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The identification of orthologous genes shared by multiple genomes is critical for both
functional and evolutionary studies in comparative genomics. While it is usually done
by sequence similarity search and reconciled tree construction in practice, recently a new
combinatorial approach and a high-throughput system MSOAR for ortholog identifica-
tion between closely related genomes based on genome rearrangement and gene dupli-
cation have been proposed in 11. MSOAR assumes that orthologous genes correspond
to each other in the most parsimonious evolutionary scenario minimizing the number
of genome rearrangement and (post-speciation) gene duplication events. However, the
parsimony approach used by MSOAR limits it to pairwsie genome comparisons. In this
paper, we extend MSOAR to multiple (closely related) genomes and propose an ortholog
clustering method, called MultiMSOAR, to infer main orthologs in multiple genomes. As
a preliminary experiment, we apply MultiMSOAR to rat, mouse and human genomes,
and validate our results using gene annotations and gene function classifications in the
public databases. We further compare our results to the ortholog clusters predicted by
MultiParanoid, which is an extension of the well-known program Inparanoid for pairwise
genome comparisons. The comparison reveals that MultiMSOAR gives more detailed and
accurate orthology information since it can effectively distinguish main orthologs from

inparalogs.

1. Introduction

According to the definition of Fitch 10, orthologs are genes that evolved by spe-

ciation, while paralogs are genes that evolved by duplication. Orthologs typically

occupy the same functional niche in different species, whereas paralogs tend to

evolve toward functional diversification. Hence, the identification of orthologous

genes shared by multiple genomes is critical for both the functional and the evolu-

tionary aspects of comparative genomics.

The traditional ortholog identification methods could be categorized into two

types. The first is sequence similarity-based methods, such as COG/KOG 23,22,24,

EGO 15, Inparanoid/MultiParanoid 19,1, OrthoMCL 17, just to name a few. The
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other is tree-based methods, including RAP 6, TreeFam 16, PhyOP 12, Orthostrap-

per 21, RIO 26, OrthologID 4, etc. The main assumption behind sequence similarity-

based methods is that the evolutionary rates of all genes in a homologous family are

equal and thus the divergence time could be estimated by comparing the DNA or

protein sequences of genes. However, incorrect ortholog assignments might be ob-

tained if the real rates of evolution vary significantly between homologs, and meth-

ods that rely on sequence similarity alone are highly subject to artificial association

of slowly evolving paralogs and to erroneous exclusion of the more rapidly evolving

genes 5. Tree-based analysis is very intuitive and informative for ortholog identifica-

tion, since it visually presents the history of a gene family7. Usually, orthologs and

paralogs are identified by a reconciled tree, which is constructed to reconcile the

incongruent gene and species trees by taking into consideration gene duplication

events. However, tree-based approaches critically rely on the correctness of recon-

structed gene and species trees. Moreover, reconstructing accurate gene trees for

genome-wide scale analysis is very computation-intensive.

Recently, a new combinatorial approach and a high-throughput system MSOAR

for genome-wide ortholog identification for closely related genomes based on genome

rearrangement and gene duplication were proposed in 11. MSOAR focuses on the

assignment of a subtype of orthologs, called main orthologs which are formed by

the true exemplars 20 from each pair of corresponding sets of inparalogous genes, a

by computing the rearrangement/duplication distance between two genomes. The

assumption is that main orthologs correspond to each other in the most parsimo-

nious evolutionary scenario involving genome rearrangement and (post-speciation)

gene duplication events. Since the true exemplar gene of an inparalogous set is the

direct descendant of the ancestral gene of the set, it best reflects the original posi-

tion and function of the ancestral gene in the ancestral genome. Hence, a reliable

assignment of main orthologs is an important step toward the general identifica-

tion of orthologs. The extensive tests on simulated data and real human and mouse

genomes in 11 demonstrate that MSOAR has a comparable performance as Inapara-

noid 19 and is able to find ortholog pairs that would be missed by Inparanoid (or

