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Abstract. The biclustering problem has been extensively studied in many
areas including e-commerce, data mining, machine learning, pattern recognition,
statistics, and more recently in computational biology. Given an n × m matrix
A (n ≥ m), the main goal of biclustering is to identify a subset of rows (called
objects) and a subset of columns (called properties) such that some objective
function that specifies the quality of the found bicluster (formed by the subsets
of rows and of columns of A) is optimized. The problem has been proved or
conjectured to be NP-hard under various mathematical models. In this paper,
we study a probabilistic model of the implanted additive bicluster problem,
where each element in the n × m background matrix is a random number from
[0, L − 1], and a k × k implanted additive bicluster is obtained from an error-free
additive bicluster by randomly changing each element to a number in [0, L − 1]
with probability θ. We propose an O(n2m) time voting algorithm to solve the
problem. We show that for any constant δ such that (1 − δ)(1 − θ)2 − 1

L > 0,
when k ≥ max

{
8
α

√
n log n, 8 log n

c + log(2L)
}
, where c is a constant number, the

voting algorithm can correctly find the implanted bicluster with probability at
least 1− 9

n2 . We also implement our algorithm as a software tool for finding novel
biclusters in microarray gene expression data, called VOTE. The implementation
incorporates several nontrivial ideas for estimating the size of an implanted
bicluster, adjusting the threshold in voting, dealing with small biclusters, and
dealing with multiple (and overlapping) implanted biclusters. Our experimental
results on both simulated and real datasets show that VOTE can find biclusters
with a high accuracy and speed.

Key words: bicluster,Chernoff bound, polynomial-time algorithm, probability model,
computational biology, gene expression data analysis

1 Introduction

Biclustering has proved extremely useful for exploratory data analysis. It has important
applications in many fields, e.g., e-commerce, data mining, machine learning, pattern
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recognition, statistics, and computational biology [24]. Data arising from text analysis,
market-basket data analysis, web logs, microarray experiments etc. are usually arranged
in a co-occurrence table or a matrix, such as word-document table, product-user table,
cpu-job table, or webpage-user table. Discovering a large bicluster in a product-user
matrix indicates, for example, which users share the same preferences. Biclustering has
therefore applications in recommender systems and collaborative filtering, identifying
web communities, load balancing, discovering association rules, etc.

Recently, biclustering becomes an important approach to microarray gene expres-
sion data analysis [5]. The underlying bases for using biclustering in the analysis of
gene expression data are (i) similar genes may exhibit similar behaviors only under a
subset of conditions, not all conditions, and (ii) genes may participate in more than
one function, resulting in a regulation pattern in one context and a different pattern in
another. Using biclustering algorithms, one may obtain subsets of genes that are co-
regulated under certain subsets of conditions.

Given an n×m matrix A, the main goal of biclustering is to identify a subset of rows
(called objects) and a subset of columns (called properties) such that a pre-determined
objective function which specifies the quality of the bicluster (consisting of the found
subsets of rows and columns) is optimized.

Biclustering is also known under several different names, e.g., “co-clustering”,
“two-way clustering”, and “direct clustering”. The problem was first introduced by
Hartigan in the 70’s [8]. Since then, it has been extensively studied in many areas.
Several objective functions have also been proposed for measuring the quality of a
bicluster. Almost all of them have been proved or conjectured to be NP-hard [16, 19].

Let A(I, J) be an n × m(n ≥ m) matrix, where I = {1, 2, . . . , n} is the set of rows
and J = {1, 2, . . . ,m} is the set of columns. Each element ai, j of A(I, J) is an integer in
[0, L − 1] indicating the weight of the relationship between object i and property j. For
subset I′ ⊆ I and subset J′ ⊆ J, A(I′, J′) denotes the bicluster of A(I, J) that contains
only the elements ai, j satisfying i ∈ I′ and j ∈ J′. When a bicluster contains only a
single row i and a column set J′, we simply use A(i, J′) to represent it. Similarly, we
use A(I′, j) to represent the bicluster with a row set I′ and a single column j. There are
several ways to model the relationship between objectives (or genes) [24].

