
July 1, 2007 15:17 partialorder

Computing the Breakpoint Distance between Partially Ordered

Genomes

ZHENG FU

Department of Computer Science and Engineering, University of California Riverside

Riverside, CA 92521, USA

zfu@cs.ucr.edu

TAO JIANG

Department of Computer Science and Engineering, University of California Riverside

Riverside, CA 92521, USA

jiang@cs.ucr.edu

The total order of the genes or markers on a chromosome is crucial for most comparative
genomics studies. However, the current gene mapping efforts might only suffice to provide
a partial order of the genes on a chromosome. Several different genes or markers might
be mapped at the same position due to the low resolution of gene mapping or missing
data. Moreover, conflicting datasets might give rise to the ambiguity of gene order.
In this paper, we consider the reversal distance and breakpoint distance problems for
partially ordered genomes. We first prove that these problems are NP-hard, and then

give an efficient heuristic algorithm to compute the breakpoint distance between partially
ordered genomes. The algorithm is based on an efficient approximation algorithm for a
natural generalization of the well-known feedback vertex set problem, and has been tested
on both simulated and real biological datasets. The experimental results demonstrate
that our algorithm is quite effective for estimating the breakpoint distance between
partially ordered genomes and for inferring the gene (total) order.

Keywords: Comparative Genomics, Partially Ordered Genome, Breakpoint Distance

1. Introduction

The total order of the genes or markers on a chromosome is very important for

most comparative genomics studies. The breakpoint distance 13,8 and reversal dis-

tance 12,5 are commonly used as the evolutionary distances between genomes, and

they work on the premise that the total order of the genes on each chromosome has

been identified. However, except for a few model genomes, most genomes have not

been completely sequenced yet. For these partially sequenced/assembled genomes,

only partial gene maps are available, which might have a low resolution, missing

genes/markers, or conflicting ordering information among each other. Combining

these partial gene maps together might only suffice to provide a partial order of

genes and markers. Hence, Zheng, Lenert and Sankoff 14,15 recently proposed a new

general representation of a genome in terms of genes where each chromosome is a

directed acyclic graph (DAG) rather than a permutation. Any linearization of the

1

July 1, 2007 15:17 partialorder

2

DAGs represents a possible total order of the genome. They generalized the sorting

by reversal problem to assess the distance between two partially ordered genomes.

The idea is to resolve the partial orders into two total orders (i.e. two lineariza-

tions of the DAGs corresponding to the two genomes) with the minimum reversal

distance. In the same paper, a depth-first branch-and-bound search algorithm for

computing the reversal distance is presented, which runs in exponential time in the

worst case.

In this paper, we study efficient computation of the reversal distance and break-

point distance problems between two partially ordered genomes. We show that

these two problems are NP-hard. We also present an efficient heuristic algorithm

to compute the breakpoint distance between two partially ordered genomes, called

BDPOG. The algorithm also reports a pair of total orders for the input genomes

realizing the breakpoint distance. It runs in O(n3) time and uses an efficient approx-

imation algorithm for a natural generalization of the well-known feedback vertex set

problem as a subroutine. The BDPOG algorithm has been tested on both simulated

and real biological datasets. The experimental results demonstrate that it is quite

effective for estimating the breakpoint distance between partially ordered genomes

and inferring the total gene orders.

The rest of the paper is organized as follows. We first introduce some preliminary

facts and definitions in Section 2. Section 3 presents the NP-hardness results. Sec-

tion 4 describes the algorithm BDPOG. Section 5 presents the experimental results

on both simulated and real genome datasets. Finally, some concluding remarks are

given in Section 6.

2. Preliminaries

Genes or markers are usually represented by signed (+ or -) symbols from a alphabet

A, where the signs represent the strand of the genes. A totally ordered genome could

be modeled as an ordered string of genes. However, the existing gene mapping

efforts might only suffice to partially order the set of genes on a chromosome. If the

order of some genes (e.g. a1, a2, · · · , an) cannot be decided in a gene map, we will

use (a1, a2, · · · , an) to represent the uncertainty of the ordering among them. For

example, in the gene map 1 (−2, 3) − 5 6 10 8 12, the ordering of all the genes has

been decided except between genes 2 and 3.