any sequence similarity based methods). Moreover, its assignment result on human

and mouse gonomes is well supported by the six methods listed on the HGNC Com-

parison of Orthology Predictions (HCOP) website (http://www.gene.ucl.ac.uk/cgi-

bin/nomenclature/hcop.pl)9, Jackson Lab’s human-mouse ortholog database 8, and

the protein functions defined in Protein Analysis Through Evolutionary Relation-

ships (PANTHER) classification system (http://www.pantherdb.org/) 25. However,

MSOAR requires the computation of the so called RD distance (i.e. genome rear-

rangement/duplication distance) between two given genomes 11, and is thus limited

to pairwise comparisons.

In this paper, we present a new method to cluster main orthologs shared by

aWith respect to a certain speciation event, the inparalogous genes are those that were generated
by post-sepciation duplications 19.
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multiple genomes, by extending MSOAR to more than two genomes. Given a set of

genomes, the new method, called MultiMSOAR, first applies MSOAR to each pair

of input genomes, and then it combines the pairwise ortholog assignment results

from MSOAR consistently, taking into account the species phylogeny, to build main

orthologs clusters for the whole set of input genomes. We validate the performance

of MultiMSOAR by testing the method on the genomes of rat, mouse and human

and comparing its predicted main ortholog clusters using gene annotations and

functional classification in public databases. We also compare our result to that

of MultiParanoid’s 1, which is a single-linkage based ortholog clustering approach

utilizing the pairwise ortholog clusters obtained by Inparanoid 19.

2. Method

Consider k closely related genomes G1, G2, . . . , Gk , where k ≥ 3. Suppose that these

k genomes are ordered according to their given (rooted) species tree in a post-order

traversal fashion. For example, genome G1 and G2 share a common ancestor denoted

as A12, A12 and genome G3 share a common ancestor denoted as A123, so on and so

forth, and finally all the genomes share a common ancestor denoted as A12···k. That

is, the genomes are phylogenetically ordered. MultiMSOAR first applies MSOAR on

each pair Gi, Gj of the input genomes to obtain a set of putative main ortholog pairs

for Gi, Gj . Then it constructs clusters of main orthologs for all the input genomes

by combining the pairwise ortholog prediction results by resolving inconsistency

and taking into account the species tree and possibilitiy of gene loss.

2.1. Main ortholog clusters for three genomes

We first explain the idea of this method for the case of three genomes. Given three

phylogenetically ordered genomes G1, G2 and G3, and the sets (or tables) of putative

main ortholog pairs T (G1, G2), T (G1, G3), and T (G2, G3) obtained by applying

MSOAR to genome pairs G1 and G2, G1 and G3, and G2 and G3, MultiMSOAR

starts the construction of ortholog clusters by making every main ortholog pair

in these three tables its own cluster. MultiMSOAR next merges clusters using the

single linkage technique, i.e. two clusters are merged if and only if they share a

common (main) orthologous gene. This procedure is repeated until no mergeable

clusters exist. This first step is called cluster initiation, and the main ortholog

clusters generated in this step are called the initial clusters. In the following, we

will deal with each initial cluster separately.

We can use an undirected connected graph G(X, Y, Z) to describe the structure

of an initial cluster, where X , Y , and Z are three disjoint vertex sets that contain

the vertices representing genes from the three genomes involved in the initial cluster.

In graph G(X, Y, Z) (or simply G for simplicity), the vertices are X∪Y ∪Z and each

edge connects two vertices if they are assigned as a main ortholog pair by MSOAR

in the pairwise comparisons, i.e. they form an entry in one of the main ortholog pair

tables. Since the main orthology is an inter-genome and one-to-one relationship, G is
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a tripartite graph and have four possible topologies, called triangle, 2-path, 3-path,

and n-path respectively (see Figure 1). We will process these topologies differently.