Constant model: A bicluster A(I′, J′) is an error-free constant bicluster if for each
column j ∈ J′, for all i ∈ I′, ai, j = c j, where c j is a constant for any column j.

Additive model: A bicluster A(I′, J′) is an error-free additive bicluster if for any pair
of rows i1 and i2 in A(I′, J′), ai1, j − ai2, j = ci1,i2 , where ci1,i2 is a constant for any pair of
rows i1 and i2.

The additive model is a general model of biclusters that covers several other popular
models as its special cases. See [17] for details. This model has many applications
and has been extensively studied [2, 11, 13, 15–17, 19–21, 24]. In this paper, we will
focus on the additive model. In particular, we study a probabilistic model of implanted
additive biclusters that has recently been used in the literature for evaluating biclustering
algorithms [15, 20].
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The probabilistic additive model: Our probabilistic model for generating the implanted
bicluster and background matrix is as follows. Let A(I, J) be an n × m matrix, where
each element ai, j is a random number in [0, L− 1] generated independently. Let B be an
error-free k× k additive bicluster. The additive bicluster B′ with noise is generated from
B by changing each element bi, j, with probability θ, into a random number in [0, L− 1].
We then implant B′ into the background matrix A(I, J) and randomly shuffle its rows
and columns to obtain a new matrix A′(I, J). For convenience, we will still denote the
elements of A′(I, J) as ai, j’s.

From now on, we will consider matrix A′(I, J) as the input matrix. Let IB ⊆ I and
JB ⊆ J be the row and column sets of the implanced bicluster in A′. The implanted
bicluster is denoted as A′(IB, JB).

The implanted additive bicluster problem: Given the n × m matrix A′(I, J) with an
implanted additive bicluster as described above, find the implanted additive bicluster
B′.

Based on the above probabilistic model, we propose an O(n2m) time voting
algorithm for finding the implanted bicluster. We show that for any constant δ such that
(1−δ)(1−θ)2− 1

L > 0, when n < m3 and k ≥ max
{

8
α

√
m log m, 8 log m

c + log(2L)
}
, where

c = min{ (1−θ)δ2k
2L , (1−2θ)2

8L , (L−2)2

12L3 }, the voting algorithm can correctly find the implanted
bicluster with probability at least 1 − 9m−2. We also implement our algorithm into
a software tool, called VOTE. In order to make tool applicable in a real setting, the
implementation has to incorporate several nontrivial ideas for estimating the size of an
implanted bicluster, adjusting the threshold in voting, dealing with small biclusters,
and dealing with multiple and overlapping biclusters. Our extensive experiments
on both simulated and real datasets show that VOTE can find implanted additive
biclusters with high accuracy and efficiency. More specifically, VOTE has a comparable
performance/accuracy as the best programs compared in [20, 15], but much faster
speed.

We note in passing that a closely related problem of finding an implanted clique/

distribution in a random graph has been studied in the graph theory community [1,
6, 12]. In [12], Kucera claimed that when the size of the implanted clique is at least
Ω(

√
m log m), where m is the number of vertices in the input random graph, a simple

approach based counting the degrees of vertices can find the clique with a high
probability. Alon et al. gave an improved algorithm that can find implanted cliques
of sizes at least Ω(

√
m) with a high probability [1]. Feige and Krauthgamer gave an

algorithm that can find implanted cliques of similar sizes in semi-random graphs [6].
It is easy to see that this problem of finding implanted cliques is a special case of our
implanted bicluster problem, where the input matrix is binary and all the elements in the
bicluster matrix are 1’s. We observe that while it may be easy to modify Kucera’s simple
degree-based method to work for implanted constant biclusters under our probabilistic
model, it is not obvious that the above results would directly imply our results on
implanted additive biclusters.

