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1. INTRODUCTION

Computational molecular biology has emerged as one of the most exciting inter-
disciplinary fields in the past two decades, in part because various biological ap-
plications have spawned a large number of interesting combinatorial problems such
as multiple sequence alignment [Gusfield 1997], sorting by reversals [Sankoff 1989],
and recently the minimum common partition problem [Chen et al. 2005a]. These
problems have attracted considerable attention from computer scientists who took
the challenge to design efficient and effective algorithms for solving them [Altschul
and Lipman 1989; Hannenhalli and Pevzner 1995; Goldstein et al. 2004]. In this pa-
per, we introduce a new combinatorial optimization problem, called the Minimum
Common Integer Partition problem (MCIP), which was inspired by our recent work
on ortholog assignment and DNA fingerprint assembly.

By a partition of a positive integer n we mean a multiset 1 {n1, n2, · · · , nr} of
positive integers that add up to exactly n, i.e.

∑r
i=1 ni = n, where ni is called a

part of the partition of n [Andrews 1976; Andrews and Eriksson 2004]. We will use
P (n) to denote a specific partition of n. Given a multiset S = {x1, x2, · · · , xm} of
integers with a partition P (xi) for each integer xi, 1 ≤ i ≤ m, we can define an
integer partition of S as the multiset union of these partitions, that is

⊎m
i=1 P (xi).

By definition, S is an integer partition of itself. A multiset is said to be a common
integer partition of a sequence of multisets S1, S2, . . . , Sk(k ≥ 2) if it is an integer
partition of every multiset Si, 1 ≤ i ≤ k. The minimum common integer partition
problem is thus defined as follows: given a sequence of multisets S1, S2, · · · , Sk of
integers, find a common integer partition of them with the minimum cardinality.
We denote the minimum common integer partition by MCIP(S1, S2, · · · , Sk) (or
simply MCIP when the input multisets are clear from the context). Note that,
now MCIP denotes both the MCIP problem and also its solution on a particular
instance, but this overloading of the notation is a common pratice and should not
cause any confusion given the context. For simplicity, we also denote by MCIP(S1,
S2, · · ·, Sk) (or simply k-MCIP) the restricted version of the MCIP problem when
the number of input multisets is fixed to be k throughout the paper.

For example, the integer 3 has only three partitions, i.e., {3},{2, 1}, and {1, 1, 1},
while the integer 10 has 190569292 partitions [Andrews 1976]. We can see that the
number of partitions increases quite rapidly with the integer n. For multiset S =
{3, 3, 4}, {2, 2, 3, 3} is an integer partition of S and {1, 1, 2, 2, 4} is another one. For
a pair of multisets S = {3, 3, 4} and T = {2, 2, 6}, both {2, 2, 3, 3} and {1, 1, 2, 2, 4}
are common integer partitions of S and T , while the first one gives the minimum
cardinality, i.e., MCIP(S, T ) = {2, 2, 3, 3}. Note that the minimum common integer
partition is not necessarily unique. So, the notation MCIP(S1, S2, · · · , Sk) is not
really a function, strictly speaking. But we will use it as a function throughout the
paper for simplicity.

The necessary and sufficient condition for a sequence of multisets S1, S2, . . . , Sk

to have a common integer partition is that they have the same summation over
their integer elements. Multisets with this property are called related. Verifying

1Recall that a multiset is a set-like object in which order is ignored, but multiplicity is explicitly
significant.
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whether a sequence of multisets of integers are related can be done easily in linear
time, and thus for the rest of the paper we will assume, without loss of generality,
that the input multisets are all related.

Clearly, the MCIP problem is NP-hard since it generalizes the well-known Subset
Sum problem [Cormen et al. ]. The reduction from the Subset Sum problem to the
MCIP problem is based on the following observation: given a set S = {x1, ..., xn}
of n positive integers and a positive integer x, there exists a subset of S with sum
x, if and only if the MCIP solution for multisets S and T = {x, (

∑
xi∈S xi − x)}

has the cardinality n. We also present a 5
4 -approximation algorithm for the 2-

MCIP problem using a heuristic for the Maximum Set Packing problem, and a
3k(k−1)
3k−2 -approximation algorithm for the general k-MCIP problem, where k ≥ 3.

In this paper, we show that the MCIP problem is APX-hard and hence has no
polynomial-time approximation algorithm (PTAS) unless P = NP.

1.1 Biological Background

Although the MCIP problem is quite a natural extension of the Subset Sum prob-
lem, its formulation was mainly motivated by our recent work on ortholog as-
signment and DNA fingerprint assembly in computational molecular biology. The
following gives a brief account of the background. Since it contains discussions that
involve the knowledge of some biological experiments, the reader who is not inter-
ested in the biological relevance may feel free to skip some (or all) of the paragraphs
in this subsection.

Ortholog assignment. Orthologous genes are typically the evolutionary and func-
tional counterparts in different species, and therefore the prediction (or assignment)
of orthologs is a common task in computational biology. While it is usually done
using sequence homology search [Remm et al. 2001], we have recently proposed
an alternative and promising approach to assign orthologs via genome rearrange-
ment [Chen et al. 2005b; 2005a]. This new approach has inspired us to formulate
several interesting combinatorial optimization problems, e.g., Signed Reversal Dis-
tance with Duplicates (SRDD), Minimum Common String Partition (MCSP), and
Maximum Cycle Decomposition (MCD), which have attracted increasing attention
from the algorithms community [Chrobak et al. 2004; Goldstein et al. 2004; Fu
2004; Kolman 2005]. In particular, the MCSP problem, which is the most related
to MCIP, is defined as follows: given two input strings, partition them into the
same collection of substrings so that the number of resultant substrings is mini-
mized. For example, the MCSP for {aaabbbccc, bbbaaaccc} is {aaa, bbb, ccc}. The
restricted version of MCSP where the number of symbols that occur in an input
string multiple times (called duplicated symbols; the other symbols are called sin-
gletons) is no more than l in each input string, is denoted by MCSP-l. It is known
that the MCSP-l problem is NP-hard [Chen 2005], when l ≥ 1. In other words,
even when there is only one symbol with multiple copies in each input string, we
still cannot find the MCSP in polynomial time unless P=NP.

It is easy to transform an instance of MCSP-1 into an instance of 2-MCIP where
each integer represents the size of a block consisting of only the duplicated symbol
so that an optimal solution to the 2-MCIP problem would in most cases give an
optimal solution to the MCSP-1 problem with the same cardinality [Chen 2005].

