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ABSTRACT
Motivation: Position weight matrices (PWMs) are widely used to
depict the DNA binding preferences of transcription factors (TFs)
in computational molecular biology and regulatory genomics. Thus,
learning an accurate PWM to characterize the binding sites of a
specific TF is a fundamental problem that plays an important role
in modeling regulatory motifs and also in discovering the regulatory
targets of TFs.
Results: We study the question of how to learn a more accurate
PWM from both binding sequences and gene expression (or ChIP-
chip) data, and propose to find a PWM such that the likelihood of
simultaneously observing both binding sequences and their associa-
ted gene expression (or ChIP-chip) data is maximized. To solve the
above maximum likelihood problem, a sequence weighting scheme
is thus introduced based on the observation that binding sites indu-
cing drastic fold changes in mRNA expression (or showing strong
binding ratios in ChIP experiments) are likely to represent a true
motif. We have incorporated this new learning approach into the
popular motif finding program AlignACE. The modified program, cal-
led W-AlignACE, is compared with three other programs (AlignACE,
MDscan, and MotifRegressor) on a variety of datasets, including
simulated data, mRNA expression and ChIP-chip data. These tests
demonstrate that W-AlignACE is an effective tool for discovering TF
binding motifs from gene expression (or ChIP-chip) data and, in
particular, has the ability to find very weak motifs like DIG1 and GAL4.
Availability: http://www.ntu.edu.sg/home/ChenXin/Gibbs
Contact: chenxin@ntu.edu.sg
Supplementary materials: Available at Bioinformatics Online

1 INTRODUCTION
The discovery of regulatory motifs in DNA sequences is very
important in systems biology as it is the first step towards under-
standing the mechanisms that regulate the expression of genes. With
the advent of of high-throughput biotechnologies such as cDNA
microarray and chromatin immunoprecipitation (ChIP), at least
three computational strategies have been proposed to discover de
novo binding motifs at very low costs. We summarize them briefly
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in Supplementary Figure 1. Although tremendous efforts have been
made, motif finding remains a great challenge (Tompa et al., 2005).

Regulatory motifs are often modeled by position weight matrices
(PWMs), which is a probabilistic model that characterizes the DNA
binding preferences of a transcription factor (TF). Therefore, lear-
ning an accurate PWM plays a key role not only in modeling a TF’s
binding preferences but also in distinguishing its true binding sites
from spurious sites. This is particularly critical for some motif dis-
covery algorithms which rely heavily on position weight matrices,
for instance, MEME and Gibbs sampler (Bailey and Elkan, 1994;
Lawrence et al., 1993).

A PWM is generally learned from a collection of aligned DNA
binding sites that are likely to be bound by a common TF. Theoreti-
cally, it is formulated as a maximum likelihood problem — finding a
PWM such that the likelihood of the observed set of binding sites is
maximized (Liu, 1994). To solve it, one may assume that the binding
sites are independent random observations from a product multino-
mial distribution, from which it follows that each entry of the PWM
will be proportional to the count of a nucleotide at the corresponding
position. This is precisely the method commonly used to compute a
PWM from a collection of binding sites (Stormo, 2000). However,
learning from DNA binding sequences alone might not be sufficient
to find a PWM that accurately models a TF’s binding preferences.
For example, an improvement could be made by taking the evolutio-
nary history into account, as shown in PhyME (Sinha et al., 2004)
and PhyloGibbs (Siddharthan et al., 2005).

In this paper, we study the question of how to learn an accurate
PWM from both DNA binding sequences and expression data 1.
First, we extend the above maximum likelihood problem to find
a PWM such that the likelihood of observing the combination of
binding sequence and expression data is maximized. This exten-
sion is natural as expression data are direct observable results from
the binding of TFs to DNA sequences. Then, a sequence weigh-
ting scheme is introduced to find a PWM, where every binding
site is assigned a weight proportional to the logarithm fold change
of mRNA expression of its downstream gene. Since binding sites

1 In this paper, we use “gene expression” broadly to refer to not only
standard mRNA microarray data, but also ChIP-chip data.
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inducing drastic fold changes in expression (or showing strong bin-
ding ratios in ChIP experiments) are more likely to represent the
true motif (Liu et al., 2002), the sequence weighting scheme could
therefore offer an approximate while reasonably good solution to
the new maximum likelihood problem at very low computational
cost. Compared to the common learning approach, it allows to take
advantage of gene expression variations explicitly so that a more
accurate PWM is likely found. Third, we incorporate the sequence
weighting scheme into the modern Gibbs sampling program Ali-
gnACE (Hughes et al., 2000; Roth et al., 1998), and the modified
program is called W-AlignACE. Finally, we conduct large-scale
tests on both simulated and real biological datasets, and compare the
results of W-AlignACE with those obtained from well-known motif
finding programs including AlignACE, MDscan (Liu et al., 2002),
and MotifRegressor (Conlon et al., 2003). Our results demonstrate
that W-AlignACE performed the best in all tests, and was able to
find very weak motifs such as those for DIG1 and GAL4, which
were missed by all other three programs.