In the rest of the paper, we first present the voting algorithm and analyze its
theoretical performance on the above probabilistic model. We then describe the
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implementation of VOTE, and the experimental results. Due to the page limit, the proofs
will be omitted in this extended abstract but will be provided in the full paper.

2 The Three Phase Voting Algorithm

We start the construction of the algorithm with some interesting observations. Recall
that B is an error-free k × k additive bicluster and A′ is the random input matrix with a
noisy additive bicluster B′ implanted.

Observation 1 Consider the k rows in B. There are at least k
L rows that are identifical.

That is, there exists a row set IC ⊆ IB with |IC | ≥ k
L such that A′(IC , JB) is a constant

bicluster with noise.

Consider a row i1 ∈ IB and a column j1 ∈ JB. For each row i2 ∈ IB, ci1,i2 = ai1, j1 −
ai2, j1 is an integer in [ai1, j1 − L + 1, ai1, j1 ]. Based on the value ci1,i2 , we can partition IB

into L different row sets Id
B = {i2|i2 ∈ IB & ci1,i2 = d}, d = ai1, j1 − L + 1, . . . , ai1, j1 . Let IC

be one of the row sets with the maximum cardinality, |IC | = maxd |Id
B|. Then, A(IC , JB)

is a constant bicluster and |IC | ≥ k
L . Let |IC | = l.

Our algorithm has three phases. In the first phase of the algorithm, we want to find
the row set IC in A′(I, J). In order to vote, we first convert the matrix A′(I, J) into a
distance matrix D(I, J) containing the same sets of rows and columns, and then focus
on D(I, J).

Distance matrix Given an n×m matrix A′(I, J), we can convert it into a distance matrix
based on a row in the matrix. Let i∗ ∈ I be any row in the matrix A. We refer to row
i∗ as the reference row. Define di, j = ai, j − ai∗, j. In the transformation, we subtract the
reference row i∗ from every row in A′(I, J). We use D(I, J) to denote the n×m distance
matrix containing the set of rows I and the set of columns J with every element di, j. For
a row i ∈ I and a column set J′ ⊆ J, the number of occurrences of u, u ∈ [−L +1, L−1],
in D(i, J′) is the number of elements with value u in D(i, J′), denoted by f (i, J′, u) =

|{di, j|di, j = u & j ∈ J′}|. The number of occurrences of the element that appears the most
in D(i, J′) is f ∗(i, J′) = maxu f (i, J′, u). Similarly, for a row set I′ ⊆ I and a column
j ∈ J, the number of occurrences of u in D(I′, j) is the number of elements with value u
in D(I′, j), denoted by f (I′, j, u). The number of occurrences of the element that appears
the most in D(I′, j) is f ∗(I′, j) = maxu f (I′, j, u).

Observation 2 Suppose that we use a row i∗ ∈ IC as the reference row. For each row i1
in IC , the expectation of the number of 0’s in row i1 of D(I, J) is at least m−k

L + (1− θ)2k.
For each row i2 in IB − IC , the expectation of the number of 0’s in row i2 of D(I, J) is at
most m−k

L + 2θk
L . For each row i3 in I − IB, the expectation of the number of 0’s in row i3

of D(I, J) is at most m−k
L + k

L .

Based on the observation, if the reference row i∗ is in IC , we can find the rows with
the most 0’s in the distance matrix to obtain a row set I0 by using the following voting
method.
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The first phase voting
1. for i = 1 to n do
2. compute f (i, J, 0).
3. select rows i such that f (i, J, 0) > m

L + 4
√

m log m to form I0.

When m and k are sufficiently large and θ is sufficiently small, we can prove that,
with a high probability, the row set I0 is equal to IC . The proof will be given in the next
section.

In the second phase voting of the algorithm, we attempt to find locate the column
set JB of the implanted bicluster. It is based on the following observation.

