foundation for the
rest of the paper.

The second goal of this work is to understand how user
behavior observed in these datasets can provide opportunities
to improve user QoE. Our benchmarking of the user predic-
tion methods reveals that the prediction accuracy drops very
quickly as we increase how much into the future we seek to
predict. One common approach to compensate for such predic-
tion inaccuracies is to introduce a certain amount of padding
around the FoV, and transmit these additional padding video
tiles also, at the expense of additional bandwidth consumption.
We leverage two key observations of user behavior to optimize
this padding: (a) Users tend to look side-to-side rather than up-
and-down, and (b) Users who are very active when viewing
one 360◦video also tend to be active when viewing other
360◦videos. We leverage these two observations to customize
the padding shapes and sizes, achieving fewer stalls for the
same bandwidth consumption, or less bandwidth consumption
for the same stall frequency.

The third goal of this work is to understand the impact of
the aforementioned low prediction accuracy on the 360◦video
playout delay and acceptable network latencies. Typically, the
playout delay/buffer is used to accommodate the latency for
obtaining the video tiles and, more importantly, “ride out”
the network delay variations (jitter) in the delivery of the
360◦video. How far ahead the FoV prediction method is
expected to predict is related to the playout delay size, which
is in turn a function of the network round-trip time and the de-
jitter budget. To keep the head orientation prediction accuracy
within reasonable levels, we argue that the playout delay plus
network round trip time needs to be very small (∼300 ms from
our results). Hence, the network delay and jitter also have strin-
gent upper bounds. To quantify these network requirements,
we provide formulas to describe the above tradeoffs between
the playout delay, network delay, and network jitter. While
existing 360◦streaming systems set the playout buffer in an
ad hoc way based on typical configuration parameters, such
as the video chunk length of 1-4 seconds [12], in this work we
argue that the playout delay should instead be set based on its
relationship with FoV prediction accuracy and network delay.
We believe this argument is one of the strongest reasons for
requiring a very low latency, low jitter network, as well as a
small playout delay, for effectively streaming 360◦videos.

In summary, our main contributions are as follows:
• We systematically compare the predictability of the user’s

head orientation across several previously proposed pre-
diction methods that rely on user history. We show that
the ability to predict the user’s head orientation further
into the future (e.g., 30 or 60 frames into the future) is
extremely poor across all of the prediction algorithms, in-
cluding popular methods such as LSTM neural networks

Fig. 1: Example relationship between a user’s actual FoV,
and the user’s predicted Fov, with tiling. The user’s FoV is
projected from the sphere onto a 2D plane, resulting in the
irregular shapes shown above in the figure.

and linear regression. Rather, prediction methods are only
effective over a very short-term lookahead future of ∼300
ms. (§II-B)

• Based on the observation that users tend to move their
heads sideways more than up and down, we show
that sending additional padding tiles in a rectangular
shape around the user’s FoV is more effective than a
square padding [12], [15]. These rectangular paddings
provide operating points at the Pareto-frontier of the
stall-bandwidth tradeoff; in other words, with rectangular
paddings, we can reduce the number of stalls for the
same bandwidth, or consume less bandwidth for the same
number of stalls. (§III)

• Based on the observation that users’ activity level (in
terms of head movement) tend to be consistent across
videos, we propose that padding size be personalized per
user. Smaller rectangular paddings can be used for low-
activity users, providing bandwidth savings. Additionally,
we study the possibility of customizing padding per-
video, but find that per-user customization provides larger
bandwidth savings for the same stall rate. (§IV)

• Since our comparison of FoV prediction methods reveals
that we can only predict over the very short term, any
reduction of the bandwidth for delivering 360◦video to
the user has to be based on the very short term expectation
of what the user’s FoV will be. This requires the playout
delay at the client be very small, and the round-trip
latency to the server, where the requested content is
located, plus the network delay variation (jitter) has to be
correspondingly small. We characterize the relationship
between network delay, jitter, playout delay, and how far
into the future the FoV needs to be predicted. (§V)

II. EFFECTIVE USER HEAD-ORIENTATION PREDICTION

In this section, we introduce the datasets, metrics, and
head orientation prediction methods. We then compare the
effectiveness of these prediction methods that are commonly
considered in the 360◦video delivery arena.

A. Setup

1) Datasets: We use three publicly available datasets. Each
dataset contains the head orientation traces of some number
of users watching 360◦videos.



(a) Quaternions (q0, q1, q2, q3) (b) Cartesian coordinates (x, y, z) (c) Longitude/latitude

Fig. 2: Examples of different representations of the same head orientation trace. The same trace looks quite different under
different representations, which can then affect the prediction method.

• Dataset 1 [13]: There are 59 users watching 7 different
videos, with average video length of 3.5 minutes.

• Dataset 2 [14]: There are 48 users watching 18 videos, with
average video length of 3.8 minutes. In the first 9 videos,
users are allowed to explore the videos as they wish, while
in the latter 9 videos, users are told they will be quizzed on
the video content. Unless otherwise specified, we consider
the first 9 videos in this work in order to be comparable
with datasets 1 and 3.

• Dataset 3 [10]: There are 45 users watching 208 videos.
Each video is watched by a subset of all users (ranging from
28-34 users). The video length ranges from 20-60 seconds.

