### **QAVA: Quota Aware Video Adaptation**

### Jiasi Chen, Amitabha Ghosh, Mung Chiang Princeton University

May 21, 2013



### **Rise of Usage-Based Pricing**

# 10

# \$/GB charged by AT&T Wireless for 3G/4G data usage above 2GB



### **Rise of Video Traffic**

# 70

#### Percentage of mobile data from video in 2016



Figures in legend refer to traffic share in 2016. Source: Cisco VNI Mobile, 2012



Source: Cisco Visual Networking Index 2012

### **The Conflict Between Two Trends**

#### Two emerging trends of Internet application:

Video traffic becoming dominant

High-resolution devices (e.g., iPhone, iPad, Android tablets)

|                                       | Upstream Traffic |        | Downstream Traffic |        | Total Traffic |        |  |
|---------------------------------------|------------------|--------|--------------------|--------|---------------|--------|--|
| Rank                                  | Application      | Share  | Application        | Share  | Application   | Share  |  |
| 1                                     | BitTorrent       | 52.01% | Netflix            | 29.70% | Netflix       | 24.71% |  |
| 2                                     | HTTP             | 8.31%  | HTTP               | 18.36% | BitTorrent    | 17.23% |  |
| 3                                     | Skype            | 3.81%  | YouTube            | 11.04% | HTTP          | 17.18% |  |
| 4                                     | Netflix          | 3.59%  | BitTorrent         | 10.37% | YouTube       | 9.85%  |  |
| 5                                     | PPStream         | 2.92%  | Flash Video        | 4.88%  | Flash Video   | 3.62%  |  |
| SOURCE: SANDVINE NETWORK DEMOGRAPHICS |                  |        |                    |        |               |        |  |

#### Usage-based pricing becoming prevalent

| Carrier  | Country | Wireline/Wireless | Baseline Quota   | Overage Charge          |
|----------|---------|-------------------|------------------|-------------------------|
| AT&T     | USA     | Wireless          | $2  \mathrm{GB}$ | 10 USD per GB           |
| Verizon  | USA     | Wireless          | 2  GB            | 10 USD per GB           |
| Reliance | India   | Wireless          | $2  \mathrm{GB}$ | 0.01  Rupee per  10  kB |
| Rogers   | Canada  | Wireline          | 80 GB            | 2  CAD per GB           |
| AT&T     | USA     | Wireline          | 250  GB          | 10  USD per  50  GB     |

Can the consumer consume content without worrying about her wallet?\_



### **Current Video Adaptation Solutions**

Two main approaches:

- Consumers may be warned by service providers or applications
  Android 4.0 provides data usage monitoring app; other iOS / Android apps
- "One size fits all" cutting back bit rates across all videos, for all users, at all times

Youtube: channel-based quality adaptation depending on connection type Netflix: static quality adaptation to address wireline ISP quota constraints

Onavo: mobile app that compresses images and text to use less data

Adaptive HTTP streaming for bandwidth constraints

- Adobe Dynamic Streaming for Flash
- Microsoft Smooth Streaming for Silverlight and Windows Phone
- Apple HTTP Live Streaming for iOS
- MPEG-DASH standardization



## **Video Consumption Tradeoff**



### **Quota-Aware Video Adaptation (QAVA)**

Is every bit needed for every user at every time?

**Key idea**: All bytes are *charged* the same on cellular data plans, but not all bytes are equally *valuable* to mobile video experience.

Toy example: <u>http://www.youtube.com/watch?v=0sUBDpS9e2U</u>



## **QAVA Modularization**

#### Stream Selector video request video bitrate Stream Choose the right bitrate to maximize video quality Selector user profile, video profile Video Profiler Video video utility video Estimate compressibility of video Profiler user request **User Profiler** User history user profile Predict user's behavioral patterns from past history Profiler



### **QAVA System Architecture**



Stream selector: located on user device / network / content provider User profiler: requires access to user request logs Video profiler: requires access to videos



### Video Profiler Estimate video compressibility





### Leveraging Video Compressibility

Utility-cost tradeoff: diminishing returns for increasing cost



Different types of videos have different tradeoff curves – leverage this!



H.264/AVC videos Encoded at 100,150,200, 300 kbps 640x480 pixels



### **Video Compressibility Demo**

http://youtu.be/YyRgdWNq-aQ

| 100 kbps | 300 kbps |
|----------|----------|
|          |          |

*Takeaway*: Users have different perception of low- and highmotion videos. Low-motion videos are more compressible without perceptually noticeable distortion.