Two or more gene maps constructed from different kinds of data or using dif-

ferent methodologies can be combined to form a more complicated partial order.

As Zheng, Lenert, and Sankoff proposed in recent studies 14,15, directed acyclic

graphs (DAGs) rather than linear permutations could be used to represent par-

tially ordered genomes. In each DAG, all genes are represented by vertices, while

the ordering relation between the genes is represented by arcs (see Figure 1).

Let Π and Γ be partially ordered genomes of size n, and the DAG representations

for Π and Γ denoted as DAG(Π) and DAG(Γ). A linearization of DAG(Π) represents

a possible ordering of genome Π. Let L(Π) be the set of all possible linearizations

July 1, 2007 15:17 partialorder

3

−2

3

6 10 8 121 −5

−2 7 9 121

11

−5−4

(d) Other possible adjacencies in genome G { 6, 10, 8 } { 9 }{ −2, −4 }

{ 3 } { 7, 9, 11 } { 11 }

(a) Dataset 1 1 (−2 , 3) −5 6 10 8 12

(b) Dataset 2 1 −2 −4 −5 7 (9 , 11) 12 DAG

DAG

(c) Combined DAG −2 6 81 12−5 10−4
3 7 9

11

Fig. 1. An example of DAG representation for a partially ordered genome.

of the DAG(Π). Then we define the reversal distance between Π and Γ as

dr(Π, Γ) = min
π∈L(Π),γ∈L(Γ)

dr(π, γ) (1)

Similarly, the breakpoint distance is

db(Π, Γ) = min
π∈L(Π),γ∈L(Γ)

db(π, γ) (2)

We define the problem of computing dr(Π, Γ) as the partial-order reversal distance

(PRD) problem and the problem of computing db(Π, Γ) as the partial-order break-

point distance (PBD) problem.

Clearly, all possible pairwise adjacency relationships in all possible linearizations

of a DAG can be represented by the arcs of a DAG plus two arcs of opposite

directions between all pairs of vertices which are not ordered by the DAG (see

Figure 1d). We say that a pair of genes forms a possible adjacency in genome Π if

they are possibly adjacent in any linearization of DAG(Π). We say that a pair of

genes a and b is a possible common adjacency and write a · b if they are a possible

adjacency in both genomes Π and Γ. And a is the left end of a · b and b is the

right end of a · b. Let S be the set of all possible common adjacencies. Define an

order relation “ ” between a pair of possible common adjacencies a · b and c · d

in S. We write a · b Π c · d if one of the following two conditions is satisfied: (i)

One of c or d is reachable from one of a or b in DAG(Π) and a · b 6= c · d. (ii) Let

a = um−1, b = um, c = u1 and d = u2. There exist possible common adjacencies

u1 ·u2, u2 ·u3, · · · , um−1 · um, 3 ≤ m and another path in DAG(Π) from u1 to um

other than u1 → u2 → · · · → um−1 → um or u1 → um.

Based on the order relation “ Π”, we define a directed graph GΠ, called the

adjacency-order graph. The construction of GΠ is described as follows (see figure 2):

• Every possible adjacency in S is represented by a vertex.

• For every two possible common adjacencies, if a · b Π c · d, add an arc

from the vertex a · b to the vertex c · d.

July 1, 2007 15:17 partialorder

4

2 3 4 5 6

(b)

(c)

(a) 51 3 6

2 4 1

Possible common adjacency set S: { 1 · 2, 2 · 1, 2 · 3, 3 · 4, 4 · 5 }

2 · 3

3 · 4

2 · 3

3 · 4

4 · 5 4 · 5

1 · 2 2 · 1 1 · 2 2 · 1

Adjacency-order graph GΓAdjacency-order graph GΠ

DAG (Π) DAG (Γ)

Fig. 2. An example of the construction of adjacency-order graphs. In GΠ, the arcs inserted by
condition (i): (1 · 2, 2 · 1), (1 · 2, 2 · 3), (1 · 2, 3 · 4), (1 · 2, 4 · 5), (2 · 1, 1 · 2), (2 · 1, 2 · 3), (2 · 1, 3 · 4),
(2 · 1, 4 · 5), (2 · 3, 2 · 1), (2 · 3, 3 · 4), (2 · 3, 4 · 5), (3 · 4, 4 · 5), (4 · 5, 2 · 3), (4 · 5, 3 · 4); and the arc
inserted by condition (ii): (2 · 3, 1 · 2).