In the case of a triangle, the corresponding cluster has three orthologous genes, one

from each genome, forming exactly three pairs of main orthologs. Such a cluster

will be reported as a final main ortholog cluster because of the strong support

from the pairwise comparisons. Each 2-path topology describes the scenario that

a main ortholog pair was found in two of the genomes, but neither of these two

genes have an main ortholog counterpart found in the third genome. This main

ortholog pair will also be reported as a final main ortholog cluster. Moreover, if the

main ortholog pair was found between G1 and G3 (or G2 and G3), a gene loss will

also be reported in G2 (or G1, respectively), since G1 and G2 are assumed to have

diverged from a more recent speciation. Note that, if the main ortholog pair was

found between G1 and G2, we will not need report a gene loss event in G3. A 3-

path topology is an acyclic path with three vertices, describing the scenario that two

main ortholog pairs were found that involve one gene from each genome and share

a common gene. However, none of the remaining two (unshared) genes were found

to form main ortholog pairs with any other genes. This 3-path topology indicates a

possible main ortholog pair (missing edge) that has been missed by MSOAR due to

complications caused by multi-domain proteins or alternative splicing. Therefore,

the three genes in this 3-path initial cluster will be reported as a final main ortholog

cluster. Some real examples of gene losses and missing main ortholog pairs found

by MultiMSOAR will be given in section 3. All other initial clusters have the n-

path topology. An n-path could be a path or a cycle, as long as it involves more

than three vertices. Such an initial cluster contains more than one gene from some

genome, and the handling of such an initial cluster is nontrivial.

Triangle 2-path 3-path

n-path
G3G1

G2

g21

g22

g12
g31

g11

Fig. 1. Four possible topologies of the initial main ortholog clusters.

In practice, the number of initial clusters with the n-path topology should be

usually very small if the pairwise comparison results are reliable. For example,

the number of such initial clusters is 390 (or 2.64%)involving a total of 2688 (or

5.79%) genes from all three genomes in the rat, mouse and human comparison to

be discussed in the next section. For each initial cluster G(X, Y, Z) with the n-
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path topology, MultiMSOAR uses a heuristic algorithm, called npathResolver,

to divide the initial cluster into final main ortholog clusters, each with three or-

tholog genes, using a combinatorial optimization approach. This heuristic algorithm

transforms G(X, Y, Z) into a complete weighted tripartite graph Ḡ(X̄, Ȳ , Z̄, W ) by

adding dummy vertices and dummy edges (so that a perfect matching always ex-

ists), and then tries to find a perfect tripartite matching with the maximum weight.

This tripartite matching problem is also called the maximum three-index assign-

ment problem, which is known NP-hard 13. We employ the single-pass recursive

heuristic proposed by Bandelt et al. 3, which could also be applied to the maximum

multi-index assignment problem. The heuristic works as follows: (i) Find the max-

imum weight bipartite matching MX̄Ȳ between the vertex sets X̄ and Ȳ . (ii) Let

N = {nxy|x ∈ X̄, y ∈ Ȳ , (x, y) ∈ MX̄Ȳ } be a new vertex set, and define the weight

between vertices nxy ∈ N and z ∈ Z as W (nxy, z) = W (x, z)+W (y, z). (iii) Find a

maximum weight bipartite matching between the vertex sets N and Z. Note that,

a maximum weight bipartite matching can be computed by the classical Hungarian

method 18 in cubic time.

The weights W in Ḡ(X̄, Ȳ , Z̄, W ) are defined taking into account both sequence

similarity and the main ortholog pair information from the pairwise comparisons

found by MSOAR which are mostly based on gene location information.

W (i, j) =







MAXWEIGHT Evalue(i, j) = 0 or(i, j) ∈ E(G)

− log(Evalue(i, j)) 0 < Evalue(i, j) ≤ 1e − 20

MINWEIGHT Otherwise

(1)

Here, Evalue(i, j) is obtained by an all-versus-all BLASTp comparison between

each pair of genomes. (i, j) ∈ E(G) indicates that i and j was assigned as a main

ortholog pair by the pairwise comparisons using MSOAR. MAXWEIGHT and MIN-

WEIGHT are two constant values, where MAXWEIGHT must be bigger than the

biggest value of − log(Evalue(i, j)) and MINWEIGHT must be smaller than the

smallest value of − log(Evalue(i, j)).