Observation 3 For a column j1 in JB, the expectation of the number of occurrences of
the element that appears the most in D(IC , j1) is (1 − θ)|IC |. For a column j2 in J − JB,
the expectation of the number of occurrences of an element u in D(IC , j1) is 1

L |IC |.
With a high probability (and again assuming that θ is sufficiently small), the number

of occurrences of the element that appears the most in the columns of JB is greater
than the number of occurrences of the element that appears the most in the columns
of J − JB. That is, for two columns j1 ∈ JB and j2 < JB, with a high probability,
f ∗(I0, j1) > |I0 |

2 > f ∗(I0, j2). Based on the property, we can use voting to find a column
set J1.

The second phase voting
1. for j = 1 to m do
2. compute f ∗(I0, j).
3. select columns j such that f ∗(I0, j) > |I0 |

2 to form J1.

We can prove (in the next section) that, with a high probability, J1 is equal to the
implanted column set JB.

Similarly, the third phase voting of the algorithm is designed to locate the row
set IB of the implanted bicluster. But, before the voting, we need correct corrupted
columns of the distance matrix D(I, J) caused by the elements of the reference row i∗

that were changed during the generation of B′. Recall that f ∗(I0, j) = maxu f (I0, j, u).
Let f (I0, j, u j) = f ∗(I0, j). For every j ∈ J1, if u j , 0, then the element ai∗, j was changed
when B′ was generated (assuming J1 = JB), and we can thus correct each element di, j

in the jth column of the matrix D(I, J) by subtracting u j from it.
In the following, let us assume that the entries in the submatrix D(I, JB) have been

adjusted according to the correct reference row i∗ as described above. The following
observation holds.

Observation 4 For a row i1 in IB, the expectation of the number of occurrences of the
element that appears the most in D(i1, JB) is at least (1 − θ)k. For a row i2 in I − IB,
the expectation of the number of occurrences of the element that appears the most in
D(I2, jB) is k

L .

We can thus find a row set I1 in A′(I, J1) as follows.
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The Three Phase Voting Algorithm
Input: An n × m matrix A′(I, J), an integer k, noise level θ, and L.
Output: A bicluster A′(I1, J1).
1. for each row i∗ ∈ I, do
2. construct the n × m distance matrix D(I, J) from A′(I, J) with reference row i∗.
3. find a row set I0 by using the first phase voting.
4. if |I0| ≥ k

L , then
5. find a column set J1 by using the second phase voting.
6. correct the corrupted columns in submatrix D(I, J1).
7. find a row set I1 by using the third phase voting.
8. if |I1| ≥ k and |J1| ≥ k, output A′(I1, J1) and return.

Fig. 1. The three phase voting algorithm.

The third phase voting
1. for i = 1 to n do
2. compute f ∗(i, J1).
3. select rows i such that f ∗(i, J1) > |J1 |

2 to form I1.

We can prove (in the next section) that, if |I1| ≥ k, with a high probability, I1 is
equal to the implanted column set IB. Therefore, a voting algorithm based on the above
procedures, as given in Figure 1, can be used to find the implanted bicluster with a high
probability. Since the time complexity of the steps 2 - 7 of the algorithm is O(nm) and
these steps are repeated n times, the time complexity of the algorithm is O(n2m).

3 Analysis of the Algorithm

In this section, we will prove that, with a high probability, the above voting algorithm
correctly outputs the implanted bicluster.

Recall that in the submatrix A′(IB, JB), each element was changed with probability
θ to generate B′ from B. We will show that, with a high probability, there exists a row
i ∈ IC such that row i has at least (1− δ)(1− θ)k unchanged elements in A′(i, JB) for any
0 < δ < 1.

In the analysis, we need the following two lemmas from [18, 14].

Lemma 1. [18] Let X1, X2, . . . , Xn be n independent random binary (0 or 1) variables,
where Xi takes on the value of 1 with probability pi, 0 < pi < 1. Let X =

∑n
i=1 Xi and

µ = E[X]. Then for any 0 < δ < 1,

(1) Pr(X > (1 + δ)µ) <
[

eδ
(1+δ)(1+δ)

]µ
,

(2) Pr(X < (1 − δ)µ) ≤ e−
1
2 µδ

2
.