A directed cycle in an adjacency-order graph usually represents a conflict among

the possible common adjacencies in this cycle. And based on the construction of

the adjacency-order graph, we have the following theorem.

Theorem 1. All the possible common adjacencies in an acyclic adjacency-order

graph GΠ could always co-exist in some linearization of DAG(Π).

Proof. First of all, if GΠ is acyclic, all the possible common adjacencies could be

ordered by topological sort. This topological sort will not conflict with the order

information of DAG(Π) since the condition (i) in the above definition guarantees

that the ordering constraint of DAG(Π) is maintained in GΠ and any pair of possible

common adjacencies in GΠ share at most one end and different pairs of common ad-

jacencies share different ends. Moreover, there exists some linearization of DAG(Π)

in which no possible common adjacency in GΠ is broken by any other genes For

possible common adjacency a · b, no other genes have to be ordered between a and

b in any linearization of DAG(Π). The above conditions (i) and (ii) guarantee that

for a set of possible common adjacencies {u1 ·u2, u2 ·u3, · · · , um−1 ·um}, no other

genes have to be ordered between u1 and um. Otherwise, there would exist a cycle

u1 · u2 → u2 · u3 → · · ·um−1 · um → u1 · u2 in GΠ. Theorem 1 thus follows. �

The graph GΓ can be constructed in the same way except that the arcs represent

the relation Γ instead of Π. Note that since the adjacency-order graphs GΠ and

GΓ are constructed by possible common adjacencies, they should share a same vertex

set but may have different arc sets.

3. Computational Complexity of the PRD and PBD Problems

In this section, we show that both PRD and PBD problems are NP-hard, using

different reductions.

July 1, 2007 15:17 partialorder

5

3.1. The NP-Hardness of PRD

Before discussing the hardness of computing the reversal distance between two par-

tially ordered genomes, we review the structure of breakpoint graph for two partially

ordered genomes 14,15, which is very similar to the one for totally ordered genomes
5. Let Gp(Π, Γ) be the breakpoint graph for signed partially ordered genomes Π

and Γ. Gp(Π, Γ) has 2n + 2 vertices for n genes and black/grey edges representing

the potential adjacencies in Π and Γ, respectively. When the genomes are totally

ordered, the breakpoint graph has exactly n + 1 edges of each color. Moreover, its

color-alternating and edge-disjoint cycle decomposition (i.e. alternating cycle de-

composition) is unique. The reversal distance between two totally ordered signed

genomes is given by Hannenhalli-Pevzner formula 5

dr(Π, Γ) = n + 1 − c(Π, Γ) + h(Π, Γ) + f(Π, Γ) (3)

where c is the number of cycles, and h and f are corrections (the numbers of hurdles

and fortresses). However, in Gp(Π, Γ) there are more than 2n + 2 edges because of

the presence of gene order uncertainties, and consequently, the alternating cycle

decomposition of Gp(Π, Γ) is not unique.

Given a breakpoint graph Gp(Π, Γ), it would be possible to compute c(Π, Γ) by

solving PRD on Π and Γ, if there exists an optimal alternating cycle decomposition

of Gp(Π, Γ) made up of unoriented cycles only (i.e. a cycle is oriented if it is possible

to walk along the whole cycle traversing each black edge in the direction of its

orientation, otherwise it is unoriented). In this case, dr(Π, Γ) = n + 1 − c(Π, Γ) 5.

The main result of this section is the following theorem.

Theorem 2. The PRD problem is NP-hard.a

Proof. We give a reduction from the NP-hard problem MAX-ACD 2: Given the

breakpoint graph G of two unsigned permutations, find the maximum number of

alternating cycles of G.

Let GI be a breakpoint graph 2 of instance I constructed for sorting an

unsigned permutation Π = π1 π2 · · · πn into Γ = γ1 γ2 · · · γn. We con-

struct an instance Ip of PRD for sorting a signed partially ordered genome

Πp = (+π1l,−π1r) (+π2l,−π2r) · · · (+πnl,−πnr) into the permutation Γp=

+γ1l + γ1r + γ2l + γ2r · · · + γnl + γnr. We use GIp
to denote the breakpoint

graph of instance Ip.