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.
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Therefore, we hope that the study of MCIP will help the design of good approxi-
mation algorithms for MCSP-1 and MCSP in general.

DNA fingerprint assembly. In the ongoing Oligonucleotide Fingerprinting Ribo-
somal Genes (OFRG) project [Valinsky et al. 2004], we collaborate with microbiolo-
gists and statisticians to provide a high-throughput method for identifying different
microbial organisms. Briefly, the microbiologists build an rDNA clone library af-
ter DNA extraction and Polymerase Chain Reaction (PCR) amplification. The
rDNA clones are assigned fingerprints (binary strings where 0 indicate non-binding
between a clone and a probe, and 1 otherwise) through a series of hybridization ex-
periments, each using a single 10-nucleotide DNA probe. These 10-nucleotide DNA
probes comprise a probe set and the size of the probe set determines the length of
a fingerprint. Then, clones are identified by clustering their fingerprints with those
of known sequences. By mapping sequence data to hybridization patterns, clones
can be identified (or at least differentiated). Compared with direct sequencing, the
method saves significant cost without sacrificing too much discriminating ability.

Although OFRG is a cost-effective approach, we are trying to scale it up in
order to process a large number of samples from applications such as identifying
microorganisms involved in the development of the mucosal and systemic immune
system. One possible way of enhancing OFRG is inspired by new (but proven)
technologies such as microbead clone libraries and multiplex flow cytometry. By
producing clone libraries on microbeads, we are able to simultaneously hybridize a
set of probes to thousands of clones in seconds, which is a significant improvement
over the current array platform. However, we will still need multiple hybridizations,
each using a different probe (sub)set, as the size of the desired probe set in OFRG
exceeds the maximum discriminating size of the cytometry technology. Thus we
obtain a partial fingerprint from each run of hybridization because only a subset of
the probes are used in each hybridization.

The DNA fingerprint assembly problem aims at inferring a complete fingerprint
(with respect to the overall probe set) for each clone from partial fingerprints by
minimizing the total number of distinct complete fingerprints. We assume that
all the probe subsets share a small number of common probes which are called
the linking probes. That is, these linking probes will be used for each run of hy-
bridization. A complete fingerprint can thus be obtained from partial fingerprints
that share the same bits on the linking probes. More specifically, after each run
of the hybridization, we assign a weight to each distinct partial fingerprint as the
number of clones that produced this partial fingerprint in the hybridization. Then
we divide all partial fingerprints into groups based on their bits on the positions
of linking probes. The partial fingerprints in a group are compatible with each
other and may correspond to the same complete fingerprint. For each group, the
fingerprint assembly problem can be viewed as MCIP(S1, S2, · · · , Sk), with k be-
ing the number of the probe subsets (i.e. the number of hybridizations) and Si

containing the weight of each partial fingerprint in this particular group from the
ith hybridization. Hence, complete fingerprints for each group can be obtained by
combining their respective partial fingerprints via the minimum common integer
partition of the weights. Such a solution would represent the minimum number of
distinct complete fingerprints (or clones) that have produced the group of partial
ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.
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fingerprints.

2. SOME BASIC FACTS

Throughout the paper, we assume that the multisets given as input to MCIP are
related as mentioned before. We denote the size of the minimum common integer
partition by |MCIP (S1, S2, · · · , Sk)| (or simply |k-MCIP | if the input multisets
are clear from the context). Because every integer in any input multiset will be
partitioned into one or more integers in the minimum common integer partition,
the following lemma gives a trivial, but useful lower bound.

Lemma 2.1. |MCIP (S1, S2, · · · , Sk)| ≥ max(|S1|, |S2|, · · · , |Sk|), where |·| is the
size of a multiset.

Proof. The proof is obvious and thus omitted.

In the case of 2-MCIP, we use 〈S, T 〉 to denote the two input multisets, where S =
{x1, x2, · · · , xm} and T = {y1, y2, · · · , yn} such that

∑m
i=1 xi =

∑n
i=1 yi. A greedy

algorithm that constructs a common integer partition of 〈S, T 〉 is to iteratively add
the smaller one of two integers randomly selected from the two input multisets.
More precisely, the algorithm can be described in pseudo-code as in Figure 1, and
runs in time linear in n. The following lemma gives an upper bound for 2-MCIP,
which is very useful in the subsequent discussion.

Lemma 2.2. |MCIP (S, T )| ≤ |S|+ |T | − 1.

Proof. After each iteration of the algorithm 2-APPROX-MCIP(S,T ), the to-
tal size of S and T shall decrease by one or two while the multiset CIP expands by
one integer. In the last iteration, the two integers remaining in S and T must be
equal, and thus the total size of S and T shall decrease by exactly two. Therefore,
the common integer partition returned from the algorithm contains no more than
|S|+ |T | − 1 integers.

As its name suggests, the algorithm 2-APPROX-MCIP(S,T ) is a 2-approximation
algorithm for the problem of 2-MCIP.

Lemma 2.3. The algorithm 2-APPROX-MCIP(S,T ) achieves an approxima-
tion ratio of 2.

Proof. The result is trivially implied by Lemma 2.1 and Lemma 2.2.

Given a common integer partition CIP (S, T ) of 〈S, T 〉, we say that xi is mapped
to yj if there exists an element in CIP (S, T ) such that it is a part of the partition of
xi as specified in CIP (S, T ) as well as a part of the partition of yj . Notice that an
integer in S (or T ) can be mapped to two or more integers in T (or S). Two integers
a1 and ah in 〈S, T 〉, i.e., a1 ∈ S

⊎
T and ah ∈ S

⊎
T , are said to be connected if

there exist a sequence of integers a2,· · ·,ah−1 in 〈S, T 〉 such that ai is mapped to
ai+1, for each i ∈ [1, h− 1]. Thus, all the integers that are connected to each other
in S and T will constitute a connected component (or simply component) of 〈S, T 〉.
We say that these connected components are induced by the given common integer
partition CIP (S, T ).

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.



6 · Xin Chen et al.

Algorithm 2-Approx-MCIP(S, T )

input Related multisets S = {x1, · · · , xm}
and T = {y1, · · · , yn}

output A common integer partition CIP of S and T

begin

CIP := ∅;
while S 6= ∅ do

arbitrarily pick xi ∈ S and yj ∈ T ;

S := S \ {xi}; // remove xi from S;

T := T \ {yj}; // remove yj from T ;

if xi < yj then

CIP := CIP
⊎
{xi}; // add xi to CIP ;

yj := yj − xi;

T := T
⊎
{yj}; // add yj to T ;

else if xi > yj then

CIP := CIP
⊎
{yj}; // add yj to CIP ;

xi := xi − yj ;

S := S
⊎
{xi}; // add xi to S;

else if xi = yj then

CIP := CIP
⊎
{xi}; // add xi to CIP ;

return CIP ;

end.