2 METHODS

2.1 Learning PWMs from sequences
As mentioned earlier, a PWM Θ is often used to characterize the nucleotide
frequencies at each position of a binding site, where Θ = (θ1, . . . , θJ ) and
θj = (θa,j , θc,j , θg,j , θt,j)

T represents the probability of observing the
four nucleotides A, C, G, and T at the jth position of a binding site, such
that θa,j + θc,j + θg,j + θt,j = 1 for each j, 1 ≤ j ≤ J . In general, Θ
is assumed to follow a product Dirichlet distribution (Liu, 1994; Liu et al.,
1995). Hence, the prior distribution on Θ is π(Θ) = π1(θ1) · · ·πJ (θJ ),
where πj(θj) is a Dirichlet distribution Dir(1, 1, 1, 1).

A PWM can be estimated from a collection of DNA sequences R =
(R1, . . . , Rn) that correspond to aligned binding sites of a TF, where Ri =
(ri1ri2 · · · riJ ) represents the ith binding site, for each i = 1, . . . , n, and
rij is one of the nucleotides A, C, G, and T, for each j = 1, . . . , J . These
binding sites are assumed (Liu, 1994; Liu et al., 1995) to be independent
random observations from a product multinomial distribution with parameter
Θ; that is, rij ’s are mutually independent, and with probability θa,j take the
nucleotide A, for example. It thus follows that the posterior distribution of
Θ is also a product of independent Dirichlet distributions,

π(Θ|R) =
JY

j=1

Dir(ca,j + 1, cc,j + 1, cg,j + 1, ct,j + 1),

where ca,j , for example, is the count of nucleotide A among all the jth bases
of the binding sites in R. Further, by maximizing the likelihood of Θ, i.e.,
π(R|Θ), we have

θa,j ∝ ca,j +1, θc,j ∝ cc,j +1, θg,j ∝ cg,j +1, θt,j ∝ ct,j +1.

That is, the probability of observing the nucleotide A (C, G, or T) at position
j of a binding site is proportional to the count of nucleotide A (C, G, or T)
among all the j-th position of the binding sites in R. Indeed, this is exactly
the method commonly used to estimate a PWM Θ for a TF, given a collection
of its binding sites. Consequently, the conditional predictive distribution of
a DNA sequence B = (b1 . . . bJ ) will be

π(B|Θ) ∝
JY

j=1

θbj ,j ∝
JY

j=1

(cbj ,j + 1).

2.2 Learning PWMs from sequences and expression
We propose a new approach to learning PWMs through the combination of
both sequence and expression data. Let E = (E1, . . . , En) denote the fold
changes of mRNA expression of downstream genes, where Ei is associated

to the binding site Ri. 2 We want to find a PWM Θ such that its likelihood
π(R, E|Θ) is maximized; that is, Θ can best “explain” both the sequence
and expression data simultaneously. The hope is that such a newly formula-
ted problem will result in a PWM with significantly improved discriminative
power. Finding the maximum likelihood π(Θ|R, E), however, is expected
to be very hard, as it is conditioned on two disparate types of data whose
exact quantitative correlation is not completely clear yet.

Linear correlation between sequence and expression, i.e., assuming addi-
tivity of binding sites’ contributions to expression, has been used in several
existing methods for motif finding (Bussemaker et al., 2001; Conlon et al.,
2003), most of which employ the third strategy that we discussed earlier in
Supplementary Figure 1. For the sake of a simple argument, the expres-
sion (log fold change) is assumed to be correlated proportionally to the
conditional predictive distribution of its corresponding sequence; that is,

log Ei ∝ π(Ri|Θ), for each i, 1 ≤ i ≤ n,

or, for short, log E ∝ π(R|Θ). Therefore, we can reduce the maximum
likelihood problem to the problem of finding a PWM Θ such that sequence
R fits expression log E the best by linear correlation. A natural method to
solve such a fitting problem is via an EM-like iteration, i.e., starting with an
initial PWM and then refining it iteratively (Leung et al., 2005; Hong et al.,
2005). However, such an iterative process is generally very time consuming.
Moreover, it is clearly infeasible to incorporate such a process into a Gibbs
sampling algorithm, which is an iterative algorithm by itself (Liu, 1994).

2.3 A sequence weighting scheme
In order to approximate Θ with an effective algorithm, we assume that
the posterior distribution π(Θ|R, E) is a product of independent Dirichlet
distributions as π(Θ|R) but with different parameters; that is,

π(Θ|R, E) =
JY

j=1

Dir(c̃a,j + 1, c̃c,j + 1, c̃g,j + 1, c̃t,j + 1),

where c̃a,j , for example, is the count of nucleotide A weighted by log E
among all the jth bases of the binding sites inR. In other words,

c̃a,j =
nX

i=1

δ(rij , A)·log Ei, where δ(rij , A) =

�
1, if rij = A
0, otherwise

We can see that the above setting of parameters can be justified partially
by the biological observation that binding sites inducing big fold changes
in expression are more likely to represent a true motif (Liu et al., 2002). It
follows that the desired PWM will be

θa,j ∝ c̃a,j +1, θc,j ∝ c̃c,j +1, θg,j ∝ c̃g,j +1, θt,j ∝ c̃t,j +1.