Every possible alternating cycle in GIP
has to contain a grey edge from vh

il (i.e.

the head vertex for gene πil) and vt
ir (i.e. the tail vertex for gene πir), 1 ≤ i ≤ n,

since they are adjacent in genome Γp. At the same time, vh
il and vt

ir , 1 ≤ i ≤ n,

are always at the same ends of two black edges, since they always have different

signs in genome Πp (see Figure 3b). These lead to a useful observation that all the

possible alternating cycles in GIP
are unoriented. Therefore, we could compute the

aThis result was proved independently by Ozery-Flato and Shamir 9.

July 1, 2007 15:17 partialorder

6

s tvs tv

v h
r v t

r v t
l v h

l v t
l v h

l v h
r v t

r

(b)

(a)

Fig. 3. (a) An illustration of two possible ways of alternating cycle decomposition on one vertex in
GI ; (b) An illustration of two possible ways of alternating cycle decomposition on an unordered
pair of vertices in GIp

.

optimal value of maximum-cardinality alternating cycle decomposition of GIp
, by

solving the reversal distance problem of Ip.

Lemma 1. There is a one-to-one correspondence between the alternating cycles

and alternating cycle decompositions of GI and those of GIp
.

Proof. Recall that 2 in the breakpoint graph GI , each vertex is incident on two

black edges and two grey edges except the two end vertices. There are two possible

ways to decompose these edges (see Figure 3a). Each unsigned gene v in GI is

represented by two vertices vl and vr in GIp
. Every vertex in GIp

has two black

edges incident on it because of the uncertain order. There are two possible ways to

decompose every pair of vertices vl and vr in GIp
(see Figure 3b), which correspond

to the two possible decompositions of vertex v in GI . �

Therefore, it is possible to compute the optimal solution value of MAX-ACD on

GI by solving the PRD instance defined by Ip, namely, c(I) = c(Ip) = n+1−dr(Ip).

This completes the proof of Theorem 2. �

3.2. The NP-hardness of PBD

By using a different reduction, we can prove the NP-hardness of the breakpoint

distance between two partially ordered genomes.

Theorem 3. The PBD problem is NP-hard.

Proof. We prove that the decision version of the PBD problem is NP-hard by a

reduction from the decision version of minimum feedback vertex set problem.

Minimum Feedback Vertex Set Problem (MFVS)

INSTANCE: A directed graph G(V, A) and a positive integer k.

QUESTION: Is there a subset X ⊆ V with |X | ≤ k such that deleting all the

vertices from X and their incident arcs will leave G acyclic?

Let directed graph G(V, A) and positive integer k make up an arbitrary in-

stance of the MFVS problem. The reduction to the breakpoint distance prob-

lem between partial ordered permutations (Π and Γ) works as follows: (a) For

July 1, 2007 15:17 partialorder

7

Genome

Genome

(a) (b) (c)

Π

Γ x5x1 a1 a2 x2 b1 b2 x3 c1 c2 x4 d1 d2

x5

a1

b1

c1

d1

a2

b2

c2

d2

x1 x2 x3 x4

a b

cd

a1a2 b1b2

c1c2d1d2

Fig. 4. An example of the reduction from the minimum feedback vertex set problem to the break-
point distance problem. (a) Directed graph G(V, A). (b) Genome Π and Γ, where Γ is a totally
ordered genome. (c) Adjacency-order graph of Π, GΠ, which is isomorphic to G(V, A).

every vertex vi in G, make two genes v1
i and v2

i . (b) Add another n + 1 genes

{x1, x2 · · · , xn+1}, where n = |V |. (c) Construct a totally ordered genome Γ =

x1 v1
1 v2

1 x2 v1
2 v2

2 · · · xn v1
n v2

n xn+1. (d) Construct a partially ordered genome

Π = xn+1 (p1, p2, · · · , pm) x1 · · · xn, where m = |A| and each pi, i ∈ [1, m], repre-

sents an ordered pair of vertices. If there is an arc directed from vertex vu to vertex

vw in G, we will have a pair pi = v1
u v2

w, which means that in the genome Π gene v1
u

is ordered before gene v2
w. Finally, the order between pi and pj , i 6= j, is unknown.