Head-orientation representation: There are multiple ways
to represent the user’s head orientation, including angu-
lar orientation (used by [2], [11], [9]), latitude/longitude,
Cartesian coordinates on the sphere or video plane (used
by [10]), Quaternions (used by [13], [14]), and Axis-angle
representations. Latitude/longitude is similar to angular ori-
entation (yaw, pitch, and roll), except neglecting the roll
dimension (which is empirically uncommon among users).
Quaternion and axis-angle representations are commonly used
in virtual reality [16], and represent rotation in 3D space
by defining a vector (axis of rotation) v = (v1, v2, v3)
and an angle θ. The axis-angle representation is written as
(θ, v1, v2, v3), while the quaternion representation is defined
as

(
cos

(
θ
2

)
, v1 sin

(
θ
2

)
, v2 sin

(
θ
2

)
, v3 sin

(
θ
2

))
. Examples of

different representations are shown in Fig. 2.
Dataset pre-processing: We have undertaken a number of

steps to pre-process the datasets. In our experience, these pre-
processing steps, particularly the head orientation representa-
tion and time series differencing, can have a significant impact
on the performance of the prediction methods (see Sec. II-B).

1) Interpolation: Each dataset records the head orientations
with a different sampling frequency. Since we are do-
ing per-frame prediction, we desire one data point per
frame; therefore, we remove extra data points per frame,

and also perform linear interpolation (using the SLERP
method [17]) to make the sampling frequencies consistent
across the three datasets.

2) Conversion to common representation: As discussed
in Section II-B, we convert the datasets to a common
head orientation representation - namely, the Cartesian
representation.

3) Differencing: Differencing (i.e., computing the difference
between the current data point and the most recent data
point) [18] is a well-known time series analysis technique,
and helps by making the time series have a more stable
mean and variance, which is then easier to model/predict.

4) Remove discontinuities: Because the head rotations are
limited to a specific range, e.g., [-180◦, +180◦] for
longitude or [-1, +1] for the axis-angle representation,
we apply a modulo of the interval length to the input
data to avoid these discontinuity issues.

2) Evaluation Metrics: The evaluation metrics considered
in this paper are the following:

• Prediction Loss (in ◦): Prediction loss is defined as the
angular distance (smallest angle) between the actual and
the predicted user’s head orientation.

• Stalls: We consider a stall to occur if any part of the user’s
FoV is not available in the playout buffer, and requires the
client to request the missing information from the server.

• Bandwidth consumed (kbps): The bitrate of each tile is
estimated as the total bitrate of the video divided by the
total number of tiles. The total bandwidth consumed is the
sum of the bitrates of all the tiles sent to the user.

3) User Head-Orientation Prediction Methods: We have
chosen a variety of prediction methods to estimate the users’
head orientation, ranging from simple methods such as lin-
ear regression and k-nearest neighbors, to machine learning
methods such as decision trees and neural networks. Our goal
is capture the spirit of the main methods proposed in the
literature, and perform apples-to-apples comparison of them.



(a) Lookahead = 7 (b) Lookahead = 10 (c) Lookahead = 15

Fig. 3: CDF of prediction loss for different head orientation representations and lookaheads values. Cartesian coordinates plus
time differencing has the lowest prediction loss.

All prediction methods are trained on each video’s data using
a randomly selected subset of training users (70%), and tested
on the remaining users (30%). We also perform k-fold cross
validation, with the value of k = 5.
• Naive (used by [15]): This baseline prediction method

chooses the current head orientation as the predicted user’s
head orientation at a future time instant.

• Linear or Ridge Regression (RR): (used by [2], [12],
[1]): Linear regression is a simple and popular method
for user head orientation prediction. In ridge regression,
a regularization parameter is added that tends to avoid
complex models with many parameters, in order to avoid
overfitting, while still achieving high prediction accuracy.

• K-nearest neighbors (KNN): (used by [7], [8]) This
method finds the K historical users, across all time, whose
subsequence of head orientations are closest to the test
user’s current head orientation subsequence. The average
of these K historical users’ head orientations is output as
the predicted future head orientation of the test user.

• Decision trees (XGBoost): (used by [7]) XGBoost is a
popular machine learning library [19] using decision trees.
Since XGBoost by default only supports scalar outputs
predictions, we train and predict each individual coordinate
of the head orientation separately.

• Long short-term memory (LSTM): (used by [11], [7],
[10]) LSTM is a neural network architecture geared towards
time series prediction. It consists of cells and gates, and
uses feedback loops to maintain state and so produce better
predictions than the standard feedforward neural networks.
Hyperparameter selection: For each of the prediction meth-

ods described above, there are a number of hyperparameters
that can be set/optimized. Unless otherwise noted, we perform
grid search to find the best hyperparameter values. The hyper-
parameters common to all prediction methods include:
• Lookahead (L): The lookahead value specifies how many

frames into the future the head orientation prediction
method should predict.

• History window (H): The history window is how many
frames in the past should be used to predict the future
head orientation of the user. In the case of KNNs, the
history window is defined as the subsequence length. A
larger window size provides more information about the

user and potentially better predictions, but increases the
computational complexity.

There are also several hyperparameters specific to each predic-
tion method. Based on the grid search, for KNN, we selected
K = 5 and H = 1. For XGBoost, H = 10. For Ridge
Regression, the penalty weight (α) is selected from 1, 0.1,
0.01, 0.001, 0.0001, and H = 30. For LSTM, H = 10, and
there are two LSTM layers (the size of each layer and the
learning rate is determined by the grid search) and one output
layer (a dense layer with 4 neurons).

B. Comparison of User Prediction Algorithms

In this subsection, we benchmark the performance of the
user head orientation prediction algorithms across datasets,
carefully examining the impact of various parameters such
as head orientation representation and prediction lookahead
on the prediction loss. Our main findings are that: (1) Head
orientation representation and time differencing significantly
impacts prediction loss; (2) LSTMs, linear regression, and
decision trees have very similar prediction loss across all the
considered user prediction algorithms; and (3) Prediction loss
strongly depends on how far into the future the prediction
algorithm needs to predict (i.e., the lookahead value). Very
low lookahead values (e.g., 10 frames ∼300 ms) are needed
to achieve prediction loss of less than 7◦.