Fig. 1. A 2-approximation algorithm for 2-MCIP.

Lemma 2.4. Suppose that CIP (S, T ) denotes a common integer partition of S
and T . Then

(1 ) every connected component 〈S1, T1〉 induced by CIP (S, T ) is a pair of related
multisets;

(2 ) for every connected component 〈S1, T1〉, all the integers in CIP (S, T ) that are
partition parts of the integers in S1 or T1 constitute a common integer partition
CIP (S1, T1) of S1 and T1 such that |CIP (S1, T1)| ≥ |S1|+ |T1| − 1.

Proof. (1) Based on the common integer partition CIP (S, T ), each part of the
partition of an integer xi in S1 corresponds to a distinct part of the partition of
exactly one integer yj in T in a one-to-one fashion. In this case, xi and yj are
mapped to each other, and by the definition of connected components, yj will be
included in T1, implying that

∑
x∈S1

x ≤ ∑
y∈T1

y. Similarly, we have
∑

x∈S1
x ≥∑

y∈T1
y. Therefore, S1 and T1 are two related multisets.

(2) Since the multiset under consideration (i.e. CIP (S1, T1)) consists of all in-
tegers from CIP (S, T ) that are partition parts of integers in S1 or T1 and nothing
else, it is clearly a common integer partition of S1 and T1.

To see that |CIP (S1, T1)| ≥ |S1| + |T1| − 1, we construct an undirected graph
based on the integers in S1, T1 and CIP (S1, T1): for each integer in S1 (or T1), a
vertex is created and, for each integer in CIP (S1, T1) which is a part of the partition
of xi as well as a part of the partition of yj , an edge is created between the vertices
for xi and yj . We denote by |V | the number of vertices in the graph and by |E| the
number of edges. Observe that there is a one-to-one correspondence between the
ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.
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vertices and the integers in S1

⊎
T1, and hence |V | = |S1| + |T1|. Further observe

that there is a one-to-one correspondence between the edges and the integers in
CIP (S1, T1), and thus |E| = |CIP (S1, T1)|. We can see that the constructed graph
is connected and may have multiple edges between a pair of vertices, which means
that |E| ≥ |V | − 1. Thus |CIP (S1, T1)| ≥ |S1|+ |T1| − 1 holds.

2.1 The Maximum Related Multiset Partition

In this subsection, we define a new combinatorial optimization problem, maximum
related multiset partition (MRMP), to assist solving the MCIP problem.

S1 and T1 are said to be a pair of related submultisets of two related multisets S
and T if S1 is a (nonempty) submultiset of S, T1 is a (nonempty) submultiset of T ,
and they are related. We write 〈S1, T1〉 ⊆ 〈S, T 〉 to denote the related submultisets.
Obviously,〈S, T 〉 ⊆ 〈S, T 〉. Furthermore, S and T are said to be basic if they have
one and only one pair of related submultisets, namely 〈S, T 〉. For example, consider
S = {3, 3, 4} and T = {2, 2, 6}. They have three pairs of related submultisets:
〈{3, 3}, {6}〉, 〈{4}, {2, 2}〉, and 〈S, T 〉. Therefore, S and T are not a pair of basic
related multisets. An example of two basic related multisets is 〈{1, 4}, {2, 3}〉.

A multiset partition (or simply partition) of a multiset S is a sequence of disjoint
submultisets S1, S2, · · · , Sl of S whose union is S, i.e. S =

⊎l
i=1 Si. By definition, S

is a multiset partition of itself. It is important to remember that multiset partition
and the integer partition are two different concepts in this paper. Given two multi-
sets S and T of integers, a sequence of multiset pairs 〈S1, T1〉, 〈S2, T2〉, · · · , 〈Sl, Tl〉
is called a related multiset partition if {S1, S2, · · · , Sl} is a multiset partition of S,
{T1, T2, · · · , Tl} is a multiset partition of T , and, moreover, for each i ∈ [1, l], Si and
Ti are a pair of related multisets. The maximum related multiset partition problem
is then defined as to find a related multiset partition of two given multisets S and
T , maximizing the number of related multiset pairs in the partition. We denote by
MRMP (S, T ) (or 2-MRMP ) the maximum related multiset partition of S and T ,
and by |MRMP (S, T )| (or |2-MRMP |) the size of the partition, i.e., the number
of related multiset pairs in the partition.

Lemma 2.5. Given a common integer partition CIP (S, T ), we can transform
it into a related multiset partition of S and T , denoted as RMP (S, T ), such that
|RMP (S, T )| ≥ |S|+ |T | − |CIP (S, T )|.

Proof. Based on the given common integer partition CIP (S, T ), 〈S, T 〉 can
be decomposed into l connected components 〈S1, T1〉, 〈S2, T2〉, · · ·, 〈Sl, Tl〉. By
Lemma 2.4, each connected component is a pair of related multisets and dis-
joint with any other component. Therefore, all the l connected components nat-
urally give a related multiset partition (denoted as RMP (S, T )) of 〈S, T 〉, such
that |RMP (S, T )| = l. Let CIP (Si, Ti) denote the common integer partition of
〈Si, Ti〉 induced from CIP (S, T ). We can see that the union of all CIP (Si, Ti) will
be the common integer partition CIP (S, T ), i.e., CIP (S, T ) =

⊎l
i=1 CIP (Si, Ti).

Since each 〈Si, Ti〉 is a connected component, by Theorem 2.4, |CIP (Si, Ti)| ≥
|Si|+|Ti|−1 holds for each i ∈ [1, l]. Therefore, |CIP (S, T )| = ∑l

i=1 |CIP (Si, Ti)| ≥∑l
i=1(|Si|+ |Ti| − 1)| = |S|+ |T | − |RMP (S, T )|.
The following lemma establishes the relationship between MCIP and MRMP,

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.
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showing their (complementary) equivalence.

Lemma 2.6. If S and T are two related multisets, then |MCIP (S, T )|+|MRMP (S, T )| =
|S|+ |T |.