Figure 4 gives a simple example for this reduction.

This reduction guarantees that for Π and Γ, the set of all possible common

adjacencies S= {v1
1 ·v

2
1 , v1

2 ·v
2
2 , · · · , v1

n ·v
2
n}. Adjacency-order graph GΠ is isomorphic

to G(V, A), while adjacency-order graph GΓ is acyclic since Γ is totally ordered.

Based on the special construction of Π and Γ, the cardinality of the minimum

feedback vertex set of GΠ, or graph G(V, A), is exactly db(Π, Γ)−2n−2. Therefore,

the feedback vertex set problem of G(V, A) and k could be resolved by computing

the db(Π, Γ). The result of Theorem 3 hence follows. �

4. An Efficient Heuristic Algorithm for Computing the Breakpoint

Distance

Let Π and Γ be two partially ordered genomes with possible common adjacency set

S. Computing the breakpoint distance db(Π, Γ) is actually the problem of finding

two linearizations of Π and Γ containing the maximum number of possible common

adjacencies. In other words, we want to delete the smallest number of possible

common adjacencies from S while leaving the rest of possible common adjacencies

conflict free (i.e. they could co-exist in some linearizations). One way to delete order

conflicts among possible common adjacencies is using the adjacency-order graph.

By Theorem 1, if the adjacency-order graph is acyclic, all the possible common

adjacency vertices could be linearized by topological sort and partially ordered

genomes could be totally ordered based on such a topological sort. Hence, deleting

the smallest number of vertices to make both adjacency-order graphs (i.e. GΠ and

GΓ) acyclic simultaneously could approximate the db(Π, Γ). Formally,

Definition 1. Minimum Double Feedback Vertex Set (MDFVS) problem

Given two directed graphs with the same vertex set and different arc sets, find

July 1, 2007 15:17 partialorder

8

the minimum-cardinality subset of the vertices whose deletion leaves both graphs

acyclic simultaneously. The output vertex set is called a minimum double feedback

vertex set.

4.1. An Efficient Approximation Algorithm for the Minimum

Double Feedback Vertex Set Problem

Recall that the minimum feedback vertex set (MFVS) problem deals with a single

graph, i.e., the goal is to find the subset of vertices with the minimum cardinality

whose deletion will leave the (single) input graph acyclic. We know that for the

minimum feedback vertex set problem, the best-known approximation algorithm
4,11 in directed graphs achieves a performance ratio of O(lognloglogn), where n

is the number of vertices of the digraph, although the algorithm requires to the

solution of a linear program. Another useful approximation algorithm 3 (denoted

APPROX-MFVS) achieves a performance ratio bounded by the length, in terms of

the number of vertices, of a longest simple cycle in the input digraph. Based on

the strong relationship between the MFVS problem and the MDFVS problem, we

could prove the following theorem.

Theorem 4. There exists a polynomial 2λ-approximation algorithm for the MD-

FVS problem, where λ is the maximum length, in terms of the number of vertices,

of a longest simple cycle in any of the two input graphs.

Proof. In the MDFVS problem, we are given two directed graphs, say G1 and G2,

which have the same vertex set and different arc sets. Utilizing the approximation

algorithm APPROX-MFVS for the MFVS problem as a subroutine, we can easily

design an approximation algorithm, denoted APPROX-MDFVS (see Figure 5), for

the MDFVS problem as follows. Run APPROX-MFVS on G1 and G2 separately

to get the feedback vertex sets FVS(G1) and FVS(G2), respectively. Denote the

union of FVS(G1) and FVS(G2) as DFVS(G1, G2). DFVS(G1, G2) is certainly a

double feedback vertex set, although not necessarily minimal. In fact, it might

contain some vertices whose deletion will not affect the property of DFVS. Hence,

the algorithm in its last step greedily removes vertices from DFVS(G1, G2) as much