Impact of head orientation representation: Fig. 2 shows
an example of the same user trace plotted with different rep-
resentations. We can see that depending on the representation,
the data values change over time more smoothly or with higher
variance, which can impact the ease of prediction. Therefore
we compare the user head orientation prediction loss with the
different head orientation representation formats using ridge
regression in Fig. 3 (results for other prediction methods are
similar). The cases where differencing is applied is labeled
with “+ diff”. The Cartesian coordinates representation has the
lowest loss, followed by axis-angle and longitude/latitude. This
pattern persists across all lookahead values Fig. 3. Therefore,
we proceed with using the Cartesian representation (+diff)
for all datasets. Note that while differencing is a common
technique in time series analysis, it is typically not con-
sidered by existing FoV prediction methods [2], [11], [1].
Using differencing results in a prediction loss improvement
of approximately 5◦ on average across all lookahead values



(a) Comparison of user prediction algorithms
(lookahead L = 7).

(b) Comparison of user prediction algorithms
(lookahead L = 30).

(c) Impact of prediction lookahead.

Fig. 4: Comparing loss of the various prediction methods across all datasets. LSTM, ridge regression, and decision trees have
the lowest loss. Prediction loss is strongly dependent on how far into the future the prediction method needs to predict.

and representations, and hence we recommend the use of
differencing in future 360◦streaming.

Which prediction method has the lowest loss? We next
compare the prediction loss of the various user prediction
methods across all users and datasets. The CDF of the loss of
each frame across all videos and users are shown in Figs. 4a
and 4b, for two different lookahead values. The median loss of
ridge regression, XGBoost, LSTM, naive, and KNN is 24.0◦,
24.0◦, 24.1◦, 28.5◦, and 34.1◦, respectively, for a 30-frame
lookahead, with similar patterns for a 7-frame lookahead. We
observe that the prediction methods can be split into two
clusters: one cluster with relatively high prediction accuracy
(XGBoost, LSTM, RR, Naive), and the other cluster with low
accuracy (KNN). Intuitively, the relatively large gap between
the performance of the methods in the two clusters can be
explained by the fundamental nature of these algorithms.
KNN tries to find the most similar user(s) and copy the
similar users’ head orientations to make predictions. On the
other hand, XGBoost, LSTM, and linear regression can model
user behavior through their internal parameters (determined
during the training process), and find trends in user behavior,
resulting in better predictions. Unless otherwise specified, for
the remainder of this work, we use the Linear Regression
model as it has very similar performance to the other “good”
prediction methods (XGBoost and LSTM).

We also note that the Naive method has fairly good
performance, somewhere in between the sophisticated linear
regression and the KNN method. While simple, it has several
advantages: (1) prediction has negligible latency and compute
requirements, which can be helpful on resource-constrained
mobile devices; (2) there is no training process, making this
method usable for live videos that lack historical training data;
and (3) for video-on-demand, if additional viewing data is
collected from users, the naive method does not require re-
training, unlike the other prediction methods which would
require re-training to update the models. Thus the Naive
method can be considered a good candidate for user head
orientation prediction in 360◦streaming systems.

Per-user comparison: We also investigate the prediction
accuracy of individual users. Our hypothesis is that users with
more head movement should tend to have higher prediction
loss. To investigate this, we plot the average head movement

Fig. 5: Users’ average head movement (colorful bars) is
correlated with their prediction loss (black bars).

within one second for each user and each video, along with the
corresponding prediction loss. We plot examples of 4 videos
in Fig. 5 (for L=30). We make several observations: (1) The
relative amount of head rotations for each of the different
users remain about the same across different videos, i.e., the
users who move a lot in a given video tend to move a lot
while viewing other videos as well. For example, user 37 has
the lowest average movement in 2 of the 4 videos, and the
second-lowest average movement in the remaining 2 videos.
(2) Prediction loss is positively correlated with the magnitude
of the user’s movement. The black narrow bars in Fig. 5 show
the average prediction loss, and their height appears to be
positively correlated with the colorful bars representing the
user’s average head movement. This implies it is harder to
predict the FoV of the users who tend to move a lot, while
users who move less will have better prediction accuracy.

Combining the above two observations, users who tend to
be difficult to predict in one video also tend to be difficult



(a) Rank of user movement across
videos

(b) Rank of user head orientation
prediction loss across videos

Fig. 6: Rank of user movement and prediction loss (compared
to their peers) across videos (dataset 2, experiment 1). Users
tend to be consistent across videos, both in terms of user
movement and prediction loss.

to predict in other videos. To investigate this further, we
calculate the average head movement of each user for each
video, and rank the user’s head movement compared to her
peers. We then plot the distribution (box plot) of each user’s
rank across videos. We repeat this calculation for each user’s
prediction loss as well, and show all the results in Fig. 6.
As we can see, the order of the users are the same in
both the movement ranking and the prediction loss ranking,
suggesting the correlation between movement and prediction
loss. This suggests opportunities for personalizing each user’s
tile selection policy, as users who have more head movements
may require more extra padding tiles to account for their
movements. This implication is discussed in Section IV.