The algorithm obtains a set of triplets based on the final maximum weight

matching. A triplet will be reported as a main ortholog cluster if and only if its

three vertices represent real genes. In other words, as long as a triplet contain at

least one dummy vertex, all the genes in this triplet will be regarded as inparalogs.

The outline of algorithm npathResolver is illustrated in Figure 2.

2.2. Extension to the comparison of more than three genomes

Now consider the case of k > 3 genomes G1, G2, . . . , Gk. The initial clusters can

be constructed in the same way as in the case of three genomes using the single

linkage clustering technique. Here, the graph G(V1, V2, . . . , Vk) has k disjoint vertex

sets, which correspond to the k genomes. Similar to the above, the initial clusters

are classified into three possible topologies: the k-clique, a pseudo-clique, and a

nontrivial case. A k-clique consists of k genes, one from each genome, that form
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Algorithm npathResolver(G(X, Y, Z) )

1. Add dummy vertices and edges to obtain a complete

weighted tripartite graph Ḡ(X̄, Ȳ , Z̄)

2. Define edge weight function W for Ḡ according

to equation (1)

3. Compute a tripartite matching M(X̄, Ȳ , Z̄) using the

single-pass recursive heuristic

4. for each m ∈ M(X̄, Ȳ , Z̄)

5. if m contains no dummy vertices
6. then output m as a final main ortholog cluster

Fig. 2. The heuristic algorithm to resolve initial clusters with the n-path topology.

exactly k(k − 1)/2 main ortholog pairs as found by the pairwise comparisons. This

cluster will be reported as a final main ortholog cluster. A pseudo-clique is a graph

with m ≤ k vertices, with each vertex from a different genome. If the pseudo-clique

contains e edges, we use a parameter q = 2e/m(m − 1) to measure its cliqueness

(or edge density). When m and q are greater than some user-defined thresholds,

the corresponding initial clusters will be reported as a final main ortholog clusters,

and some gene loss events will be reported according to the species phylogeny. In a

nontrivial case, the initial cluster contains multiple genes from the same genome. A

maximum weight k-partite matching will be used on G(V1, V2, . . . , Vk) to distinguish

main orthologs from inparalogs, similar to the above algorithm npathResolve for

three genomes. Note that the single-pass recursive heuristic for finding a maximum

weight matching can be extended to k > 3 genomes in a straightforward way 3.

Again, this approach will be quite effective since the number of nontrivial cases are

expected to be very small.

3. Experimental results

In order to test the performance of MultiMSOAR as a tool of clustering main or-

thologs shared by multiple genomes, we have applied it to three model genomes:

Rat (Rattus norvegicus), mouse (Mus musculus) and human (Homo sapiens). Gene

positions, transcripts and translations were downloaded from the UCSC Genome

Browser 14 website (http://genome.ucsc.edu). We use the canonical splice variants

from the November 2004 update of the rat genome (UCSC rn4, Nov. 2004, ver-

sion 3.4), the build 36 “essentially finished” assembly of the mouse genome (UCSC

mm8, February 2006) and the build 36.1 finished human genome assembly (UCSC

hg18, March 2006). There are 7066 protein sequences in the rat genome assembly

rn4, 19199 sequences in mouse genome assembly mm8 and 20161 sequences in hu-

man genome assembly hg18. The pairwise main ortholog information is obtained

by running MSOAR on each pair of the genomes. Specifically, there are 14306 main
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ortholog pairs reported between mouse and human, 6539 main ortholog pairs be-

tween mouse and rat, and 6347 main ortholog pairs between rat and human. The

distributions of the different topologies of initial main ortholog clusters are showed

in Figure 3. MultiMSOAR identified 14790 main ortholog clusters in total. We val-

idate the predicted main ortholog clusters using the gene annotation information

and function classification in public databases below. We will also compare the re-

sult of MultiMSOAR with that of MultiParanoid 1 which is an ortholog clustering

method solely based on sequence similarity. The comparative study shows that the

prediction result of MultiMSOAR largely agrees with that of MultiParanoid, but

about 7.17% of MultiMSOAR’s predicted main ortholog clusters properly refine

their corresponding MultiParanoid clusters.