as possible, as long as the remaining vertices still form a DFVS. Let OPT1 and

OPT2 be the optimal values of MFVS on G1 and G2 respectively. Let OPT be

the optimal value of MDFVS on G1 and G2. It is obvious that OPT1,OPT2 ≤

OPT. Since |FVS(G1)| ≤ λ1OPT1, where λ1 is the length of a longest simple

cycle in G1, and |FVS(G2)| ≤ λ2OPT2, where λ2 is the length of a longest simple

cycle in G2, we get DFVS(G1, G2) ≤ 2λOPT, where λ = max{λ1, λ2}. Since the

algorithm APPROX-MFVS can be implemented in O(n3) worst-case running time,

the algorithm APPROX-MDFVS also runs in O(n3) time. �

July 1, 2007 15:17 partialorder

9

Algorithm APPROX-MDFVS(G1(V, A1),G2(V, A2))

/* G1 and G2 are two directed graphs with the same vertex set and different arc sets.*/

1. FVS(G1)← APPROX-MFVS(G1)

2. FVS(G2)← APPROX-MFVS(G2)

3. DFVS ←FVS(G1)
S

FVS(G2)

5. for each w ∈ DFVS

6. if G1(V \ DFVS ∪{w}) and G2(V \ DFVS ∪{w}) are both acyclic

7. then DFVS ← DFVS \{w}

8. Output DFVS

Fig. 5. The approximation algorithm for MDFVS.

4.2. The Final Heuristic Algorithm for Breakpoint Distance

Following the above discussion, we present an efficient heuristic algorithm, denoted

as BDPOG, to calculate db(Π, Γ) in four steps, given DAG(Π) and DAG(Γ):

(1) Add two vertices (e.g. v0 and vn+1) to the two input DAGs. In each DAG,

add arcs from v0 to all the vertices with in-degree 0, and add arcs from all the

vertices with out-degree 0 to vn+1.

(2) Derive the possible common adjacency set S from the DAGs and construct the

adjacency-order graphs GΠ and GΓ.

(3) Find a double feedback vertex set for GΠ and GΓ, denoted as DFVS(GΠ,GΓ),

by applying the APPROX-MDFVS algorithm.

(4) Output n + 1 − |S| + |DFVS(GΠ,GΓ)| as db(Π, Γ) and the corresponding total

orders of Π and Γ.

It is obvious that the performance of the BDPOG algorithm directly depends

on the performance of the APPROX-MDFVS algorithm. The construction of the

adjacency-order graphs in step 2 takes O(n3) time, where n is the total number

of genes, since it involves a transitive closure construction. Since the APPROX-

MDFVS algorithm runs in O(n3) time, the overall running time of the BDPOG

algorithm is O(n3).

5. Experimental Results

In order to test the performance of the BDPOG algorithm, we have applied it to

both simulated data and real biological data. We will also use an example from the

Comparative Grass Genomics database (http://www.gramene.org) to illustrate the

application of our method on real data.

5.1. Simulated Data

We use simulated data to assess the performance of our algorithm on computing the

breakpoint distance between two partially ordered genomes. The simulated data is

generated as follows. Start from a genome G with n distinct symbols whose signs

July 1, 2007 15:17 partialorder

10

are generated randomly. Perform r reversals on the genome G to obtain another

genome H . The boundaries of these reversals are uniformly distributed within the

range of the genome. The maps of these two simulated genomes are generated

according to two parameters: the group rate p corresponding to the probability of

a gene being placed at the same position as the next gene, and the missing rate q

that determines how many genes are missing from the map. Each gene is subjected

independently to these two events. Note that every gene has to exist in at least

one map of each genome. Then we combine all the map datasets for each genome

into a DAG. Clearly, these two DAGs represents two partially ordered genomes g

and h generated from genomes G and H . The quadruple (n, r, p, q) specifies the

parameters for generating two partially ordered genomes as test data.

We run BDPOG on 20 random instances for each combination of parameters.