Impact of lookahead on prediction loss: We next evaluate
the impact of different prediction lookahead values on the
prediction loss, i.e., how far into the future can the user
orientation prediction method predict? We sweep lookahead
across several values of L = [7, 10, 15, 20, 25, 30] frames,
re-training each prediction method every time. The average
prediction loss of LSTM, linear regression, and Naive for
different lookahead values is shown in Fig. 4c (we focus
on these three algorithms because they have relatively low
prediction loss compared to the other methods, as discussed
earlier in this section). We can see that short-term predictions,
such as 7 frames ahead, result in lower prediction loss (e.g.,
3.6◦average loss when L = 7 for RR); while, predicting
further ahead into the future, such as 1-2 seconds ahead,
results in higher loss (e.g., 24◦average loss when L = 30
for RR). Such a 24◦prediction error in the vertical direction
would, for example, result in approximately 24◦/90◦≈25% of
the user’s FoV area being missing, causing a stall while the
system requests those missing tiles. Requesting the missing
tiles to correct the stall incurs at least an extra round-trip time,
plus the transmission and playout buffer delay. Even if some
extra visual information from around the FoV (i.e., padding)
was sent to accomodate for the prediction error, this would
still require a prediction accuracy of less than the size of that
padding. For example, a default 15◦of padding in the vertical
direction [15] would require prediction loss of less than 15◦to
avoid a stall, on average. It is well known that users are highly
sensitive to stalls [20]. So, the tolerable prediction loss should
be much less than 15◦to avoid a stall in the majority of cases.

In current practice, lookahead values are often set based

(a) % of stalls across all datasets,
without padding

(b) Bandwidth savings of perfect
prediction vs. sending all tiles,
for select videos (dataset 1)

Fig. 7: Importance of FoV-based 360◦streaming.

on chunk duration. 360◦videos are typically temporally split
into chunks of 1-second long or more, so prior work on
360◦streaming (e.g., [2], [11], [12]) mainly sets the user
prediction lookahead value to 1 second or more. For example,
Petrangeli et al. [12] predicts 1 second into the future, while
Flare [2] predicts 3 seconds into the future. However, based
on our results, we argue that a lookahead value of 1 second
or more is very difficult to predict accurately (i.e., has high
prediction loss of 24◦ when L = 30), potentially leading
to stalls and wasted network bandwidth by sending wrongly
predicted tiles. Hence we believe that user head orientation
prediction methods should set a very short lookahead value, in
order to avoid a number of associated problems: stalls, wasted
network bandwidth and overall poor QoE.

III. MITIGATING NETWORK BANDWIDTH NEEDS AND
STALLS WITH FOV PADDING

Building on predicting the user’s head orientation, we now
compute the tiles corresponding to the user’s FoV based on
her head orientation, and discuss how extra padding tiles can
be used to overcome FoV prediction errors, at the expense of a
carefully-managed increase in bandwidth usage. In particular,
we leverage the natural tendency of users to look side-to-side
rather than up-and-down and propose an asymmetric, wide
padding shape to account for user prediction errors.

Tile computation: We split each video into 72 equal-sized
tiles, with 6 tiles per column and 12 tiles per row of the
rectangular video [7], and define the FOV as 90◦× 90◦ [7].
To convert the user’s head orientation, which is ouput by the
user head orientation prediction methods, into the set of tiles
actually viewed by a user, we take the point representing
the center of the user’s FoV, find the area on the surface of
the sphere representing a 90◦× 90◦rectangle area (the FoV)
around that point, and compute the corresponding region of
the video using the equirectangular projection. Finally, we
choose the video tiles overlapping with the specified region.
An example is shown in Fig. 1.

Padding to reduce stalls: We first motivate why padding is
needed to reduce the fraction of frames that may contribute to
stalls. In our first experiment, we evaluate a baseline approach
of sending only exactly the tiles needed to cover the FoV of
the user, i.e., a default 90◦x 90◦FoV. Fig. 7a illustrates how
the lookahead (choosing 7 and 30 frame lookahead (which
we select as being at the two ends of the range of reasonable



Fig. 8: Heatmap of all users’ FoVs, across all datasets.

lookahead values based on our experiments)) impacts the
percentage of frames that have a stall (across all videos,
datasets, and head orientation prediction algorithms). Similar
to the trend in Fig. 4c, as the lookahead increases, the fraction
of stalls increases. This is because as the lookahead increases,
the head orientation prediction loss increases, causing missing
tiles and thus stalls, and the client has to request the missing
tiles. Furthermore, we observe that the absolute values of the
stall percentage is quite high (>30% of frames have stalls
when lookahead is 7 frames, and more than 70%(!) of frames
have stalls when the lookahead is 30 frames), suggesting that
a baseline approach of only sending the minimum tiles needed
to cover the FoV is clearly insufficient. Since prediction errors
are likely inevitable, especially for predicting further into
the future, additional padding tiles outside of the FoV need
to be added to mitigate the number of stalls [12]. Adding
more padding tiles decreases the risk of stalling, but increases
the network bandwidth requirement. In the extreme case, the
maximum size padding surrounding the predicted FoV would
mean the client will download all the tiles for each frame.

Optimizing padding shape to trade bandwidth for stalls:
Next, we study how to select the tiles that should be part
of the padding. Going beyond the simple intuitive approach
of selecting the tiles that are directly adjacent to the tiles in
the user’s FoV (e.g., symmetrically encircling the FoV), we
leverage a key insight about the users’ viewing behavior: most
of the movement results from users looking side-to-side. This
is demonstrated in Fig. 8, which shows a heatmap of all videos
from all three datasets. We find the tiles inside the FoV of each
user and count the number of times each tile is present inside
the FoV. The brighter a tile is in Fig. 8, the larger number
of times it has appeared inside the FoV of the users. This
suggests generally it is more likely that the users move along
the horizontal axis (i.e., change in longitude), and prediction
errors are also more likely along the horizontal axis. Thus,
padding horizontally around the user’s FoV is likely to help
reduce stalls more than adding padding vertically.