Lemma 2. [14] Let Xi,1 ≤ i ≤ n, X and µ be defined as in Lemma 1. Then for any
0 < ε < 1,
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(1) Pr(X > µ + εn) ≤ e−
1
3 nε2

,
(2) Pr(X < µ − εn) ≤ e−

1
2 nε2

.

These two lemmas will be used to establish the next lemma.

Lemma 3. For any 0 < δ < 1, with probability at least 1 − e−
1

2L (1−θ)k2δ2
, there exists a

row i ∈ IC that has at least (1 − δ)(1 − θ)k unchanged elements in A′(i, JB).

Suppose that there is a row i∗ ∈ IC with (1 − δ)(1 − θ)k unchanged elements in
A′(i, JB). Now, let us consider the distance matrix D(I, J) with the reference row i∗. We
now show that, with a high probability, the rows in IC have more 0’s than those in I − IC

in matrix D(I, J). That is, with a high probability, our algorithm will find the row set IC

in the first phase voting.

Lemma 4. Let i∗ ∈ IC be the reference row with (1 − δ)(1 − θ)k unchanged elements in
A′(i∗, JB), and D(I, J) the distance matrix as described above. When α = (1−δ)(1−θ)2−
1
L > 0 and k ≥ 8

α

√
m log m, with probability at least 1−m−7 − nm−5, f (i, J, 0) > m

L + α
2 k

for all i ∈ IC , and f (i, J, 0) < m
L + α

2 k for all i ∈ I − IC .

The above lemma shows that, when a row i∗ with (1−δ)(1−θ)k unchanged elements
in A′(i, JB) is selected as the reference row, and m and k are large enough, I0 = IC with
a high probability. Next, we prove that, with a high probability, our algorithm will find
the implanted column set JB.

Lemma 5. Suppose that the row set I0 found in the first phase voting of Algorithm 1 is

indeed equal to IC . With probability at least 1−ke−
(1−2θ)2

8L k−L(m−k)e−
(L−2)2

12L3 k , the column
set J1 found in the second phase voting of Algorithm 1 is equal to JB.

Similarly, we can prove that, with a high probability, our algorithm will find the
implanted row set IB.

Lemma 6. Suppose that the column set J1 found in the second phase voting of

Algorithm 1 is indeed equal to JB. With probability at least 1 − ke−
(1−2θ)2

8 k − 2L(n −
k)e−

(L−2)2

12L2 k, the row set I1 found in the third phase voting of Algorithm 1 is equal to IB.

Finally, we can prove that, with a high probability, no columns or rows other than
those in the implanted bicluster will be output by the voting algorithm.

Lemma 7. With probability at least 1−Ln(m−k)e−
(L−2)2

12L3 k−2Ln(n−k)e−
(L−2)2

12L2 k, no columns
or rows of A′(I, J) other than those in A′(IB, JB) will be output by the Algorithm 1.

Based on Lemmas 3, 4, 5, 6 and 7, we can show that, when m and k are large enough,
the three phase voting algorithm can find the implanted bicluster with a high probability.
Let c be a constant such that c < min{ (1−θ)δ2k

2L , (1−2θ)2

8L , (L−2)2

12L3 }. In most applications, we
may assume that n < m3. Then, we have the following theorem.

Theorem 1. When n < m3, α = (1−δ)(1−θ)2− 1
L > 0 and k ≥ max

{
8
α

√
m log m, 8 log m

c
+ log(2L)

}
, the voting algorithm correctly outputs the implanted bicluster with proba-

bility at least 1 − 9m−2.
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If we replace m by n in the above analysis, the same proof shows that

Corollary 1. When α = (1 − δ)(1 − θ)2 − 1
L > 0 and k ≥ max

{
8
α

√
n log n, 8 log n

c
+ log(2L)

}
, the voting algorithm correctly outputs the implanted bicluster with proba-

bility at least 1 − 9n−2.