The average breakpoint distance between partially ordered genomes g and h, com-

puted by BDPOG, is compared with the average breakpoint distance between to-

tally ordered genomes G and H . The results are shown in Figure 6. As we can see

from the figure, our heuristic algorithm is quite reliable in computing the breakpoint

distance between two partially ordered genomes. On average, the distance computed

by BDPOG algorithm is very close to the real breakpoint distance between the to-

tally ordered genomes. The difference between two breakpoint distances generally

increases as two genomes become more related, or the uncertainty of gene orders

increases, e.g., increasing (p, q) from (0.2, 0.1) to (0.4, 0.2).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40 45 50

Br
ea

kp
oi

nt
 d

ist
an

ce

Number of reversals performed

Two partially ordered genomes g and h generated using parameters (100, *, 0.2, 0.1)

Breakpoint distance between G and H
Breakpoint distance between g and h by BDPOG algorithm

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40 45 50

Br
ea

kp
oi

nt
 d

ist
an

ce

Number of reversals performed

Two partially ordered genomes g and h generated using parameters (100, *, 0.4, 0.2)

Breakpoint distance between G and H
Breakpoint distance between g and h by BDPOG algorithm

Fig. 6. Performance of our heuristic algorithm BDPOG on simulated data.

5.2. Real Data

We use the X chromosomes of human (Homo sapiens, UCSC hg18, March 2006),

mouse (Mus musculus, UCSC mm8, March 2006), and rat (Rattus norvegicus, UCSC

rn4, November 2004) genomes in our real data test. In these three datasets down-

loaded from the UCSC Genome Browser 6 website (http://genome.ucsc.edu), all

the genes are totally ordered. We perform the test between each pair of genomes,

July 1, 2007 15:17 partialorder

11

where we extract all the gene orthologs between the two compared genomes. Then

we generate two partially ordered genomes for the compared genomes using the

method described in the previous section, although we need to specify the group

rate p and missing rate q here. By using our heuristic algorithm, the breakpoint

distance between the simulated partially ordered genomes and the possible total

order for each genome can be determined. We run our heuristic algorithm BDPOG

on ten random instances, and compare the average estimated breakpoint distance

and the gene orders with the real ones. The results are shown in Table 1. For ex-

ample, if we generate the partially ordered chromosomes for the X chromosomes

of human and mouse by using parameters p = 0.2 and q = 0.1, we get 44.15 as

the average estimated breakpoint distance. In the total gene orders output by our

algorithm, an average of 384.05 gene adjacencies among 388 are kept for the human

X chromosome and an average of 382.9 gene adjacencies among 388 are kept for the

mouse X chromosome. Note that, the average estimated breakpoint distance 44.15

is smaller than the real breakpoint distance between human and mouse, i.e., 45. A

possible reason is that a small amount of uncertainties in gene order might actually

decrease the number of reversals between two genomes. Overall, the results demon-

strate that our algorithm performs very well on estimating breakpoint distance and

recovering the gene orders for partially ordered genomes.

Table 1. Comparison of the estimated breakpoint distances and the gene orders with the real ones. ζ The number of the common
gene adjacencies exist in both the real genome G and the total order of the partially ordered genome g obtained by BDPOG.

g and h (p = 0.2, q = 0.1) g and h (p = 0.4, q = 0.2)

G/H #orthologs db(G, H) estimated common adjs common adjs estimated common adjs common adjs

db(g, h) in g and Gζ in h and H db(g, h) in g and G in h and H

human/mouse 389 45 44.15 384.05 382.9 63.75 380.3 379.4

human/rat 132 22 21.3 129.9 131 27.2 128.5 126.4

mouse/rat 126 17 15.65 124.3 124.05 20 123.45 121.95

To further illustrate the application of our method on real data, we use an ex-

ample from the Comparative Grass Genomics database (http://www.gramene.org).

We examine two closely related genomes, maize and sorghum. We used the “IBM2

neighbors 2004” and the “IBM neighbors maps” 10 for chromosome 1 of maize,

and compared it with the “Paterson 2003” 1 and the “Klein 2004” 7 maps for the

chromosome labeled C and LG−01, respectively, of sorghum. All markers of maize

indicated as having a homolog in one of the datasets of sorghum are extracted, and

vice versa. We extracted 21 markers in total. The two DAGs constructed from the

maize datasets and sorghum datasets and the total order of the DAGs output by

our algorithm are shown in Figure 7.