Similarly, the conditional predictive distribution of a DNA sequence B =
(b1 . . . bJ ) will be

π(B|Θ, E) ∝
JY

j=1

θbj ,j ∝
JY

j=1

(c̃bj ,j + 1).

Consequently, the new approach to learning PWMs is indeed done via a
sequence weighting scheme; that is, every binding site contributes to the
estimated PWM proportionally to the logarithm fold change of mRNA
expression of its downstream gene. Note that π(B|Θ, E) would be com-
pletely equal to π(B|Θ) if every binding site induces the same fold change
in expression. A simple example in Figure 1 clearly demonstrates the advan-
tage of our approach to learning PWMs from both sequence and expression
data.

The use of fold changes in expression as weights to estimate PWMs impli-
citly assumes that DNA sequences of motif elements exhibiting higher fold
changes are more similar to the motif consensus pattern. This is plausible

2 Note that, multiple binding sites may share the same downstream gene and
thus its associated log fold change value.
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(a)

log E 1 2 3 4 5
4 A C T G A
3 A G T G A
2 A G T C A
1 A C A C A

(b)

1 2 3 4 5
A 1 0 .25 0 1
C 0 .5 0 .5 0
G 0 .5 0 .5 0
T 0 0 .75 0 0

(c)

1 2 3 4 5
A 1 0 .1 0 1
C 0 .5 0 .3 0
G 0 .5 0 .7 0
T 0 0 .9 0 0

Fig. 1. Estimating PWMs. (a) A collection of four aligned DNA sequences bound by a TF, and the logarithmic fold changes in expression of their correspon-
ding downstream genes listed in the first column. (b) The PWM learned from sequences alone. Its information content (see section 2.4 for definition) is 1.44
bits. (c) The PWM learned from both sequences and expression. Its information content improves to 1.53 bits, indicating the higher binding specificity of the
motif. For instance, the TF is shown to bind to nucleotide G more preferentially than C at the fourth position, although both have the same counts observed
in the sequences. Indeed, it can be justified by the fact that the nucleotide G occurs at the fourth position of the sequences that induce large fold changes in
expression. It should be noted that sequence weighting does not always lead to a PWM of higher information content. For example, if expression log ratios are
(1, 2, 3, 4) instead of (4, 3, 2, 1) in the above example, then sequence weighting will find a PWM having lower information content (1.43 bits).

since such motif elements are more likely to represents a true motif. Moreo-
ver, since the binding energy of a TF protein to a site can be approximated
as the sum of pairwise contact energy between the individual nucleotides
and the protein (Djordjevic et al., 2003), different binding sites may indeed
have different affinities for their cognate TFs. In evolution, there is not only
selection force for TF binding sites to remain recognized by their TFs, but
also selection force for preserving the binding strength of sites (Siddharthan
et al., 2005), especially those inducing dramatic fold changes in expression.

Gibbs sampling is known to be a very effective strategy for motif disco-
very. Its basic idea is to construct a Markov chain of a random variable X
with π(X) as its equilibrium distribution. For details on Gibbs sampling
algorithms, the reader is referred to (Liu, 1994; Liu et al., 1995). The above
new predictive distribution π(B|Θ, E) can be used, in place of π(B|Θ),
to implement a collapsed Gibbs sampling algorithm. In particular, we have
incorporated this method of computing PWMs into a powerful Gibbs samp-
ling program, AlignACE (Hughes et al., 2000; Roth et al., 1998). The
modified program is called W-AlignACE, and has been implemented as a
web server available to the public for free (see Availability). It is easy to see
that the extra running time caused by sequence weighting is negligible.

2.4 Quality measures of putative motifs
Putative motifs are generally scored and ranked before they are reported,
because only the top few motifs undergo further investigations in practice.
Therefore, a metric is needed to measure the goodness of putative motifs.
Indeed, the metric to be chosen plays an important role in the success of
motif discovery. An inappropriate metric might lower the rank of a bona fide
motif so that it is unlikely to be discovered.

Information content is often used to measure the degree of nucleotide con-
servation in a motif given a probabilistic model Θ. It is defined as the relative
entropy (i.e., Kullback-Leibler distance) of binding sites with respect to the
background base frequencies. However, it is well known that a highly con-
served motif may not be statistically significant relative to the expectation
for its random occurrences in the promoter sequences under consideration.

The MAP score is the metric for motif strength used by AlignACE to
judge different motifs sampled during the course of the algorithm (Hughes
et al., 2000). It is calculated for a motif by taking into account factors such
as the number of aligned binding sites, the number of promoter sequences,
the degree of nucleotide conservation, and the distribution of information-
rich positions. Therefore, it is believed to be a more sensitive measure for
assessing different motifs, in particular, those having different widths and/or
different numbers of aligned binding sites.

Another alternative is to measure the statistical significance of correla-
tion between putative motifs and gene expression. For example, the p-values
from multiple linear regression are employed in REDUCE (Bussemaker
et al., 2001) and also in MotifRegressor (Conlon et al., 2003) to rank putative
motifs. Such a metric takes into account the variation of gene expres-
sion data, and is thus more plausible from the biological perspective. Note
that, however, the presence of a few spurious binding sites may reduce the
significance value dramatically. Therefore, it is not a robust metric.