To show the implications of this, we plot the fraction of
stalls vs. bandwidth for different padding shapes and sizes
in Fig. 9. Bandwidth is normalized by the total bit rate
of each 360◦video, and stalls are normalized by the total
number of frames in each video. The green and dashed
red lines correspond to the same lookahead value (7, 10
or 15 frames) for the square and rectangular paddings. For
example, consider a lookahead of L = 10 frames and a

Fig. 9: Tradeoff between bandwidth usage and stalls, for dif-
ferent padding shapes and lookaheads. Rectangular paddings
are at the frontier of the region, i.e., they are Pareto-efficient.

30◦×20◦ padding as the “baseline” (this padding is in addition
to to the default FoV). A square 30◦×30◦ padding represents
expanding the FOV vertically, while a 40◦×20◦ padding rep-
resents a horizontal expansion. The square 30◦×30◦ padding
decreases stalls by 0.46% compared to the baseline 30◦×
20◦ padding, for a 3.4% increase in total bandwidth. How-
ever, the wide 40◦×20◦reduces stalls even further (1.53%),
with a lesser amount of additional bandwidth (only 1.89%
more bandwidth compared to the baseline) needed than the
30◦× 30◦ padding. Similar arguments hold when compar-
ing the 40◦×30◦padding with the 40◦×40◦padding (vertical
expansion), and the 50◦×30◦padding (horizontal expansion).
Overall, the horizontal, wide padding shapes tend to lie at the
Pareto frontier of the tradeoff between bandwidth and stalls.

Having made the case for rectangular paddings (horizontal
expansion), we now explore further the bandwidth/stall trade-
offs for different lookahead values. Intuitively, the padding
shape has a much bigger role at higher lookahead values (e.g.,
L = 15) , because higher lookahead values tend to result in
higher prediction losses (Sec. II-B). For example, in Fig. 9,
the rectangular 50◦×20◦padding, when L = 7 frames, saves
0.59% of stalls for the same bandwidth usage as compared
to the square 30◦×30◦padding; making the same comparison
when L = 15 frames, the rectangular padding saves 4.82% of
stalls. However, no matter the lookahead value, the horizontal
padding shapes (solid line in Fig. 9) tend to lie at the Pareto
frontier of the bandwidth-stall tradeoff, and square padding
shapes (dashed lines in Fig. 9) should be avoided since they
are interior points in the tradeoff region. Plotting the results in
another way, in Fig. 10, we see the average stall rates across
all videos across all datasets for different lookahead values.
We can easily see that the rectangular padding (50◦×20◦or
60◦×30◦) is more effective in terms of reducing the stall rate
than the square padding (30◦×30◦) for the same bandwidth.
This pattern is consistent across all lookahead values.

These results give us the opportunity to choose the padding
size based on the the preferred values for stall rate and



Fig. 10: Dependency between lookahead and stalls for differ-
ent padding sizes (dataset 1).

Fig. 11: Average stalls of selected users (dataset 2, exp. 1).

bandwidth usage. For example, if we choose to predict 10
frames ahead (L = 10) and want to have a stall rate of less
than 5%, then we need a padding size of 30◦×20◦. In this case
the bandwidth consumption is ∼35% (of the complete video’s
bandwidth). Or, if we choose to predict 15 frames ahead,
which enables us to have a larger playback buffer, we will need
at least a 60◦×30◦padding which consumes ∼45% bandwidth
on average. For the remainder of this paper’s experimental
results, unless otherwise stated, we fix the padding shape and
lookahead value. Based on the shape of the curve in Fig. 9, we
focus on 50◦×20◦padding and L = 10 as achieving a good
balance between the fraction of stalls and bandwidth usage,
with less than 5% stall rate (closer to about 3%) and only 40%
of the video’s total bandwidth.

IV. PERSONALIZATION PER USER AND PER VIDEO

A. Per User Personalization

Given that we use machine learning techniques to predict the
user head orientation and derive the expected FoV in the near
future, we seek ways to exploit these predictions to mitigate
the bandwidth demands even further. Recall that in Sec. II-B,
we observed that the viewing behavior of different users is
different, and a user that has less movement across one video
has the same behavior across other videos. As a result, we
seek to leverage these user level characteristics to customize
the client’s requests to the server for the corresponding video
tiles. The primary customization we explore is how to provide
variable-sized padding depending on the user. The goal is to
ensure their QoE is preserved while maximizing bandwidth
savings. Note that this personalization is enabled by prediction.

Fig. 12: Prediction loss is lower for the “Paris” video due to
audio narration biasing the users’ FoVs towards a common
region in the video (dataset 1).

Without the guidance from the prediction algorithms (e.g., if
one were to use the naive method [15]), it would be difficult to
customize the padding on a per-user basis, requiring a separate
means for learning/predicting individual user behavior.

When the user does not move much, how much smaller can
the padding be? We show in Fig. 11 that reducing the padding
to a 30◦×10◦ size still allows the users with small head
movement (e.g., users 37, 32, 19 from Sec. II-B) to have no
more than 5% stalls for lookahead = 15. As a 50◦×20◦padding
results in a 38.45% bandwidth usage (compared to streaming
the entire 360◦video), while a 30◦×10◦padding would only
use 31.96% bandwidth, a ∼6% saving in bandwidth can be
obtained as a result of personalization. Thus, customization
gives us another lever for mitigating the significant bandwidth
needs of 360 ◦video. This customization would have to be
done online in an incremental manner, using features learned
from the the user’s historical behavior. This could be done
in a holistic fashion, for example using neural networks (as
used for non-360◦video [21]) to both predict the FoV and
which padding shape to select, or in a modular fashion, for
example by creating a machine learning model to classify
users as high or low activity users, mapping the classification
result to padding size, and combining this with the FoV
prediction to choose the set of tiles to deliver. In both cases,
the system would have to continuously receive feedback about
the user’s behavior and adapt the padding size online as more
information is collected.