July 1, 2007 15:17 partialorder

12

Combined DAG
for maize

2

3

4 5 6 7 8 9 10 11 14 15 16 10 1712

13

18 19 201 21

5 1

Combined DAG
for sorghum

19

136 9

14
21

17 18

16

15 10

11

12

20

8 3 47 2

A possible total order for sorghum: 6 13 14 9 21 19 17 18 15 16 10 11 12 8 20 3 7 4 5 1 2

A possible total order for maize: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Fig. 7. A comparison of maize and sorghum chromosomes using partially ordered data from the
Gramene database.

6. Conclusion

In this paper, we have presented some complexity and algorithmic results for the

problem of comparing two partially ordered genomes. In particular, we proposed

an efficient heuristic algorithm to estimate the breakpoint distance between two

partially ordered genomes and infer the corresponding linearizations achieving the

distance. In our construction, we defined a useful tool, called the adjacency-order

graph, and introduced a new optimization problem (MDFVS), for which we de-

signed an efficient approximation algorithm. Our preliminary experiments on sim-

ulated and real data have demonstrated that our algorithm performs very well on

estimating breakpoint distance and recovering the gene orders for partially ordered

genomes. Considering the breakpoint distance is just the first step. In the future,

we plan to look into other distances between partially ordered genomes, e.g., the

reversal distance, and try to design more efficient algorithms.

7. Acknowledgement

This project is supported in part by NSF grant CCR-0309902, National Key

Project for Basic Research (973) grant 2002CB512801, NSFC grant 60528001, and

a Changjiang Visiting Professorship at Tsinghua University. We would also like to

thank our colleague Dr. Marek Chrobak for carefully reading an earlier version of

the paper and several valuable comments and corrections.

References

1. J.E. Bowers et al., “A high-density genetic recombination map of sequence-tagged sites
for sorghum, as a framework for comparative structural and evolutionary genomics of
tropical grains and grasses,” Genetics, 165:367-386, 2003.

2. A. Caprara, “Sorting by reversal is difficult,” Proc. 1St RECOMB, pp.75-83, 1997.
3. C. Demetrescu and I. Finocchi, “Combinatorial Algorithms for Feedback Problems,”

Information Processing Letters, 86(3):129-136, 2003.
4. G. Even et al., “Approximating minimum feedback sets and multi-cuts in directed

graphs,” Proc. 4th Int. Conf. on Integer Prog. and Combinatorial Optimization, Lecture

Notes in Comput. Sci., 920, Springer-Verlag, 14-28, 1995.

July 1, 2007 15:17 partialorder

13

5. S. Hannenhalli and P. Pevzner, “Transforming cabbage into turnip (Polynomial al-
gorithm for sorting signed permutations by reversals),” Proc. of 27th Annual ACM

Symposium on the Theory of Computing, pp.178-187, 1995.
6. D. Karolchik et al., “The UCSC Genome Browser Database,” Nucleic Acids Res., 31(1):

51-54, 2003.
7. M.A. Menz et al., “A high-density genetic map of Sorghum bicolor (L.) Moench based

on 2926 AFLP, RFLP and SSR markers,” Plant molecular biology 48:483-499, 2002
8. J. Nadeau and B. Taylor, “Lengths of chromosomal segments conserved since divergence

of man and mouse,” Proc. Natl. Acad. Sci., 81:814-818, 1984.
9. M. Ozery-Flato and R. Shamir, “Partial Order Problem is NP-hard”, Unpublished

manuscript, 2006.
10. M.L. Polacco and Jr Coe E., “IBM neighbors: a consensus GeneticMap,” 2002
11. P.D. Seymour, “Packing directed circuits fractionally,” Combinatorica, 15:281-288,

1995.
12. D. Sankoff, “Mechanisms of genome evolution: models and inference,” Bull. Int. Stat.

Institut., 47:461-475, 1989.
13. G. Watterson et al., “The chromosome inversion problem,” J. Theor. Biol., 99:1-7,

1982.
14. C. Zheng and D. Sankoff, “Genome rearrangements with partially ordered chromo-

somes,” COCOON, 2005.
15. C. Zheng, A. Lenert, and D. Sankoff, “Reversal distance for partially ordered

genomes,” Bioinformatics, 21(Suppl.1):i502-i508, 2005.