2.5 Performance evaluation of putative motifs
To show the predictive ability of a motif discovery approach, we need an
accurate yet feasible method to evaluate putative motifs. The most accu-
rate method is to directly verify if putative binding sites are true. It requires
that the bona fide binding sites are already known before evaluation, which,
however, is not the case for most biological datasets. Therefore, the use of
this method is limited to simulation experiments.

The second method is to compare the PWM of a putative motif with that of
the true one. The true PWMs used for evaluation should be able to correctly
reflect the binding preference of TFs. However, not many true motif PWMs
have been found and are available in the public databases. For instance, of
the 40 motifs that we study below, only 9 have PWMs in the TRANSFAC
database (Matys et al., 2003). Furthermore, these PWMs might not be con-
sidered true due to at least two reasons. First, they are derived from as few
as eight binding sequences. Second, it is very difficult to learn a PWM preci-
sely since different learning methods usually produce different PWMs (see
Figure 1). These reasons discourage us from using PWMs as benchmark for
reliable performance evaluation, in particular at a large scale.

The third choice is to consider the consensus pattern of a putative motif.
The consensus pattern is generally described using IUPAC-ambiguity codes,
and hence a more rough (but robust) representation of TF binding preference
than its corresponding PWM. In the IUPAC code of a motif, {A, C, G, T}
indicate the most conserved region of a consensus pattern, which we refer to
as the core of a consensus pattern. Note that the core is the most informative
part of a consensus. To compare motifs, a putative motif is usually conside-
red true if its consensus core matches that of the true motif (i.e., ignore the
weak region of the consensus pattern). It can be seen that such a compari-
son is not sensitive to either spurious binding sites or the scarcity of binding
sites, as is the previous method using PWMs.

Based on these observations, we will compare consensus cores in the
performance evaluation of our predicted motifs in this study.

3 EXPERIMENTAL RESULTS

3.1 Simulated data
We first perform tests on randomly generated sequence data, with artifici-
ally planted motif instances, to get an insight into the algorithm’s idealized
performance under controlled conditions. Here, we generate more compli-
cated simulated data than those used in many other studies (Liu et al., 2002;
Chen and Jiang, 2006), in the hope to explore in depth how a PWM learned
from sequence and expression effects the performance of motif finding algo-
rithms. Due to the page limit, the data generating procedure is outlined in
the Supplementary Materials.

For each motif width, ten test datasets are generated with varying degrees
of conservation, giving rise to a total of 30 datasets. Each dataset has 100
promoter sequences, each of which is assigned an expression value using a
hyperbolic tangent function as in (Barash et al., 2001; Hong et al., 2005).
A predicted motif is considered true if it has the same consensus core as
the planted motif. The results are summarized in Table 1. We can see that
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W-AlignACE is able to find more true motifs than AlignACE, and in most
cases, the true motif is ranked the first among the list of reported motifs if
sorted by their MAP scores.

Motif AlignACE W-AlignACE
width Information content Rank if found Rank if found

J = 6
0.65, 0.74, 0.77, 0.81, 0.88 −,−,−,−,− −,−, 3,−,−
0.91, 0.98, 1.01, 1.01, 1.18 −,−,−,−,− −,−, 1,−, 1

J = 8
0.61, 0.71, 0.72, 0.88, 0.91 −,−,−,−,− −,−,−,−, 1

0.96, 1.02, 1.04, 1.08, 1.17 −,−,−,−, 1 2,−, 1, 1, 1

J = 10
0.63, 0.74, 0.79, 0.82, 0.93 −,−,−,−, 1 −,−,−, 2, 1

0.98, 1.01, 1.03, 1.03, 1.03 1,−, 1,−, 1 1, 1, 1,−, 1

Table 1. Test results on 30 simulated datasets. For each motif width, we
performed the test on ten PWMs with varying information contents.

3.2 Real data
Due to the stochastic nature of Gibbs sampling, we run for each dataset
both programs AlignACE and W-AlignACE five times with different ran-
dom seeds. MDscan and MotifRegressor, instead, are run only once for each
dataset because they are deterministic algorithms (i.e., no random seed requi-
red). Predicted motifs are sorted using their respective sorting schemes (e.g.,
the MAP score for AlignACE), and only the top four are reported in each run
since the remaining motifs (ranked after the fourth) are generally too insigni-
ficant to be considered as true. In order to evaluate our method, we retrieve
the consensus pattern for each motif from the Saccharomyces Genome Data-
base (SGD; Cherry et al., 1997) (see Supplementary Table 1 for the list of
motif consensi), and compare it with the motifs found by MDscan, MotifRe-
gressor, AlignACE, and W-AlignACE, respectively. 3 In our experiments,
no prior knowledge on true motifs is assumed. Therefore, all the program
parameters are set to their default values. 4 For instance, the default num-
ber of columns to align is set to 10. Working with default values is indeed a
common practice, especially when the discovery of novel motifs is intended.
Note that the evaluation method proposed in (Tompa et al., 2005) is not app-
licable here because W-AlignACE requires gene expression data in addition
to promoter sequences.