Proof. Assume that 〈S1, T1〉, 〈S2, T2〉, · · ·, 〈Sl, Tl〉 is a maximum related multi-
set partition of S and T with l = |MRMP (S, T )|. For each i ∈ [1, l], 〈Si, Ti〉 is a pair
of basic related multisets, and by Lemma 2.2, the minimum common integer parti-
tion MCIP(Si, Ti) is of size less than or equal to |Si|+|Ti|−1, i.e., |MCIP (Si, Ti)| ≤
|Si|+ |Ti| − 1. We can also see that the union of all MCIP(Si, Ti) forms a common
integer partition CIP (S, T ) of S and T , i.e., CIP (S, T ) =

⊎l
i=1 MCIP (Si, Ti),

and its size is |CIP (S, T )| =
∑l

i=1 |MCIP (Si, Ti)| ≤
∑l

i=1(|Si| + |Ti| − 1)| =
|S| + |T | − |MRMP (S, T )|. Therefore, we have |MCIP (S, T )| ≤ |CIP (S, T )| ≤
|S|+ |T | − |MRMP (S, T )|.

By Lemma 2.5, given a minimum common integer partition MCIP(S, T ), we can
transform it into a related multiset partition RMP (S, T ) such that |RMP (S, T )| ≥
|S| + |T | − |MCIP (S, T )|. Because |MRMP (S, T )| ≥ |RMP (S, T )|, we have
|MCIP (S, T )| ≥ |S|+ |T | − |MRMP (S, T )|.

Since a pair of basic related multisets S and T cannot be partitioned further
into pairs of related submultisets, i.e., |MRMP (S, T )| = 1, the following lemma is
trivially implied by Lemma 2.6.

Lemma 2.7. If S and T are a pair of basic related multisets, then |MCIP (S, T )| =
|S|+ |T | − 1.

The following lemmas will be crucial to the approximation algorithms. We define
the size of a pair of related multisets S and T as the sum of the size of S and the
size of T , i.e., |〈S, T 〉| = |S|+ |T |.

Lemma 2.8. If the minimum size of any pair of related submultisets of S and T
is c, then |MCIP (S, T )| ≥ c−1

c (|S|+ |T |).
Proof. Assume that {〈S1, T1〉, 〈S2, T2〉, · · · , 〈Sl, Tl〉} are the pairs of basic re-

lated multisets induced by the minimum common integer partition MCIP(S, T ),
such that |MCIP (S, T )| = ∑l

i=1(|Si|+ |Ti|−1). Since |〈Si, Ti〉| = |Si|+ |Ti| ≥ c for
each i ∈ [1, n], we have |MCIP (S, T )| = ∑l

i=1(|Si|+|Ti|−1) =
∑l

i=1
|Si|+|Ti|−1
|Si|+|Ti| (|Si|+

|Ti|) ≥
∑l

i=1(1− 1
c )(|Si|+ |Ti|) = c−1

c (|S|+ |T |).
Lemma 2.9. Given two related multisets, S = {x1, x2, · · · , xm} and T = {y1, y2,

· · · , yn}. If xi and yj are a pair of identical integers, then {xi}
⊎

MCIP (S\{xi}, T \
{yj}) is a minimum common integer partition of S and T , i.e., |MCIP (S, T )| =
|MCIP (S \ {xi}, T \ {yj})|+ 1.

Proof. Assume that MCIP(S, T ) is a minimum common integer partition of
S and T . Let MRMP (S, T ) denote the maximum related multiset partition in-
duced by MCIP(S, T ). If xi and yj are in the same pair of related submulti-
sets 〈S1, T1〉 of MRMP (S, T ) such that 〈S1, T1〉 6= 〈{xi}, {yj}〉, then we can fur-
ther decompose 〈S1, T1〉 into two pairs of related submultisets 〈{xi}, {yj}〉 and
〈S1 \{xi}, T1 \{yj}〉, which contradicts the definition of the maximum related mul-
tiset partition. If xi and yj are in two pairs of distinct related submultisets 〈S1, T1〉
ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.
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Algorithm 5
4
-Approx-MCIP(S, T )

input Two related multisets S and T

output A common integer partition CIP of S and T

begin

remove common integer(S,T );

approximate set packing(S,T );

CIP := CIP (S1, T1)
⊎

CIP (S2, T2);

CIP := CIP
⊎

2-APPROX-MCIP(S3, T3);

return CIP ;

end.

Fig. 2. A 5
4
-approximation algorithm for 2-MCIP.

and 〈S2, T2〉 of MRMP (S, T ), respectively, then we can obtain a new maximum
related multiset partition by replacing 〈S1, T1〉 and 〈S2, T2〉 with 〈{xi}, {yj}〉 and
〈S1

⊎
S2\{xi}, T1

⊎
T2\{yj}〉. Moreover, by Lemma 2.6, the new maximum related

multiset partition gives another minimum common integer partition in which xi is
mapped to yj , implying that |MCIP (S, T )| = |MCIP (S \ {xi}, T \ {yj})|+ 1.

Unfortunately, the result in Lemma 2.9 cannot be extended to the case of k
multisets when k ≥ 3. An interesting counterexample is {6, 5, 1, 4, 2}, {6, 5, 1, 3, 3},
{6, 4, 2, 3, 3}. Their minimum common integer partition is of size 6, but any common
integer partition including 6 as an element is of size at least 7. In the following,
we will use a procedure remove common integer(S1, S2, · · · , Sk) to remove all
common integer elements existing in every multiset of {S1, S2, · · · , Sk} (and add
them into the solution). The optimality of this operation is guaranteed only when
k = 2, as shown in Lemma 2.9.

3. APPROXIMATION OF 2-MCIP VIA MAXIMUM SET PACKING

In this section, we will give a 5
4 -approximation algorithm for the 2-MCIP problem

by considering pairs of basic related submultisets of sizes three and four between
S and T . As mentioned earlier (see Lemma 2.9), we assume that there are no
common integer elements between the two input multisets S and T , without loss
of generality.

We can construct an instance of the Maximum Set Packing problem [Ausiello
et al. 1999], in which the collection C consists of all pairs of basic related sub-
multisets of sizes three and four between S and T . Note that, each pair of basic
related multisets can also be viewed as a multiset. Since the cardinality of each
such pair (or multiset) in C is bounded from the above by a constant, it is actually
an instance of the Maximum k-Set Packing problem where k = 4. Hurkens and
Schrijver [1989] show that the Maximum k-Set Packing problem is approximable
within ratio k/2 + ε for any ε > 0. For the weighted version of the Maximum
k-Set Packing problem, where each set is given a non-negative weight, Arkin and
Hassin [1998] show that it is approximable within ratio k − 1 + ε for any ε > 0.