B. Per Video Personalization

Guided videos: We can also consider adapting to individual
videos instead of individual users, especially for delivering
stored video, by learning the behavior of all of the users
viewing a particular video. This is based on the intuition that
some videos result in very active viewing patterns, while other
videos result in more stationary viewing patterns across users.
For example, Fig. 12 shows the average prediction loss of
two videos from the Dataset 1. “Paris” and “Venice” are two
videos of the same “sightseeing” genre. However, the average
prediction loss is much lower for the video ”Paris” than video
”Venice”. The reason is that Paris is an audio-guided video,
where a narrator points out the interesting regions to watch
in the video and the users, more or less, follow the guide’s
directions. Thus, for such videos where the users are biased



(a) Heatmap of users’ FoVs

(b) Percentage of stalls

Fig. 13: User viewing behavior and stall probability for two
videos. Video 0 has more concentrated user viewing patterns,
and hence experiences fewer stalls, for different lookahead and
padding sizes.

towards watching a specific region of the video or move in a
certain direction, the prediction methods tend to have higher
accuracy because they learn these patterns from the training
process. Thus, it is easier to predict the user’s head movement
for some videos.

Videos with disparate viewing patterns: Some videos also
tend to have different viewing patterns based on the nature of
their content. To show this, we choose two specific “unbiased”
videos from Dataset 2, experiment 1: video 0 and video 4.
Fig. 13a shows the corresponding heat maps of the center of
the users’ FoVs. As we can see, in video 0, center of the FoVs
are focused on one part of the frame, unlike video 4 where
users view much more of the video, in the horizontal direction.
Fig. 13b shows the average percentage of stalls across all
users for videos 0 and 4, for several lookahead values. The
difference between the stall results for these videos matches
the inference we make from the heat maps, in that video 4 has
a higher average stall percentage for the same padding size.
Further, the figure indicates that video 4 might benefit from a
larger padding (50◦×20◦) to get the stalls below 5% across all
users, while for video 0, it may be sufficient to use a smaller
(30×10) padding. However, the differences are not too large.

Besides padding, we also experimented with using features
from the video itself, such as motion vectors and pixel
intensities, to improve prediction accuracy and reduce stalls.
However, despite extensive experiments incorporating such
features into LSTMs, we were unable to find any perfor-
mance improvement (typically incorporating motion features
degraded prediction accuracy by 1-2◦), and therefore we did
not pursue content features further, and instead focused on
customized padding per-video.

Fig. 14: Per-video vs. per-user customization

C. Per-video vs. per-user personalization

Which of the above aspects - per user or per video per-
sonalization - is more beneficial or dominant? We carefully
examine the stalls experienced by the test users for 3 padding
shapes, 30◦×10◦, 50◦×20◦, and 60◦×30◦, across all 9 videos
in dataset 2, experiment 1. We show the box plots in Fig. 14.
There are two takeaways from these results: (a) The variation
in stall rate for the same user watching different videos is
relatively small (small size of boxes in top plot of Fig. 14).
For example, user 37 has very similar stall rates across all the
9 videos that this user watched. (b) The variation in stall rate
for the same video watched by different users is relatively high
(large size of boxes in bottom plot of Fig. 14). This is due to
the fact that different users have different behavioral patterns
when watching the same video. For these reasons, per-user
customization seems to be more beneficial than customization
on a per-video basis. For example, if we consider user 37
and try to pick a good personalized padding size, we can
see that this user is not very active and a 30◦×10◦ padding
would suffice to keep the average stall rate below 5% (the
horizontal dashed line), across videos watched by that user.
The same applies to user 32 and 19. We need bigger padding
sizes for more active users, i.e., 50◦×20◦for users 18 and 47,
and 60◦×40◦for users 28, 21, and 25.

On the other hand, choosing the padding size based on the
video leads to a one size fits most approach, as all but 2 of the
videos in Fig. 14 bottom plot require a 60◦×40◦ padding size
to stay under a 5% stall target (horizontal dashed line), missing
on opportunities for bandwidth savings compared to per-
user personalization, in which a 30◦×10◦or 50◦×20◦ padding
suffice for the majority of users.



user prediction 
lookahead (L)

- (network 1 delay)/3

network jitter (σ)

network 2 with 
higher delay

network 1 with 
lower delay

max jitter of 
network 1

300 ms

max jitter of 
network 2

- (network 2 delay)/3

Fig. 15: Relationship between network delay, jitter, and pre-
diction lookahead.

V. RELATIONSHIP BETWEEN LOOKAHEAD, PLAYOUT
DELAY, AND NETWORK DELAY

The low lookahead value of 300 ms discussed in Sec. III has
implications for the frames’ playout delays and the tolerable
network delay and jitter for streaming 360◦videos. Specifi-
cally, predicting the user’s head orientation only 300 ms into
the future in order to achieve low stalls implies that the total
time from the tile request to rendering at the client, i.e., the
round-trip time plus the frame playout delay, must also be less
than 300 ms. Otherwise, the prediction will be stale. This is in
contrast to prior work that sets the prediction lookahead value
to much higher values, e.g., 2 seconds [11], [22], 3 seconds [2],
1-4 seconds [12], 2-6 seconds [8], etc., which allows for much
higher network delays.