In the practice of microarray data analysis, the number of conditions m is much
smaller than the number of genes n. Thus, Theorem 1 allows the parameter k to be
smaller (i.e. it works for smaller implanted biclusters) than Corollary 1, although it
assumes a slightly more complicated condition (n < m3) and has a slightly worse
success probability.

4 The Implementation of the Voting Algorithm

The voting algorithm described in Section 2 is originally based on the probabilistic
model for generating the implanted additive bicluster. Many assumptions have been
used to prove its correctness. To deal with real data, we have to carefully resolve the
following issues.
Estimation of the bicluster size. In the voting algorithm, we assume that the size k
of the implanted bicluster is part of the input. However, in practice, the size of the
implanted bicluster is unknown. Here we develop a method to estimate the size of the
bicluster. We first set k to be a large number such that k ≥ |JB|. Let q be the maximum
number of rows such that f (i, J, u) > (m−k)Pr(di, j = u)+k among all u ∈ [−L+1, L−1].
Our key observation here is that if k is greater than |JB|, then q will be smaller than |IB|.
If k is smaller than |JB|, then q will be greater than |IB|. Thus, we can gradually decrease
the value of k while observing that the value of q increases accordingly. The process
stops when q ≥ 2k.

To set the initial value of k such that k ≥ |JB|, we set k = 3 · maxu(Pr(di, j = u)) · m.
This worked very well in our experiments.
Dealing with retangular biclusters. Many interesting biclusters in the practice
of microarray gene expression data are non-square. To deal with such rectangular
biclusters, where |IB| , |JB|, we first try to obtain a square bicluster in the first phase
voting (assuming |IB| ≥ |JB|) and then use the k rows in I0 for the second phase
voting. The third phase voting may in fact generate a rectangular bicluster with unequal
numbers of rows and columns.
Adjusting the threshold used in the first phase voting for a real input matrix. In
Step 3 of the first phase voting, we use the threshold f (i, J, 0) > m

L + 4
√

m log m to
select rows to form I0. This is based on the assumption that in the random background
matrix, di, j = 0 with probability 1

L . In order for the algorithm to work for any input
data, we consider the distribution of numbers in the whole input matrix. We calculate
the probability Pr

(
di, j = l

)
for each l ∈ [−L + 1, L + 1] in the input matrix. In Step 3 of

the first phase voting, we choose all the rows such that f (i, J, u) > (m−k)Pr(di, j = u)+k.
In this way, we were able to make our algorithm to work well for real microarray data
where the background did not seem to follow some simple uniform/normal distribution.
When |Ic| is too small for voting. Recall that Ic is the set of the rows identical to the
reference row I∗ in the implanted bicluster. In other words, the set Ic contains all the
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rows i with di, j = 0 for j ∈ JB. The expectation of |Ic| is k
L . When k is small and L

is large, |Ic| (and thus I0) could be too small for the voting in the second phase to be
effective. To enhance the performance of the algorithm, we consider the set Iu

B for each
u ∈ [−L + 1, L − 1] as defined in the beginning of Section 2, and approximate it using a
set Iu

0 in the algorithm just like how we approximated the set IC = I0
B by the set I0 in the

first phase voting. Thus, the second phase voting becomes:

The second phase voting
1. for j = 1 to m do
2. compute f (Iu

0 , j, u) for each u ∈ [−L + 1, L − 1].
3. select columns j such that

∑L−1
u=−L+1 f (Iu

0 , j, u) > (
∑L−1

u=−L+1 |Iu
0 |)/2 to

form J1.