In the following, we consider a special weighted Maximum k-Set Packing problem
on C, where the weight for each pair of basic related multisets of size three (which is
simply considered as a multiset of size three) is 2 and the weight for a pair of basic
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related multisets of size four (which is considered as a multuset of size four) is 1, and
the goal is to find a collection of disjoint multisets of the maximum total weight.
Call any collection of pairwise disjoint multisets a packing. We design a heuristic al-
gorithm, which is implemented in the procedure approximate set packing(S,T ),
to find a packing as follows: first find a maximal set packing, and then recursively
replace a multiset of size four in the packing by a multiset of size three, or replace
a multiset of size three by two multisets of size three, or add some multiset into the
packing so that the resultant collection is still a packing (but with one more multi-
set of size three after a replacement or with one more multiset after an addition),
until no such replacement or addition could be made further.

The above heuristic algorithm can be made to run in O(|U | · |C|2) time, where U
denotes the universe of the elements in Set Packing, i.e., the multiset union of all
multisets in C. In our case, |U | ≤ m + n. To see this running time, first, given a
packing P , we define a mapping fP : U 7→ C∪{∅} as follows: for ∀u ∈ U , fP (u) = c
if there exists a multiset c ∈ P such that u ∈ c, and fP (u) = ∅ otherwise. Second,
given a multiset c ∈ C, the multisets in the packing P that are not disjoint with c
can be found in constant time by looking up the mapping function fP , because c
has only three or four elements. Furthermore, given two multisets c1 and c2 in C,
we can find in constant time a multiset p in P such that if p is replaced by c1 and c2

then P
′
= P

⊎{c1, c2}\{p} is still a packing of C, or report no such a multiset p in P
exists. Third, after each replacement or addition, updating the mapping function
for P

′
can also be done with fP in constant time. Therefore, in our heuristic

algorithm, a replacement or addition at each iteration can be made in |C|2 time
as we may enumerate every pair of multisets in C for a possible replacement or
addition. Finally, observe that at most |U | replacements could be made as the
number of multisets of size three in the found packing increases by one after each
replacement; also observe that at most |U | additions could be made as the number
of multisets in a maximal set packing is at most |U |.

Let q3 and q4 denote the numbers of pairs of basic related multisets of sizes three
and four in the packing found by our heuristic algorithm, and q∗3 and q∗4 the numbers
of pairs of basic related multisets of sizes three and four in an optimal weighted
set packing, respectively. It is obvious that 2q3 + q4 ≤ 2q∗3 + q∗4 . Moreover, we can
obtain the following relationship. 2

Lemma 3.1. 2q∗3 + q∗4 ≤ 4(q3 + q4).

Proof. Let Q∗i,j , where i ∈ {3, 4} and 1 ≤ j ≤ i, be a collection of multisets
of size i in the optimal set packing that intersect j multisets in the packing found
by our heuristic algorithm, and q∗i,j be the cardinality of Q∗i,j . Because the packing
found by our heuristic is maximal, we can see that q∗3 =

∑3
j=1 q∗3,j and q∗4 =∑4

j=1 q∗4,j . Observe that every multiset of size three (and four) in the packing
found by the heuristic intersects at most three (and four, respectively) multisets in
the optimal packing, which implies that

∑3
j=1 j · q∗3,j +

∑4
j=1 j · q∗4,j ≤ 3q3 + 4q4.

Furthermore, no two multisets in Q∗3,1 can intersect a same multiset in the packing

2The (k/2 + ε)-approximation algorithm given by Hurkens and Schrijver [Hurkens and Schrijver
1989] can also find a packing of C satisfying the inequality in Lemma 3.1, but only in quasi-
polynomial time.
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of the heuristic and none of multisets in Q∗3,1 intersect a multiset of size four in
the packing of the heuristic either, implying that q∗3,1 ≤ q3. Therefore, it follows
that 2q∗3 + q∗4 = 2

∑3
j=1 q∗3,j +

∑4
j=1 q∗4,j ≤ q∗3,1 + (

∑3
j=1 j · q∗3,j +

∑4
j=1 j · q∗4,j) ≤

4(q3 + q4).

Let q′3 and q′4 be the numbers of pairs of basic related submultisets of sizes three
and four in the related multiset partition induced by a given minimum common
partition MCIP(S, T ). It is obvious that 2q′3 + q′4 ≤ 2q∗3 + q∗4 . The following is a
tighter lower bound for 2-MCIP.

Lemma 3.2. |MCIP (S, T )| ≥ 4
5 (m + n) − 1

5 (2q∗3 + q∗4), where m = |S| and
n = |T |.

Proof. Based on the given minimum common integer partition MCIP(S, T ),
we can partition 〈S, T 〉 into three pairs of disjoint related submultisets: 〈S1, T1〉,
which consists of the integer elements in the pairs of basic related submultisets of
size three; 〈S2, T2〉, which consists of the integer elements in the pairs of basic related
submultisets of size four; and 〈S3, T3〉, which includes the remaining elements in
〈S, T 〉 such that, S = S1

⊎
S2

⊎
S3 and T = T1

⊎
T2

⊎
T3. Therefore, we have

|MCIP (S, T )| = MCIP (S1, T1)|+ |MCIP (S2, T2)|+ |MCIP (S3, T3)|
= 2q′3 + 3q′4 + |MCIP (S3, T3)|

Since each pair of the basic related submultisets of 〈S3, T3〉 induced by MCIP(S, T )
is of size at least five, by Lemma 2.8, we have

|MCIP (S3, T3)| ≥ 4
5
(m + n− 3q′3 − 4q′4)

and thus

|MCIP (S, T )| ≥ 4
5
(m + n)− 1

5
(2q′3 + q′4) ≥

4
5
(m + n)− 1

5
(2q∗3 + q∗4)

from which the lemma follows.

The following lemma gives a tighter upper bound for 2-MCIP.

Lemma 3.3. |MCIP (S, T )| ≤ m + n− q3 − q4 − 1.

Proof. Observe that we can partition 〈S, T 〉 into three pairs of disjoint related
submultisets: 〈S1, T1〉, which consists of the integer elements in the q3 pairs of basic
related submultisets of size three; 〈S2, T2〉, which consists of the integer elements in
the q4 pairs of basic related submultisets of size four; and 〈S3, T3〉, which includes
the remaining elements in 〈S, T 〉, i.e., S = S1

⊎
S2

⊎
S3 and T = T1

⊎
T2

⊎
T3.