3.2.1 mRNA expression data We have applied our algorithm to the
publicly available dataset for yeast from the microarray experiments on
environmental stress response (Gasch et al., 2000). A sample of 100 most
induced genes by YAP1 overexpression is used here to demonstrate the
advantage of the new learning approach in motif discovery. The log fold
changes of these genes in mRNA expression range from 1.04 to 3.55. When
this dataset is tested on on a workstation (3.2GHz CPU and 1GB RAM),
both W-AlignACE and AlignACE take about 7 minutes each. In contrast,
MDScan takes only 3 seconds and MotifRegressor 25 seconds.

YAP1 is a transcriptional activator required for oxidative stress tolerance,
and is known to recognize the DNA sequence TTACTAA (Fernandes et al.,
1997) or the sequence GCTTACTAA with higher binding specificity, as
annotated 5 in SGD. Our experimental results show that, AlignACE fai-
led to report any motifs containing the consensus pattern TTACTAA of the
YAP1 motif among the top four motifs in each run. Instead, W-AlignACE
successfully found the known YAP1 motif GCTTACTAAT and ranked it the
second (MAP score: 126.68). A closer examination on all the putative motifs

3 Some motif consensi in the Saccharomyces Genome Database were obtai-
ned from putative binding sites, which have not been verified experimentally.
Therefore, caution must be taken when using them as benchmark data.
4 MotifRegressor requires as many as 17 input parameters, for which we
chose a typical setting (i.e., their default values are generally preferred). The
specific command line thus used to run MotifRegressor is “MotifRegressor
MRexpression.txt MRsequences.txt yeast.int 1 1 2 1 1 2.0 1.5 5.0 5.0 10
10 50 30 MRoutput.txt”. For its detailed explanation, please refer to the
documentation of MotifRegressor.
5 The annotated consensus is indeed GCTKACTAA using IUPAC ambi-
guity codes, where K represents the base G or T.

revealed that, AlignACE reported a very weak pattern GATTAGTAAT ran-
ked the 12th (MAP score: 10.09) in one run and GCTTAGTAAT ranked the
13th (MAP score: 9.41) in another run. Although both contain the comple-
mentary inverse of TTACTAA, neither exactly matches GCTTACTAA, the
YAP1 motif annotated in the Saccharomyces Genome Database. Note that
the second weak pattern above differs from the YAP1 motif by only one
base at the sixth position, if we ignore the difference in motif width. MDs-
can reported the pattern GATTACTAAT as its top ranked motif, which differs
from the YAP1 motif by one base at the second position. MotifRegressor did
not perform better than MDscan, but instead it reported GATTACTAAT as
its second motif. These results give a solid example where W-AlignACE is
more capable than AlignACE, MDscan, and MotifRegressor.

We also performed similar experiments on another two overexpression
datasets concerning MSN2 and MSN4 (Gasch et al., 2000) and found that
W-AlignACE was instead slightly outperformed by AlignACE in these two
cases. This is mostly because the SGD-annotated motifs do not occur so fre-
quently in the promoter regions of the most differently expressed genes. The
detailed experimental results are discussed in the Supplementary Materials.

Source Consensus Rank
Fernandes et al., 1997 TTACTAA -

SGD annotation GCTTACTAA -
W-AlignACE GCTTACTAAT 2

AlignACE GATTAGTAAT 12
GCTTAGTAAT 13

MDscan GATTACTAAT 1
MotifRegressor GATTACTAAT 2

Table 2. Test results on the publicly available datasets from the yeast
environmental stress response microarray experiment. Note that, only W-
AlignACE discovered the YAP1 motif consensus in the Saccharomyces
Genome Database without any mismatching.

3.2.2 ChIP-chip data We further apply our algorithm to the ChIP-
chip data reported in (Lee et al., 2002). Recall that a ChIP-chip experi-
ment uses chromatin immunoprecipitation (ChIP), followed by the detec-
tion of enriched fragments using DNA microarray hybridization, to
determine the genomic-binding location of TFs. Forty datasets, each
containing genes targeted by one TF, have been obtained using ChIP-
chip p-value 0.001 as the cutoff in the study of (Hong et al., 2005),
and are publicly available at http://biogibbs.stanford.edu/
∼hong2004/MotifBooster/. The sizes of these datasets range from
25 up to 176 genes. For each gene, its promoter sequence is taken up to 800
bps upstream, but not overlapping with the previous gene.

Table 3 summarizes all the true motifs found for the forty TFs under
investigation. At a first glance, it is already very encouraging to see that W-
AlignACE successfully found the correct motifs for three TFs (DIG1, GAL4,
and NDD1), because these three TFs were observed in (Hong et al., 2005)
to be among the nine TFs (the other six are GAT3, GCR2, IME4, IXR1,
PHO4, and ROX1) whose correct motifs are hard to find. Further notice that,
four of the above mentioned six TFs (GAT3, GCR2, IME4, and IXR1) do
not have motif consensi annotated in the Saccharomyces Genome Database.
Therefore, their motifs found by W-AlighACE are not evaluated here, and
could still be true motifs.