Dealing with multiple and overlapping biclusters. In microarray gene expression
analysis, a real input matrix may contain multiple biclusters of interest, some of which
could overlap. We could easily modify the voting algorithm to find multiple implanted
biclusters by forcing it to go through all the n rounds (i.e. considering each of the n rows
as the reference row) and recording all the biclusters found. If the two biclusters found
in two different rounds overlap (in terms of the area) by more than 25% of the area of
the smaller biclcuster, then we consider them as the same bicluster.

5 Experimental Results

We have implemented the above voting algorithm in C++ and produced a software,
named VOTE. In this section, we will compare VOTE with some well-known biclus-
tering algorithms in the literature on both simulated and real microarray datasets. The
tests were performed on a desktop PC with P4 3.0G CPU and 512M memory running
Windows operating system.

To evaluate the performance of different methods, we use a measure (called match
score) similar to the score introduced in Prelić et al. [20]. Let M1,M2 be two sets of
biclusters. The match score of M1 with respect to M2 is given by

S (M1,M2) =
1
|M1|

∑

A(I1,J1)∈M1

max
A(I2,J2)∈M2

|I1 ∩ I2| + |J1 ∩ J2|
|I1 ∪ I2| + |J1 ∪ J2| .

Let Mopt denote the set of implanted biclusters and M the set of the output biclusters of
a biclustering algorithm. S (Mopt,M) represents how well each of the true biclusters is
discovered by a biclustering algorithm.

5.1 Simulated Datasets

Following the method in [15, 20], we consider an n × m background matrix A. Let
L = 30. We generate the elements in the background matrix A such that the data fits
the standard normal distribution with the mean of 0 and the standard deviation of 1. To
generate an additive b×c bicluster, we first randomly generate the expression values in a
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Table 1. Parameter settings for different biclustering methods.

Method Type of Bicluster Parameter Setting
BiMax Constant minimum number of genes and chips: 4
ISA Constant/Additive tg = 2.0, tc = 2.0, seeds = 500
CC Constant δ = 0.5, α = 1.2
CC Additive δ = 0.002, α = 1.2
RMSBE Constant/Additive α = 0.4, β = 0.5, γ = γe = 1.2
OPSM Additive l = 100
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reference row (a1, a2, . . . , ac) according to the standard normal distribution. To obtain a
row (ai1, ai2, . . . , aic) in the additive bicluster, we randomly generate a distance di (based
on the standard normal distribution) and set ai, j = a j + di for j = 1, 2, . . . , c. After we
obtain the b × c additive bicluster, we add some noise by randomly selecting θ · b · c
elements in the bicluster and changing their values to a random number (according
to the standard normal distribution). Finally, we insert the obtained bicluster into the
background matrix A and shuffle the rows and columns. We compare our program,
VOTE, with several well-known programs for biclustering from the literature including
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Fig. 7. Proportion of biclusters significantly
enriched by a GO category. Here, α is the
adjusted significance score of a bicluster.

ISA, CC, OPSM, and RMSBE [3, 5, 9, 10, 15]. The parameter settings of different
methods are listed in Table 1.

Testing the performance on small biclusters. First, we test how well the programs
are able to find small implanted additive biclusters. Let n = m = 100 and b = c =

15× 15, and consider implanted biclusters generated with different noise levels θ in the
range of [0, 0.25]. Figure 2 shows that VOTE and RMSBE outperform CC, OPSM and
ISA with on all noise levels.

Testing the performance on biclusters of different sizes. Since RMSBE has the
best performance among the existing programs considered here, we compare VOTE
with RMSBE on different bicluster sizes. In this test, the noise level is set as θ = 0.2.
The sizes of the implanted (square) biclusters vary from 30 × 30 to 100 × 100 and the
background matrix is of size 500 × 500. As illustrated in Figure 3, VOTE outperforms
RMSBE when the size of the square bicluster is greater than 40, while RMSBE is more
powerful in finding small biclusters.