Therefore, we have

|MCIP (S, T )| ≤ |MCIP (S1, T1)|+ |MCIP (S2, T2)|+ |MCIP (S3, T3)|
≤ 2q3 + 3q4 + |MCIP (S3, T3)|

Moreover, by Lemma 2.2 we have

|MCIP (S3, T3)| ≤ m + n− 3q3 − 4q4 − 1

and thus

|MCIP (S, T )| ≤ m + n− q3 − q4 − 1
ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.



12 · Xin Chen et al.

Algorithm k-Approx-MCIP(S1, S2,· · ·, Sk)

input A sequence of related multisets S1, S2,· · ·, Sk

output A common integer partition CIP of S1, S2,· · ·, Sk

begin

CIP := 2-Approx-MCIP(S1, S2);

for i = 3 to k do
CIP := 2-Approx-MCIP(CIP, Si);

return CIP ;

end.

Fig. 3. A k-approximation algorithm for k-MCIP.

from which the lemma follows.

As mentioned earlier, we run the procedure approximate set packing(S,T ) to
find the three disjoint submultisets 〈S1, T1〉, 〈S2, T2〉 and 〈S3, T3〉. A 5

4 -approximation
algorithm for 2-MCIP can then be obtained, as illustrated in Figure 2. The algo-
rithm runs in time O((m + n)9), which is dominated by the running time of the
procedure approximate set packing(S,T ), as there are m + n elements in the
universe and the size of the collection C could reach Θ((m + n)4) in the worst
case. We believe that the running time can be further reduced by a more careful
implementation and analysis of the procedure approximate set packing(S,T ).

Theorem 3.4. The algorithm 5
4 -APPROX-MCIP is a 5

4 -approximation algo-
rithm for 2-MCIP.

Proof. By Lemmas 3.2 and 3.3, the approximation ratio α given by algorithm
5
4 -APPROX-MCIP is

α ≤ m + n− q3 − q4 − 1
4
5 (m + n)− 1

5 (2q∗3 + q∗4)
=

5
4
· m + n− q3 − q4 − 1
m + n− 1

4 (2q∗3 + q∗4)

It suffices to show that m + n − q3 − q4 − 1 ≤ m + n − 1
4 (2q∗3 + q∗4), which is

equivalent to showing 2q∗3 + q∗4 ≤ 4(q3 + q4 + 1). By Lemma 3.1, we know that
2q∗3 + q∗4 ≤ 4(q3 + q4). Therefore, α ≤ 5

4 .

4. APPROXIMATION OF K-MCIP

In this section, we will discuss how to approximate the general k-MCIP (k ≥ 3)
problem.

Using the algorithm 2-Approx-MCIP(S,T ) in the previous section, we give an
approximation algorithm to solve the k-MCIP (k ≥ 3) problem, as described in
Figure 3. First, we give an upper bound on the performance of this algorithm.

Lemma 4.1. |MCIP (S1, S2, · · · , Sk)| ≤ ∑k
i=1 |Si| − k + 1.

Proof. After the multiset Sj is processed in the algorithm k-Approx-MCIP(S1,
S2,· · ·, Sk), by Lemma 2.2, the size of the common integer partition found so far is
upper bounded by

∑j
i=1 |Si| − j + 1, which holds until j increases up to k.

Theorem 4.2. The algorithm k-Approx-MCIP is a k-approximation algorithm
for the k-MCIP (k ≥ 2) problem.
ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.
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Algorithm
3k(k−1)
3k−2

-Approx-MCIP(S1, S2,· · ·, Sk)

input A sequence of related multisets S1, S2,· · ·, Sk

output A common integer partition CIP of S1, S2,· · ·, Sk

begin

remove common integer(S1, S2,· · ·, Sk);

CIP := k-Approx-MCIP(S1, S2, · · · , Sk);

return CIP ;

end.

Fig. 4. A
3k(k−1)
3k−2

-approximation algorithm for k-MCIP.

Proof. By Lemma 2.1 and Lemma 4.1, the size of the common integer partition
CIP returned from k-Approx-MCIP(S1, S2,· · ·, Sk) is such that max{|S1|, |S2|, · · · ,
|Sk|} ≤ |MCIP (S1, S2, · · · , Sk)| ≤ |CIP (S1, S2, · · · , Sk)| ≤ ∑k

i=1 |Si| − k + 1, from
which the theorem follows.

As described in Figure 4, the algorithm k-Approx-MCIP can be slightly im-
proved by employing the procedure remove common integer(S1, S2, · · · , Sk). To
show that this improved algorithm achieves an approximation ratio less than k, we
need the following lemma.

Lemma 4.3. If there is no integer element common to all the multisets in {S1, S2, · · · , Sk},
then it holds that |MCIP (S1, S2, · · · , Sk)| ≥ 3k−2

3k(k−1)

∑k
i=1 |Si|.

Proof. We can see that, there is always a multiset among S1, S2,· · ·, Sk such
that its size is no less than 1

k

∑k
i=1 |Si|. Without loss of generality, we assume that

this multiset is Sk. In an optimal solution MCIP, with respect to Sk, we can divide
the elements in a multiset Si(1 ≤ i ≤ k − 1) into two disjoint submultisets: S1

i ,
which consists of elements that are mapped to exactly one (identical) integer in Sk;
and S2

i , which is the complement submultiset of S1
i , i.e., S2

i = Si \S1
i . Accordingly,

with respect to any Si, Sk can be divided into two disjoint multisets: S1
k,i, which

consists of elements that are mapped to an integer in S1
i ; and S2

k,i, which is the
complement submultiset of S1

k,i, i.e., S2
k,i = Sk \ S1

k,i. Obviously, S1
i and S1

k,i are a
pair of related multisets, as are S2

i and S2
k,i.