Fig. 3. Some statistics in the comparison of human, mouse,and rat genomes. (a) The distribution
of the four topologies of the initial main ortholog clusters. (b) The distribution of the three types
of 3-path topologies. (c) The distribution of the three types of 2-path topologies.

3.1. Validation using gene annotation

First, we use gene annotation information (in particular, gene symbols or names)

to validate the main ortholog clusters found by MultiMSOAR. The hypothesis is

that genes with identical symbols are most likely to be main orthologs, since a

gene symbol usually conveys the character or function of the gene. We extracted

the gene annotation information from UniProtKB/Swiss-Prot 2 Release 52.1. Recall

that MultiMSOAR output 14790 main ortholog clusters for rat, mouse and human,

among which only 12598 clusters have complete annotations. Out of the 12598 main

ortholog clusters, 10605 (84.18%) clusters are true positives (i.e. all the genes in the

cluster have completely identical gene symbols). Among the 10605 true positives,

6176 clusters have size two and 4429 clusters have size three. Since there are 12455

assignable main ortholog clusters (i.e. the total number of clusters of genes with

identical symbols), MultiMSOAR achieved a sensitivity of 85.15% for the rat, mouse

and human comparison. The detailed results are also summarized in Table 1.
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Table 1. Validation of the main ortholog clusters found by MultiMSOAR using gene annotation

assignable assigned unknown true positive

Main ortholog clusters of size two 7700 8610 1392 6176

Main ortholog clusters of size three 4755 6180 719 4429

3.2. Validation using gene functions

Besides gene annotation, we also use gene functional classification to validate our

clustering result. PANTHER (Protein Analysis Through Evolutionary Relation-

ships) classification system 25 is an online resource that classifies genes by their

functions. It is based on a method that uses published scientific experimental ev-

idence or evolutionary relationship to predict functions in the absence of direct

experimental evidence. Proteins that belong to the same functional family and sub-

family are assigned the same PANTHER ID. We examine the consistency between

the main ortholog clusters output by MultiMSOAR and the PANTHER IDs of the

involved genes. Out of the 14297 main ortholog clusters of rat, mouse and human

found by MultiMSOAR with valid Entrez gene IDs, 11667 (or 81.6%) clusters con-

sist of genes with the same PANTHER IDs, including 6703 clusters of size two and

4964 clusters of size three. This result demonstrates that the main ortholog clusters

obtained by MultiMSOAR are very much in agreement with the gene functional

classification provided by PANTHER.

3.3. Comparison with MultiParanoid

MultiParanoid is a genome-scale analysis program that clusters orthologs and in-

paralogs shared by multiple genomes 1. It is a straightforward extension of the

well-known Inparanoid program 19, which identifies orthologs and inparalogs be-

tween a pair of genomes solely based on sequence similarity. To ensure a direct

comparison between MultiMSOAR and MultiParanoid, we run MultiParanoid on

the same dataset (i.e. UCSC hg18, UCSC mm8, and UCSC rn4). Since MultiPara-

noid only reports clusters of co-orthologous genes and it dose not distinguish main

orthologs from their inparalogs, the size of a MultiParanoid cluster might exceed

three. After comparing with the MultiParanoid clusters, the main ortholog clusters

identified by MultiMSOAR are divided into four categories: match, subset, absence,

and mismatch. Among the 14790 main ortholog clusters generated by MultiMSOAR

for rat, mouse and human, 13109 (or 89.12%) clusters found identical matches in

MultiParanoid’s output, 1054 (or 7.17%) clusters are contained in the correspond-

ing MultiParanoid clusters as proper subsets, 297 (or 2.02%) clusters are absent

in MultiParanoid’s output (including those clusters that are proper supersets of

some MultiParanoid clusters), and 330 (or 2.59%) clusters are mismatched, i.e.