Compared to the other three program (MDscan, MotifRegressor, and Ali-
gnACE), W-AlignACE in general performed strongly. It found correct motif
patterns for all the datasets that AlignACE was able to solve, and also for
six additional datasets (ACE2, DIG1, GAL4, HAP4, STE12, SWI5). We
further notice that in most cases, W-AlignACE reported a PWM with a
much higher MAP score than AlignACE when a correct motif was found by
both. When a spurious motif was reported, however, the MAP scores esti-
mated by both program are comparable. For instance, both AlignACE and
W-AlignACE found the correct consensus pattern nCGTnnnnAGTGAT for
ABF1. Its MAP score is 351.866 as estimated by AlignACE, much lower
than 436.877 by W-AlignACE (see Supplementary Table 2). In contrast,
both program also reported an obviously spurious motif in the top four,
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TF #seq MDscan MotifRegressor AlignACE W-AlignACE
Consensus Consensus Consensus MAP Consensus MAP

ABF1 176 CGTATATAAT nCGTnnnnAGTGAT 351.866 nCGTnnnnAGTGAT 436.877
ACE2 46 GAACCAGCAA 127.571
BAS1 31 TGACTCCTTT nnnAGGAGTCA 26.242 TGACTCCGnnnnnGA 164.367
CAD1 27 GATTACTAAT GCTGACTAAT 22.3769 TGCTTAnTAAT 55.0084
CBF1 28 TCACGTGACC nGGTCACGTG 91.5147 nGGTCACGTG 112.272
CIN5 116 ATTACATAAnC 25.7981 GnTTAnGTAAGC 162.825

DAL81 32
DIG1 35 CnTnTGAAACAn 246.198
FHL1 124 TGTATGGGTG TGTATGGGTG ATGTnCGGGTG 241.916 ATGTnCGGGTG 370.814
FKH1 40
FKH2 72 TGTTTACAAT AAnGTAAACAA 40.8666 AAAnnGTAAACA 185.944
GAL4 25 CGGnCnAnAnnnnTCCG 184.307
GCN4 56 AATGACTCAT GATGAGTCAC GGATGAGTCA 42.5719 GnATGAGTCAn 187.854
HAP4 42 CnnGnnnnTGATTGGnnC 62.6472
HSF1 34 TTTTCTAGAA GAAnnTTCnAGAA 50.569 GAnnnTTCnAGAA 88.2247
MBP1 74 CGCGACGCGT AAnAAACGCGT 36.9147 AnnAAACGCGTC 103.034
MCM1 59 CCTAATTAGG TTnCCnnnTnnGGAAA 129.158 nTnCCnnAnnnGGAAA 179.82
NDD1 67 CCTAAATAGG TTTCCnAAAnnGG 50.7552 CCnAAnnnGGnAAAnnnT 222.986
NRG1 59 CCCTAGGCGC
PDR1 45
PHD1 70
PHO4 41
RAP1 127 TGTATGGATT ATGTnTGGGTG 204.493 ATGTnTGGGTG 255.127
REB1 89 TCCGGGTAAC nCCGGGTAAC 216.424 nCCGGGTAAC 262.57
RLM1 33
ROX1 28
SKN7 72
SMP1 48
STE12 54 TGAAACACAT CnAnTnTGAAACA 358.174
SUM1 41 TGTGACAGTA GTGnCAGnAAA 50.0198 GTGnCAGnAAA 69.7947
SWI4 90 AACGCGAAAA GnnnCGCGAAAA 66.0847 GnGnCGCGAAAA 247.458
SWI5 72 AAnnnnnAGAnnGCTGG 109.432
SWI6 65 GnGnCGCGAAAA 48.4327 GnGnCGCGAAAA 49.8036
YAP1 35 GCTTACTAAT 24.5596 ATTAGTAAGC 52.1866
YAP5 55

Table 3. Experimental results on 40 ChIP-chip datasets. The highlighted rows indicate TFs for which W-AlignACE was able to find the correct motifs but
AlignACE failed. Five of 40 TFs (GAT3, GCN4, IME4, IXR1, YAP6) do not have motif consensi annotated in the Saccharomyces Genome Database, and
thus are not listed here.

GAAAAAAAAA. Its MAP scores are 176.129 and 165.632 given by Ali-
gnACE and W-AlignACE, respectively. All the above show that the new
PWM learning approach via sequence weighting could increase the signal-
to-noise ratio of a correct motif, but not of a spurious motif. Therefore, it
may have a profound impact on the success of computational motif dis-
covery, because it not only increases the chance of finding correct motifs,
but also enhances our confidence about the predicted motifs. This is further
demonstrated by the following case studies.