Finding multiple biclusters. To test the ability of finding multiple biclusters, we
first generate two b × b additive biclusters with o overlapped rows and columns. The
parameter o is called the overlap degree. The background matrix size is fixed as
100 × 100. Both the background matrix and the biclusters are generated as before.
To find multiple biclusters in a given matrix, some methods, e.g., CC, needs to mask
the previously discovered biclusters with random values. One of the advantages of the
approaches based on a reference row, e.g., VOTE and RMSBE, is that it is unnecessary
to mask previously discovered biclusters. We test the performance of VOTE, RMSBE,
CC and OPSM on overlapping biclusters by using 20×20 additive biclusters with noise
level θ = 0.1 and overlap degree o ranging from 0 to 10. The results are shown in
Figure 4. We can see that both VOTE and RMSBE are only marginally affected by
the overlap degree of the implanted biclusters. VOTE is slightly better than RMSBE,
especially when o increases.
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Finding rectangular biclusters. We generate rectangular additive biclusters with
different sizes and noise levels. The row and column sizes of the implanted biclusters
range from 20 to 50. The noise level θ is from the range [0, 0.25]. The background
matrix is of size 100 × 100. The results are shown in Figure 5. We can see that the
performance of VOTE is not affected by the shapes of the rectangular biclusters. Since
RMSBE can only find near square biclusters, we compare the performance of VOTE
with that of an extension of RMSBE. Comparing Figure 5 with the test results given in
[15], our algorithm is better in finding rectangular biclusters.

Running time. To compare the speeds of VOTE and RMSBE, we consider
background matrices of 200 columns. The number of rows ranges from 1000 to 6000.
The size of the implanted bicluster is 50×50. The running time of VOTE and RMSBE is
shown in Figure 6. In the test, we let RMSBE randomly select 10% rows as the reference
row and 50 columns as the reference column. We can see that VOTE is much faster than
RMSBE. Moreover, for the real gene expression data of S. cerevisiae provided by Gasch
et al. [7], our algorithm runs in 66 seconds and RMSBE (randomly selecting 300 genes
as the reference row and 40 conditions as the reference column) runs in 1230 seconds.

5.2 Real Dataset

Similar to the method used by Tanay et al. [22] and Prelić et al [20], we investigate
whether the set of genes discovered by a biclustering method shows significant
enrichment with respect to a specific GO annotation provided by the Gene Ontology
Consortium [7]. We use the web tool funcAssociate of Berriz et al. [4] to evaluate
the discovered biclusters. FuncAssociate first uses Fisher’s exact test to compute the
hypergeometric functional score of a gene set, then it uses the Westfall and Young
procedure [23] to compute the adjusted significance score of the gene set. The analysis
is performed on the gene expression data of S. cerevisiae provided by Gasch et al.
[7]. The dataset contains 2993 genes and 173 conditions. We set L = 30, filter out the
biclusters with over 25% overlapped elements, and output the largest 100 biclusters. The
running time of VOTE on this dataset is 66 seconds. The adjusted significance scores
(adjusted p-values) of the 100 biclusters are computed by using FuncAssociate. Here,
we compare the significance scores for RMSBE, OPSM, BiMax [20], ISA, Samba [22],
and CC obtained from Figure 7 in Liu et al. [15]. The result is summarized in Figure 7.
We can see that 92% of discovered biclusters by VOTE are statistically significant, i.e.
with α ≤ 5%. Moreover, the performance of VOTE in this regard is comparable to that
of RMSBE and is better than those of the other programs compared in [15].

6 Conclusion

Based on a simple probabilistic model, we have designed a three phase voting algorithm
to find implanted additive biclusters. We proved that when the size of the implanted
bicluster isΩ(

√
m log m), the voting algorithm can correctly find the implanted bicluster

with a high probability. We have also implemented the voting algorithm as a software
tool, VOTE, for finding novel biclsuters in real microarray gene expression data. Our
extensive experiments on simulated datasets demonstrate that VOTE performs very well
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in terms of both accuracy and speed. Future work includes testing VOTE on more real
datasets, which could be a bit challenging since true biclusters for most gene expression
datasets are unknown.
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