each of them partially overlaps with some MultiParanoid cluster. Note that, when

a MultiMSOAR cluster C1 is properly contained in some MultiParanoid cluster

C2, the additional elements in C2 are likely inparalogs (as identified by MultiM-
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SOAR) rather than main orthologs, and thus C1 could represent a more accurate

main ortholog cluster than C2. In other words, C1 could be viewed as a refinement

of C2. The distribution of these four types of main ortholog clusters is illustrated

in Figure 4. This comparison shows that the main ortholog clusters identified by

MultiMSOAR are very consistent with the ortholog clusters generated by Multi-

Paranoid. Furthermore, MultiMSOAR gives more detailed and accurate orthology

information since it distinguishes main orthologs from inparalogs.

0 0

2000 2000

4000 4000

6000 6000

8000 8000

10000 10000

12000 12000

14000 14000

Match Subset Absence Mismatch

Fig. 4. Comparing the prediction results of MultiMSOAR and MultiParanoid.

3.4. Examples of identified gene losses and main ortholog pairs

missed in pairwise comparisons

As described above, by taking into account the species tree of the genomes under

consideration, MultiMSOAR is able to identify possible gene losses. In the case

of rat, mouse and human comparison, if a main ortholog pair was found between

mouse and human (or rat and human) without a corresponding orthologous gene

found in rat (or mouse, respectively), a gene loss will be reported in rat (or mouse,

respectively), since mouse and rat were separated by a more recent speciation.

Figure 5 shows a segment of rat chromosome 5 (169,624,099 - 169,349,727), a seg-

ment of mouse chromosome 4 (151,234,544 - 150,964,681) and a segment of human

chromosome 1 (6,028,567 - 6,407,434). Based on the gene location information and

gene sequence similarity, MultiMSOAR successfully identified 9 main ortholog clus-

ters within these chromosome segments and a possible gene loss in rat (i.e. chd5).
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Besides, a main ortholog pair between human and mouse (i.e. ESPN) missed by

MSOAR in the pairwise comparisons was identified by MultiMSOAR. This pair of

main orthologs was missed by MSOAR because their sequences match different seg-

ments of their orthologous gene in rat and thus have insufficient similarity between

themselves.

In the rat, mouse and human comparison, a total of 8286 genes were found to

have been lost by MultiMSOAR and 138 pairs of main ortholog pairs that were

missed by MSOAR in the pairwise comparison were imputed.

KCNAB2

Kcnab2

Kcnab2

CHD5

Chd5

GENE LOSS

RPL22

Rpl22

Rpl22

ICMT

Icmt

Icmt

HES3

Hes3

Hes3

GPR153

Gpr153

Gpr153

ACOT7

Acot7

Acot7

HES2

Hes2

Hes2

ESPN

Espn

Espn

Fig. 5. An example of gene loss and missing main ortholog pairs. In the figure, the rat, mouse
and human chromosomal segments are ordered top down. Solid lines indicate main ortholog pairs
found by pairwise comparisons. Dashed lines indicate the missing orthology information identified
by MultiMSOAR.

4. Concluding remarks

The ortholog clustering method that we presented here extends the pairwise method

MSOAR 11 and enables the identification of main ortholog clusters for multiple

closely related genomes. Our preliminary experiment on a three genome comparison

demonstrates that our method performs consistently with the gene annotation and

funcational classification information in public databases and a published program

in the literature. Some interesting future work includes more extensive testing on

four or more genomes and elaborate (and in-depth) handling of gene losses (e.g.

using pseudo gene information). We plan to make this a program a public server in

the near future.
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