ACE2 is a TF that activates the transcription of genes expressed in the
G1 phase of the cell cycle (Dohrmann et al., 1992). Its ChIP-chip data in
our study consists of 46 target genes. W-AlignACE successfully discovered
the correct ACE2 motif, and ranked it the first in two runs and among the
top four in all runs. The highest MAP score estimated is 127.571 (see Sup-
plementary Table 2). AlignACE did report the ACE2 motif in one of its
runs but with a very low ranking of only 9 (MAP score: 22.2304). In con-
trast, GAAAAAAAAA is the top motif found by AlignACE, having the
MAP score as high as 104.081. Figure 2 depicts the distributions of some
motifs in the promoter sequences, from which we can see that functional bin-
ding sites are more likely to occur in the promoter sequences having higher
ChIP-chip scores. This observation is precisely the basis of W-AlignACE
and why it performs better than AlignACE. Also note that, both MDscan
and MotifRegressor failed to report any motifs resembling the correct ACE2
motif.

GAL4 is among the most characterized transcriptional activators, which
activates genes necessary for galactose metabolism (Ren et al., 2000). In
our previous study (Chen and Jiang, 2006), we incorporated the sequence
weighting scheme into the basic Gibbs sampling algorithm from (Lawrence
et al., 1993), which was only allowed to run in the site sampling mode
(i.e., assuming that exactly one binding motif occurs in each input promo-
ter sequence), and tested it successfully on a small ChIP-chip data from the
genome-wide location analysis (Ren et al., 2000), which contains only 10
target genes. The current dataset from (Hong et al., 2005) contains 25 target
genes. When run on this larger dataset, our previous algorithm (Chen and
Jiang, 2006) failed to find any motifs resembling the correct GAL4 motif
(mostly likely because it was limited to the site sampling mode and could
not properly handle multiple/zero occurrences of the correct motif). Indeed,
GAL4 is a well-known motif that is too weak to be easily detected (Hong
et al., 2005), partly because there is a 11-base gap (i.e., degenerate region)
in the middle of its consensus pattern, i.e. CGGnnnnnnnnnnnCCG. There-
fore, the new dataset for GAL4 presents a new challenge for computational
motif discovery methods. W-AlignACE once again performed remarkably
better than AlignACE. It ranked the correct GAL4 motif the first with MAP
score 184.307. In contrast, AlignACE failed to find the correct GAL4 motif,
and neither did MDscan or MotifRegressor. A closer examination on the
GAL4 dataset reveals that there are only 6 of the 25 genes whose promoter
sequences contain the exact consensus pattern (see Figure 2). Furthermore,
these six genes are all among the top if we sort all genes in the dataset by
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their ChIP-chip scores. 6 This might explain the failure of AlignACE and
the success of W-AlignACE in the GAL4 dataset. MDscan failed perhaps
because it was not optimized for finding gapped motifs.

STE12 is a DNA-bound protein that directly controls the expression of
genes in response of haploid yeast to mating pheromones (Ren et al., 2000).
The ChIP-chip dataset from (Hong et al., 2005) consists of 54 pheromone-
induced genes in yeast likely to be directly regulated by STE12. This data is
also much larger than the dataset consisting of 29 genes used in our previous
study (Chen and Jiang, 2006). W-AlignACE once again found the correct
motif and ranked it the first with MAP score 358.174. On the contrary,
AlignACE ranked the correct motif only the fourteenth with a much lower
MAP score of 49.0173. This is not surprising, because once again most of
the occurrences of the correct motif are located in the promoter regions of
genes having high ChIP-chip scores, as shown in Figure 2. In conclusion,
the sequence weighting scheme that learns PWMs from both sequence and
ChIP data could indeed boost AlignACE’s ability to pick correct motifs from
sequences with noisy background.

It is interesting to note that MotifRegressor performed much worse than
MDscan in this test, although the former uses the latter as a feature extrac-
tion tool to find candidate motifs 7. This could be due to several factors.
First, the default cutoff used by MotifRegressor on the significance of linear
regression might be too strict for these datasets. Second, the true motifs are
too weak as evaluated by MotifRegressor based on the significance of linear
regression (e.g., due to the presence of spurious binding sequences). Third,
the parameter setting that MotifRegressor applied to MDscan did not work
as well as the default one, which we used to test MDscan. Last, the parameter
values that we set for MotifRegressor might not be optimal either, although
their default values are preferred (see the first paragraph of Section 3.2).

4 DISCUSSION AND FUTURE RESEARCH
Learning an accurate PWM to characterize the binding sites of a TF is a fun-
damental problem in regulatory genomics, as it plays an important role in
modeling regulatory motifs and also in discovering the regulatory targets of
TFs. The commonly used learning approach relies on an implicit assump-
tion that has never been questioned before. That is, all the putative binding
sites contribute equally to the estimation of the motif PWM, regardless of the
expression levels of downstream genes that they regulate. However, it is well
known that expression levels (and fold changes) vary in a large range even
among co-regulated genes, which perhaps suggests that the above assump-
tion might not be fair, since the variations could be due to the sequence
differences of their binding sites. Therefore, simply equating every binding
site could result in an inaccurate PWM or a PWM with binding specificity so
low that it would likely fail to differentiate true binding sites from spurious
ones.