We can derive the relationship between user prediction
lookahead, playout delay, network delay, and network jitter
as follows. The playout delay of a frame is commonly set
as [23]:

Tplayout[i] = 3σ (1)

where Tplayout[i] is the time from when a frame i arrives
at the client to when it is displayed to the user, and σ is the
standard deviation of the packet inter-arrival time as measured
by the client. The factor of 3 is due to approximating the inter-
packet arrival time as a Gaussian distribution (which has been
found to be a reasonable approximation in practice [24]), and
allowing for 3 standard deviations of possible delay. Then the
total round-trip delay from when a frame is requested to when
it is received and displayed is:

Tplayout[i] + Tnetwork[i] + Trender ≤ L (2)

where Tnetwork[i] is the network delay RTT experienced by
frame i, Trender is the frame rendering time, and L is how
far ahead the user prediction method is must predict (i.e., the
lookahead value).

Eqn. 2, while simple, gives a rule of thumb for the tolerable
network RTT and jitter based on the user head orientation
prediction method’s lookahead parameter. Fig. 15 illustrates
Eqn. 2 and shows the maximum tolerable jitter values for
different network RTTs and lookahead values. For example,

network 1 (green) has a lower RTT than network 2 (blue), so
it has a higher tolerable jitter. Network 2 (blue) with a higher
RTT has a lower maximum tolerable jitter, or could even be
infeasible for 360◦video streaming if the network RTT or jitter
is high enough. These tolerable network delay values are much
more stringent than those typically allowed in regular non-
360◦video today. For example, the 5G QoS guidelines [25] for
regular non-360◦buffered video allow a packet delay budget
of up to Tnetwork = 300 ms, or approximately 600 ms round-
trip, for which there is no feasible jitter value that satisfies the
inequality in Eqn. 2, when the lookahead is 300 ms. However,
the 5G guidelines for voice and live streaming guarantee a
much stricter packet delay budget of Tnetwork = 100 ms,
implying that the jitter needs to be σ ≤ 33 ms in order to
have an acceptable low probability of stalls. (Note that here
we assume rendering time Trender is negligible, although the
formula allows for non-zero values). Overall, these numerical
examples and equations demonstrate that in order for the user
FoV prediction to be useful, 360◦video streaming is only
effective for very low network delay RTTs and jitter.

Another way of interpreting Eqn. 2 is based on real-
world observed network performance. An RTT of 122 ms
to request and retrieve a 360◦video frame from a mobile
edge cloud (as reported in [15]), an an approximate jitter
of 51 ms (calculated by approximating the measured 90th
and 10th percentile as 4σ), gives a total lookahead of 275
ms, which is within the recommended 300 ms to achive low
prediction loss. However, the network delay values observed
for a centralized cloud site [15] (212 ms RTT, 58 ms jitter)
would result in a lookahead value of 386 ms, which is barely
outside our recommended 300 ms. Thus, while some types
of network deployments (e.g., edge-based cloud architectures)
can meet the stringent requirements of 360◦video streaming,
other deployments (e.g., centralized cloud) may find it more
difficult to meet the latency requirements, and the level of
interactivity, in 360◦video streaming. While Freedom [15] also
relates network delay to 360◦ streaming performance on edge
networks, our ability to use predictions and user-customized
rectangular padding significantly improves the user QoE and
network bandwidth requirements, even in a more challenging
cloud deployment with higher latencies.

VI. RELATED WORK

User head orientation and FoV prediction: Head orien-
tation and FoV prediction approaches in the literature range
from simple linear regression [2] and KNNs [8] to more
complex models such as neural networks. Neural network
variants employed for user head orientation prediction include
LSTMs [7], LSTMs with content features [10], or attention-
based neural networks [9]. However, such approaches are eval-
uated across disparate datasets and compared against subsets
of prediction methods, whereas this work benchmarks such
prediction methods on common datasets, focusing on methods
that rely on user history only which are commonly used in
360◦streaming systems [2], [11].



Tile encoding: The HEVC codec [6] allows developers to
spatially partition the video into multiple tiles and encode
each tile individually. Some works use homogeneous tiling
schemas (same sized tiles) and some use heterogeneous tiling
schemas [26], [27], [28], [29], [30], [31]. This work focuses
on tiles produced by an equirectangular projection, which is
one of the most widely used projection schemes, but its core
results on user head orientation prediction can be applied to
tiles of any shape.

360◦tile selection: Flare [2], Rubiks [11], Pano [1], and
Petrangeli et al. [12] are 360◦streaming systems, incorporating
FoV prediction modules and/or tile selection modules. Our
insights into FoV prediction performance can lead to improve-
ments in these systems’ FoV prediction modules, and also has
implications for their playout buffer setting (Sec. V).

Padding: Padding can be chosen as surrounding the FoV
symmetrically [12], [32], [33], or irregularly based on complex
algorithms such as model-predictive control or knapsack prob-
lems [8], [2], [11], [1]. In contrast, this work finds a middle
ground by proposing an asymmetric padding that is wider than
it is tall, providing a simple padding selection mechanism
that outperforms existing symmetric padding and can avoid
complex tile selection algorithms. Furthermore, this work also
explores customized, per-video and per-user padding settings
in order to further optimize streaming performance.