## **User Profiler**

### Predict user's future data consumption patterns





### **Seasonality and Trend in Time Series**



#### Seasonality

Regularly spaced peaks and troughs with a consistent direction and approximately the same magnitude

Customer arrival in Starbucks who use Wi-Fi, NYC March 2010



#### Trend

Long term movement with an underlying upward or downward direction

Electric power consumption between 1975 and 1990

Our approach: estimate request probability in each time period estimate video type preferences of each user



## **Stream Selection**

How to choose the delivered video bitrate while staying under quota?





If all video requests are known, we have the offline problem:

 $\begin{array}{ll} \underset{x_{tj}}{\text{maximize}} & \sum_{t=1}^{T} \sum_{j=1}^{M_{t}} u_{tj} x_{tj} & \mathsf{n} \\ \text{subject to} & \sum_{t=1}^{N} \sum_{j=1}^{M_{t}} c_{tj} x_{tj} \leq B & \mathsf{s} \\ & \sum_{j=1}^{M} x_{tj} \leq 1, \ \forall \ t & \mathsf{c} \\ & x_{tj} \in \{0,1\}, \ \forall \ t, j & \mathsf{d} \end{array}$ 

maximize the total utility

spend less than budget

choose one bitrate per video

*B*: quota budget *T*: number of time periods  $M_t$ : # of versions of video t  $u_{tj}$ : utility of version *j* of video t  $c_{tj}$ : cost of version *j* of videot  $x_{tj}$ : 1 if version *j* of video t is selected;

0 otherwise

#### This is the multiple-choice knapsack problem

Kellerer H, Pferschy U, Pisinger D, Knapsack Problems, Springer 2004



Budget: 3





Budget: 3





























Budget: 3 Goal: Maximize total utility Items: ( utility, cost )





#### Offline optimal: v11, v22

Total utility: 1+4 = 5Total cost: 1+2 = 3

#### Online greedy: v12, v21

Total utility: 2+2 = 4Total cost: 2+1 = 3



### **Modeling using Markov Decision Process**

Possible videos V = { (u,c), (u,c), (u,c) }; videos arrive randomly Which bitrate to choose?

*Markov property*: Future bitrate decisions depend only on remaining budget, independent of past bitrate decisions



### **Simulation using Video Request Traces**

YouTube request traces from wireless campus network 14 days, 16 337 users, 611 968 requests

#### 4 bitrate selection algorithms:

- MDP: Our proposed approach
- MCKP: State-of-the art literature
- Netflix: Solution in practice
  *Caveat*: assumes perfect knowledge of number of video requests
- Offline: Hindsight offline optimal





Zink M, Suh K, Gu Y, Kurose J, "Watch Global Cache Local: YouTube Network Traces at a Campus Network - Measurements and Implications", *IEEE MMCN*, 2008.

### **Stream Selection Algorithm Comparison**

How do algorithms perform for different user request traces, sweeping across quotas?



<u>Conclusion</u>: MDP achieves greater utility than other algorithms, without exceeding the quota



### **Silverlight Web Browser**

← → C 🔇 140.180.12.206/qava/



New period 1, Opening Client\_Usage.txt...succeeded

Proof-of-concept implementation in web browser using Microsoft Silverlight



### **Android App Screenshots**

| ⑦ ₪ Ⅲ 自 11:53 AM<br>0AVA |                |                  |             |  |  |
|--------------------------|----------------|------------------|-------------|--|--|
| Videos                   | Wy Stats       | <b>S</b> ettings | ()<br>About |  |  |
| AroundTh                 | AroundTheWorld |                  | les         |  |  |
| BigBang                  | Theory         | Bryan            |             |  |  |
| Carto                    | oon            | Chopin           |             |  |  |
| Choreog                  | graphy         | Christmas        |             |  |  |
| Class                    | Classical      |                  | Collins     |  |  |
| Com                      | edy            | Computer         |             |  |  |
| Dan                      | ce             | Friends          |             |  |  |
| Fun                      | ny             | Hiphop           |             |  |  |
| Kitte                    | ins            | LadyGaga         |             |  |  |
| Len                      | on             | Lifehacker       |             |  |  |



Category selection Tailored to user preferences Video selection Regularly updated with new content



Video feedback Primary means of evaluating user satisfaction



### **Conclusions & Future Work**

Discussed conflicting trends of:

- Usage based pricing
- Increasing video consumption

Developed system design for quota-aware video adaptation

- Key idea: Not every bit needed for every user at every time
- Compared state-of-the-art literature and practical algorithms for video rate adaptation

*Next*: evaluate system performance with real user trial explore client-based implementation architectures





Thank you!

## **QUESTIONS?**

J Chen, A Ghosh, J Magutt, M Chiang, "QAVA: Quota-Aware Video Adaptation," *ACM CoNEXT*, 2012.