Notice that, we can always choose a particular multiset Sj , where 1 ≤ j ≤ k− 1,
such that 2|Sj |−|S1

j | ≥ 1
k−1

∑k−1
i=1 (2|Si|−|S1

i |). In addition,
∑k−1

i=1 |S1
i | ≤ (k−2)|Sk|

holds because S1, S2, · · · , Sk have no common elements. We have

|MCIP (S1, S2, · · · , Sk)|
≥ 2

3
(|Sk|+ |Sj | − 2|S1

j |) + |S1
j | (By Lemma 2.8)

=
1
3
{2|Sk|+ 2|Sj | − |S1

j |}

≥ 1
3
{2|Sk|+ 1

k − 1

k−1∑

i=1

(2|Si| − |S1
i |)} (2|Sj | − |S1

j | ≥ 1
k−1

∑k−1

i=1
(2|Si| − |S1

i |))

ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.
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=
1
3
{2|Sk|+ 1

k − 1
(2

k−1∑

i=1

|Si| −
k−1∑

i=1

|S1
i |)}

≥ 1
3
{2|Sk|+ 1

k − 1
(2

k−1∑

i=1

|Si| − (k − 2)|Sk|)} (
∑k−1

i=1
|S1

i | ≤ (k − 2)|Sk|)

=
1
3
{ k

k − 1
|Sk|+ 2

k − 1

k−1∑

i=1

|Si|}

=
1
3
{k − 2
k − 1

|Sk|+ 2
k − 1

k∑

i=1

|Si|}

≥ 1
3
{k − 2
k − 1

·
∑k

i=1 |Si|
k

+
2

k − 1

k∑

i=1

|Si|} (|Sk| ≥ 1
k

∑k

1
|Si|)

=
3k − 2

3k(k − 1)

k∑

i=1

|Si|

Theorem 4.4. The algorithm 3k(k−1)
3k−2 -Approx-MCIP is a 3k(k−1)

3k−2 -approximation
algorithm for the k-MCIP (k ≥ 2) problem.

Proof. We consider lower and upper bounds of the size of MCIP(S1, S2, · · · , Sk).
Let q denote the number of common integers of {S1, S2, · · · , Sk} used in a given
minimum common integer partition MCIP(S1, S2, · · · , Sk), and q∗ the maximum
number of common integers, which is always returned by the procedure remove
common integer(S1, S2, · · · , Sk). Obviously, q ≤ q∗. By Lemma 4.3, we have

|MCIP (S1, S2, · · · , Sk)| ≥ q +
3k − 2

3k(k − 1)

k∑

i=1

(|Si| − q)

On the other hand, it follows from the definition of the algorithm 3k(k−1)
3k−2 -Approx-

MCIP and Lemma 4.1 that

|MCIP (S1, S2, · · · , Sk)| ≤ q∗ +
k∑

i=1

(|Si| − q∗)

Therefore, the approximation ratio α achieved by the algorithm 3k(k−1)
3k−2 -Approx-

MCIP is

α ≤ q∗ +
∑k

i=1(|Si| − q∗)

q + 3k−2
3k(k−1)

∑k
i=1(|Si| − q)

=
3k(k − 1)
3k − 2

·
∑k

i=1 |Si| − (k − 1)q∗∑k
i=1 |Si| − k

3k−2q

Now we show that (k − 1)q∗ ≥ k
3k−2q. Since q ≤ q∗, it is sufficient to prove that

k − 1 ≥ k
3k−2 , which is obvious to hold for any k ≥ 2.

Clearly, the algorithm 3k(k−1)
3k−2 -Approx-MCIP(S1, S2,· · ·, Sk) runs in O(

∑k
i=1 |Si|·

log(
∑k

i=1 |Si|)) time. Let us compare Theorem 4.4 with Theorem 4.2. Clearly,
ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.
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3k(k−1)
3k−2 is always smaller than k, for any k ≥ 2. For example, when k = 2, the

above algorithm gives approximation ratio 1.5, and when k = 3, its approximation
ratio is 18

7 , which is much better than the ratio 3 in Theorem 4.2. However, when
k becomes large, 3k(k−1)

3k−2 is only slightly smaller than k, since 3k(k−1)
3k−2 = Θ(k). It

is an interesting open question whether k-MCIP has an approximation algorithm
with a ratio that is asymptotically better than k.

5. HARDNESS OF APPROXIMATION

It is easy to see that MCIP is NP-hard because there is a straightforward reduction
from the Subset Sum problem. This section is devoted to proving that MCIP is
APX-hard.

In the sequel, we prove the APX-completeness of 2-MCIP by an L-reduction from
the Maximum Bounded 3-Dimensional Matching problem (denoted as MAX 3DM-
3). The MAX 3DM-3 problem is defined as follows: given a set D ⊆ X × Y × Z,
where X, Y and Z are disjoint sets and moreover, each element in X, Y and Z
occurs in at least one and at most three triples in D [Kann 1991], the goal is to find
a matching M ⊆ D for D of the maximum cardinality, i.e., a largest set M ⊆ D
such that no two elements in M agree in any coordinate. In this problem, without
loss of generality, we can assume that n = |X| ≤ |Y | ≤ |Z|. Since each element
in X occurs at least once and at most three times in D, the number of triples is
at least n and at most 3n, i.e., n ≤ |D| ≤ 3n. It also implies that |Y | ≤ 3n and
|Z| ≤ 3n. Further observe that each triple can intersect at most six other triples,
which implies that the maximum matching contains at least |D|/7 triples. Let
|MAX 3DM-3| denote the size of maximum matching of |D|. It is easy to see that
dn

7 e ≤ |MAX 3DM-3| ≤ n.
Let X = {x1, x2, · · · , x|X|}, Y = {y1, y2, · · · , y|Y |}, Z = {z1, z2, · · · , z|Z|}, and

D = {d1, d2, · · · , d|D|} where di = (xiX , yiY , ziZ ) for each i ∈ [1, |D|] and iX (iY or
iZ , respectively) is the corresponding index of the integer xiX (yiY or ziZ , respec-
tively) in X (Y or Z, respectively). We can define a function f to construct an
instance of 2-MCIP as follows:

(1) A multiset X̃ = {x̃i|x̃i = 4i, ∀xi ∈ X};
(2) A multiset Ỹ = {ỹi|ỹi = 4|X|+i,∀yi ∈ Y };
(3) A multiset Z̃ = {z̃i|z̃i = 4|X|+|Y |+i, ∀zi ∈ Z};
(4) A multiset D̃ = {d̃i|d̃i = x̃iX + ỹiY + z̃iZ , ∀di ∈ D};
(5) An integer e =

∑|D|
i=1 d̃i −

∑|X|
i=1 x̃i −

∑|Y |
i=1 ỹi −

∑|Z|
i=1 z̃i.

(6) Two multisets S = D̃ and T = X̃ ∪ Ỹ ∪ Z̃ ∪ {e}.
Since each element in X, Y and Z is assumed to occur at least once in D while some
elements occur more than once, it always holds that e > 0. Obviously,

∑
S =

∑
T .

Therefore, 〈S, T 〉 is an instance of 2-MCIP that we can obtain in time linear in n.
Let |2-MCIP | denote the size of the minimum common integer partition of

〈S, T 〉. Then, we have the following lemma.