Another delicate problem concerns the selection of a set of (co-regulated)
promoter sequences for motif finding. An ideal set shall contain promo-
ter sequences that are (i) all bound by a common TF, and (ii) as many
as possible. In practice, a pre-defined cutoff is often applied to expres-
sion fold changes (in particular from a single microarray experiment) or
ChIP-chip scores to determine a set of promoter sequences that seem to be
co-regulated. Note that a stringent cutoff will likely lead to a small set of
promoter sequences and hence increases the chance of spurious motifs being
statistically significant, while a relaxed cutoff might result in many promoter
sequences that actually are not bounded by the TF of interest. Both cases
might prevent true motifs from being successfully detected. As an example,
if we increase the ChIP-chip score cutoff to reduce the size of the GAL4

6 Unfortunately, there is no GAL4 binding site at the upstream of the
top gene, which actually presents more challenge to W-AlignACE than to
AlignACE for discovering the correct motif.
7 More precisely, the current implementation of MotifRegressor uses
MDmodule, instead of MDscan, as a feature extraction tool. MDmodule
is a modified version of MDscan.

dataset given in Table 3 by 50%, then AlignACE would be able to detect the
correct motif as W-AlignACE is. Therefore, how to choose an appropriate
cutoff value is also a nontrivial factor to the success of finding true motifs.

In this paper, to address the above two problems in the framework of
learning PWMs, we formulate a maximum likelihood problem where the
optimal PWM maximizes the likelihood of observing the combination of
DNA binding sequence and expression data. A sequence weighting scheme
is then proposed to offer an approximate while reasonably good solution to
the maximum likelihood problem. The new learning approach via sequence
weighting can be justified partially by the observation that binding sites indu-
cing drastic fold changes in expression (or showing strong binding ratios in
ChIP-chip experiments) are more likely to represent the true motif (Liu et al.,
2002). Furthermore, it is easy to see that the new learning method reduces
sensitivity to the fold change cutoff since sequences that have smaller fold
changes have less impact on the construction of the PWMs.

It should be noticed that several computational methods have been deve-
loped to find motifs by taking gene expression variation into account
(Bussemaker et al., 2001; Conlon et al., 2003; Keles et al., 2002; Liu et al.,
2002; Segal et al., 2003; Wang et al., 2005), but all in a way different from
ours. For example, MDscan (Liu et al., 2002) divides promoter sequences
into two groups — a highly expressed group and a less expressed group,
and treats the sequences from one group equally when estimating the motif.
REDUCE (Bussemaker et al., 2001) and MotifRegressor (Conlon et al.,
2003) use gene expression variation to select statistically significant PWMs
via linear regression. Segal et al., 2002 and Wang et al., 2005 build a joint
probabilistic model for promoter sequence and gene expression data, and
then estimate PWMs via an expectation maximization algorithm. Here, we
address a completely different and specific question; that is, how to learn a
more accurate PWM from a set of aligned binding sequences in the presence
of their associated expression data. More accurate PWMs can substantially
enhance the capability of motif finding algorithms (e.g., Gibbs sampling) to
discover true but weak motifs, as demonstrated in our large scale tests of the
program W-AlignACE on both simulated and real data. We conjecture that
the idea can be applied to other programs based on PWMs.

We note in passing that there exist computational methods to find motifs in
the promoter regions of genes that exhibit similar expression patterns across
a variety of experimental conditions (Bussemaker et al., 2001). Here, our
proposed method focuses on a single experimental condition (relative to a
control condition). Previous studies (Keles et al., 2002) showed that focusing
on a single experimental condition is crucial for identifying experiment-
specific regulatory motifs. One reason for this is that averaging across
experiments may destroy the significant relationship between the expression
of genes and their regulatory motifs present only in a single experiment.

In conclusion, learning an accurate PWM from a collection of aligned bin-
ding sequences is a delicate problem that plays an important role in modeling
a TF’s binding preferences. In this paper, we tackled this problem by propo-
sing a new approach to learning PWMs jointly from sequence and expression
data. We believe that this approach could be a very useful enhancement to
many of the motif discovery programs that are based on PWMs, such as
Gibbs sampling and MEME. Our preliminary experiments on Gibbs samp-
ling support this belief, and demonstrate that W-AlignACE is a very effective
tool for biologists to computationally discover TF binding motifs when gene
expression or ChIP-chip data are available and correlated with the occur-
rences of the true motif in the promoter regions of the genes under study.
On the other hand, the expression (or binding) information might misguide
W-AlignACE when the true motif does not occur in the most differentially
expressed or strongly bond genes, as discussed in the Supplementary Materi-
als. Our future work includes more delicate/theoretical treatment of multiple
motif occurrences, and treatment of multiple-experiment expression data
(which are usually time series data) and the discovery of cooperative motifs
(or cis-regulatory modules).
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Fig. 2. The distributions of ChIP-chip scores and occurrences of binding sites of three TFs ACE2, GAL4 and STE12. The top right figure depicts the
distribution for a spurious motif ranked the first by AlignACE with MAP score 104.81, and the other three figures correspond to three correct motifs all ranked
the first by W-AlignACE with MAP scores, 127.571, 184.307, and 358.174, respectively. We can see that the correct motifs occur in promoter sequences with
high scores more frequently than in those of low scores. This property generally does not hold for spurious motifs, whose occurrences are not expected to have
any correlation with ChIP-chip scores or expression values.
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