VII. CONCLUSIONS

In this paper, we took a detailed look at user FoV prediction
for 360◦video streaming. We found that there was little dif-
ference across popular FoV prediction algorithms, including
linear regression and LSTM neural networks. However, head
orientation prediction loss was acceptably low only when
predicting in the near short-term (e.g., 300 ms ahead). This has
implications for how the video playout delay buffers are con-
figured in 360◦streaming systems, as well as tolerable network
delay and jitter, as short-term predictions imply short playout
delay buffers and stringent demands on network latency. We
also explored how observations of user behavior can be used
to optimize the shape and size of any additional “padding”
tiles. A rectangular padding can substantially mitigate pre-
diction errors, while only adding a relatively small amount
of additional network bandwidth, and still maintaining a low
video stall ratio. Overall, these observations have implications
for how 360◦streaming systems are configured in the future.
Future work includes profiling users for personalized padding,
as well as improving performance on 5G cellular networks.

ACKNOWLEDGEMENTS

This work has been supported in part by NSF grants CNS-
1817216 and 1763929.

REFERENCES

[1] Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang, “Pano: Optimizing
360 video streaming with a better understanding of quality perception,”
in ACM SIGCOMM, 2019.

[2] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices,” in
ACM MobiCom, 2018.

[3] M. Xiao, C. Zhou, Y. Liu, and S. Chen, “Optile: Toward optimal tiling
in 360-degree video streaming,” in ACM Multimedia, 2017.

[4] M. Graf, C. Timmerer, and C. Mueller, “Towards bandwidth efficient
adaptive streaming of omnidirectional video over http: Design, imple-
mentation, and evaluation,” in ACM MMSys, 2017.

[5] S. Afzal, J. Chen, and K. K. Ramakrishnan, “Characterization of 360-
degree videos,” in ACM SIGCOMM Workshop on Virtual Reality and
Augmented Reality Network, 2017.

[6] “Hevc,” https://www.itu.int/rec/T-REC-H.265.
[7] X. Hou, S. Dey, J. Zhang, and M. Budagavi, “Predictive view generation

to enable mobile 360-degree and vr experiences,” in ACM SIGCOMM
Workshop on Virtual Reality and Augmented Reality Network, 2018.

[8] Y. Ban, L. Xie, Z. Xu, X. Zhang, Z. Guo, and Y. Wang, “Cub360:
Exploiting cross-users behaviors for viewport prediction in 360 video
adaptive streaming,” in IEEE ICME, 2018.

[9] J. Yu and Y. Liu, “Field-of-view prediction in 360-degree videos with
attention-based neural encoder-decoder networks,” in ACM Workshop on
Immersive Mixed and Virtual Environment Systems, 2019.

[10] Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, and S. Gao, “Gaze
prediction in dynamic 360 immersive videos,” in IEEE CVPR, 2018,
pp. 5333–5342.

[11] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han, “Rubiks: Practical
360-degree streaming for smartphones,” in ACM MobiSys, 2018.

[12] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck, “An
http/2-based adaptive streaming framework for 360 virtual reality
videos,” in ACM Multimedia, 2017.

[13] X. Corbillon, F. De Simone, and G. Simon, “360-degree video head
movement dataset,” in ACM MMSys, 2017.

[14] C. Wu, Z. Tan, Z. Wang, and S. Yang, “A dataset for exploring user
behaviors in vr spherical video streaming,” in ACM MMSys, 2017.

[15] S. Shi, V. Gupta, and R. Jana, “Freedom: Fast recovery enhanced vr
delivery over mobile networks,” in ACM MobiSys, 2019.

[16] S. LaValle, Virtual Reality. Cambridge University Press.
[17] K. Shoemake, “Animating rotation with quaternion curves,” SIGGRAPH

Comput. Graph., vol. 19, no. 3, pp. 245–254, Jul. 1985.
[18] P. J. Brockwell and R. A. Davis, Introduction to time series and

forecasting. springer, 2016.
[19] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”

in ACM KDD, 2016.
[20] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang,

“Developing a predictive model of quality of experience for internet
video,” in ACM SIGCOMM, 2013.

[21] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in ACM SIGCOMM, 2017.

[22] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski, “Viewport-
adaptive navigable 360-degree video delivery,” in IEEE ICC, 2017.

[23] C. Perkins, RTP: Audio and Video for the Internet. Addison-Wesley
Professional, 2003.

[24] S. B. Moon, J. Kurose, and D. Towsley, “Packet audio playout delay
adjustment: performance bounds and algorithms,” Multimedia systems,
vol. 6, no. 1, pp. 17–28, 1998.

[25] 3GPP, “TS 38.300: NR; Overall description; Stage-2,” June 2019.
[26] R. Skupin, Y. Sanchez, C. Hellge, and T. Schierl, “Tile based hevc video

for head mounted displays,” in 2016 IEEE International Symposium on
Multimedia (ISM), Dec 2016, pp. 399–400.

[27] K. K. Sreedhar, A. Aminlou, M. M. Hannuksela, and M. Gabbouj,
“Viewport-adaptive encoding and streaming of 360-degree video for
virtual reality applications,” in IEEE ISM, 2016.

[28] J. Le Feuvre and C. Concolato, “Tiled-based adaptive streaming using
mpeg-dash,” in ACM MMSys, 2016.

[29] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou, “An
overview of tiles in hevc,” IEEE Journal of Selected Topics in Signal
Processing, vol. 7, no. 6, pp. 969–977, Dec 2013.

[30] Y. Snchez, R. Skupin, and T. Schierl, “Compressed domain video
processing for tile based panoramic streaming using hevc,” in IEEE
ICIP, 2015.

[31] C. Zhou, M. Xiao, and Y. Liu, “Clustile: Toward minimizing bandwidth
in 360-degree video streaming,” in IEEE INFOCOM, 2018.

[32] S. Shi, V. Gupta, M. Hwang, and R. Jana, “Mobile vr on edge cloud: a
latency-driven design,” in ACM MMSys, 2019.

[33] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu, “Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos,” in
IEEE Big Data, 2016.