Lemma 5.1. For any instance of MAX 3DM-3, |2-MCIP | ≤ 70·|MAX 3DM-3|.
ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.
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Proof. By Lemma 2.2, we have |2-MCIP | ≤ |X| + |Y | + |Z| + |D| ≤ 10n.
On the other hand, we have shown that |MAX 3DM-3| ≥ dn

7 e. The lemma thus
follows.

Given a common integer partition 2-CIP of 〈S, T 〉, we define a function g to
construct a subset (denoted as 3DM-3) of D by including all the triples di =
(xiX , yiY , ziZ ) (1 ≤ i ≤ |D|) whose corresponding integers d̃i = x̃iX + ỹiY + z̃iZ are
not connected to the integer e in the common integer partition 2-CIP .

Lemma 5.2. For any instance D of MAX 3DM-3, the subset 3DM-3 constructed
by the function g is a matching of D.

Proof. Let S1 = {d̃ε1 , · · · , d̃εk
} and T1 = {x̃χ1 , · · · , x̃χl

, ỹγ1 , · · · , ỹγm
, z̃ζ1 , · · · , z̃ζn

}
include all the integers that are not connected to e in the given common integer
partition 2-CIP of S and T . It can be seen that, 3DM-3 = {dε1 , · · · , dεk

}, and
〈S1, T1〉 are a pair of related multisets, i.e.,

k∑

i=1

d̃εi =
l∑

i=1

x̃χi +
m∑

i=1

ỹγi +
n∑

i=1

z̃ζi

By definition, d̃εi = x̃εX
i

+ ỹεY
i

+ z̃εZ
i
, for each i ∈ [1, k]. Thus,

k∑

i=1

x̃εX
i

+
k∑

i=1

ỹεY
i

+
k∑

i=1

z̃εZ
i

=
l∑

i=1

x̃χi +
m∑

i=1

ỹγi +
n∑

i=1

z̃ζi (1)

In order to prove that 3DM-3 is a matching of D, it is sufficient to show that
the following three pairs of index sets are identical: {εX

1 , · · · , εX
k } = {χ1, · · · , χl},

{εY
1 , · · · , εY

k } = {γ1, · · · , γm} and {εZ
1 , · · · , εZ

k } = {ζ1, · · · , ζn}, since no integer ele-
ment has two copies in T1. Also notice that, by definition, no two integer elements
in T are of equal value.

Let us first assume that x̃χ1(= 4χ1) be the smallest integer in S1

⊎
T1, and apply

mod 4χ1+1 to Equation (1); that is,

Equation (1) mod 4χ1+1

⇒
k∑

i=1

x̃εX
i
≡ x̃χi mod 4χ1+1

This is because any integer in S1 or T1 rather than x̃χ1 is divisible by 4χ1+1.
On the other hand, the integer x̃χ1 occurs at most three times in the multiset
{x̃εX

i
|1 ≤ i ≤ k}, and the base that we use to define the integers in S and T is four.

Therefore, the above modulo equivalence implies that there is exactly one integer
element of x̃χ1 in S1.

If the smallest integer in S1

⊎
T1 is x̃εX

1
, we can use the same arguments as above

to show that there is exactly one integer element of x̃εX
1

in S1 and also in T1.
Therefore, we can remove the smallest integer from S1 and T1, and then repeat the
above procedure until the three pairs of index sets are shown to be identical.

Let |2-MRMP | be the size of the maximum related multiset partition of S and
T .
ACM Transactions on Computational Logic, Vol. V, No. N, May 2008.
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Lemma 5.3. |2-MRMP | = |MAX 3DM-3|+ 1.

Proof. We can see that, each triple di = (xiX , yiY , ziZ ) in a maximum matching
naturally leads to a pair of related submultisets, i.e., {d̃i} and {x̃iX , ỹiY , z̃iZ}. In
addition, there is a pair of related submultisets that contain the integer e. Therefore,
|2-MRMP | ≥ |MAX 3DM-3|+ 1.

In a maximum related multiset partition, there is only one pair of related sub-
multisets that contain the integer e. In any other pair of related submultisets, there
exists at least one integer d̃i, whose corresponding triple di will be included in a
matching of D. Therefore, |2-MRMP | − 1 ≤ |MAX 3DM-3|.

Let |2-RMP | be the size of a related multiset partition of S and T , induced by
a given common partition 2-CIP.

Lemma 5.4. |MAX 3DM-3| − |3DM-3| ≤ |2-CIP | − |2-MCIP |.
Proof. We have shown in the proof of the previous lemma that, given a pair

of related submultisets that does not include e, there exists at least one integer
d̃i, whose corresponding triple di will be included in a matching of D. Therefore,
|2-RMP | − 1 ≤ |3DM-3|. By Lemma 5.3, we have |MAX 3DM-3| − |3DM-3| ≤
|2-MRMP |−|2-RMP |. On the other hand, |2-MCIP |+ |2-MRMP | = |X|+ |Y |+
|Z| + |D| + 1 by lemma 2.6, and |2-CIP | + |2-RMP | ≥ |X| + |Y | + |Z| + |D| + 1
by Lemma 2.5. Therefore, |2-MRMP | − |2-RMP | ≤ |2-CIP | − |2-MCIP |, from
which the lemma follows.

Lemma 5.5. MAX 3DM-3 ≤ L 2-MCIP.

Proof. By Lemmas 5.1 and 5.4, the quadruple (f, g, 70, 1) discussed above gives
an L-reduction from MAX 3DM-3 to the 2-MCIP problem [Papadimitriou and
Yannakakis 1991].

Theorem 5.6. The k-MCIP problem is APX-complete, for any k ≥ 2.

Proof. Since the MAX 3DM-3 problem is APX-complete [Kann 1991] and
MAX 3DM-3 ≤ L 2-MCIP by Lemma 5.5, 2-MCIP is APX-hard. In addition, by
Lemma 2.3, there exists a polynomial-time 2-approximation algorithm for 2-MCIP,
which implies that 2-MCIP is APX-complete. In Section 4, we will present a k-
approximation algorithm for k-MCIP, which implies that k-MCIP is APX-complete,
for any k ≥ 2.

6. CONCLUDING REMARKS

It is interesting to observe that although 2-MCIP is in some sense similar to other
integer partition/summation problems such as Knapsack and Bin Packing, it is
much more difficult to approximate. For example, Knapsack and Bin Packing
all have an FPTAS (fully polynomial-time approximation scheme) or asymptotic
PTAS, but Theorem 5.6 implies that it is unlikely for 2-MCIP to have a PTAS.
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