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Abstract. The new second generation sequencing technology revolu-
tionizes many biology related research fields, and posts various compu-
tational biology challenges. One of them is transcriptome assembly based
on RNA-Seq data, which aims at reconstructing all full-length mRNA
transcripts simultaneously from millions of short reads. In this paper, we
consider three objectives in transcriptome assembly: the maximization
of prediction accuracy, minimization of interpretation, and maximization
of completeness. The first objective, the maximization of prediction ac-
curacy, requires that the estimated expression levels based on assembled
transcripts should be as close as possible to the observed ones for ev-
ery expressed region of the genome. The minimization of interpretation
follows the parsimony principle to seek as few transcripts in the pre-
diction as possible. The third objective, the maximization of complete-
ness, requires that the maximum number of mapped reads (or “expressed
segments” in gene models) be explained by (i.e., contained in) the pre-
dicted transcripts in the solution. Based on the above three objectives,
we present IsoLasso, a new RNA-Seq based transcriptome assembly tool.
IsoLasso is based on the well-known LASSO algorithm, a multivariate
regression method designated to seek a balance between the maximiza-
tion of prediction accuracy and the minimization of interpretation. By
including some additional constraints in the quadratic program involved
in LASSO, IsoLasso is able to make the set of assembled transcripts
as complete as possible. Experiments on simulated and real RNA-Seq
datasets show that IsoLasso achieves higher sensitivity and precision si-
multaneously than the state-of-art transcript assembly tools.

1 Introduction

The second generation sequencing technology has become an increasingly impor-
tant tool in biological and biomedical research areas, such as individual genome
sequencing [1], gene expression level estimation [2], comparative genomics [3],
etc. RNA-Seq, a technology to study transcriptome via the second generation
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sequencing, was first introduced in a series of studies in 2008 [2,4,5,6,7,8,9],
and has quickly become widely accepted as a fundamental tool for transcrip-
tome research [10,11,12,13]. The revolutionary new sequencing technology al-
lows RNA-Seq to lower the sequencing cost and increase the data throughput
substantially, but it also posts many challenging computational biology prob-
lems, one of which is transcriptome assembly and abundance estimation from
RNA-Seq reads. A variety of new algorithms and tools have been developed for
this problem [14,15,16,17,18,19]. Some splicing site discovery tools, for example
TopHat [19] and SpliceMap [20], identify new alternative splicing events by ex-
ploring RNA-Seq reads that span different parts of the reference genome under
study. Some de novo assembly tools, such as AbySS [14], try to assemble new
transcripts solely from RNA-Seq reads. Other assembly tools (including Cuf-
flinks [16], Scripture [17] and IsoInfer [18]) map reads to the reference genome
and build transcript models (or isoforms) from these mapped reads.

Among these tools, IsoInfer [18] enumerates all possible “valid” isoforms and
uses a quadratic program (QP) to estimate the expression levels of a given set
of isoforms. IsoInfer then chooses the best subset of valid isoforms such that the
estimated abundance of every “expressed segment” of the reference genome (e.g.,
an exon) is proportional to the observed reads falling into the segment. On the
other hand, Cufflinks [16] assembles isoforms using a parsimony strategy, i.e.,
it attempts to identify the minimum number of isoforms to cover all the reads.
To do this, Cufflinks decomposes the “overlap graph” of compatible reads into
a smallest path cover, and then calculates the expression levels of the isoforms
(i.e., paths in the cover) using the probabilistic model proposed in [21].

The strategies that IsoInfer and Cufflinks adopted correspond to two different
model selection principles: prediction accuracy and interpretation [22]. IsoInfer
selects isoforms to maximize the prediction accuracy, i.e., to minimize the error
or discrepancy between the predicted and observed expression levels in all ex-
pressed segments. IsoInfer employs a search algorithm similar to the “best subset
variable selection” algorithm [23] to find the best subset of isoforms. However,
the huge search space prevents the algorithm from doing a thorough search, and
many heuristic restrictions must be applied to make the search tractable. On the
other hand, Cufflinks minimizes interpretation, i.e., the number of variables (or
isoforms) that are required to explain all the mapped reads. Here, the prediction

Table 1. Transcriptome assembly objectives of each algorithm. Although Cufflinks
has a transcript abundance estimation step, the prediction accuracy is not considered
explicitly during the assembly process. Also, theoretically both Cufflinks and IsoLasso
take completeness into consideration, but in practice they may not fully guarantee it
and thus are marked “partially” in the table.

Algorithm Prediction accuracy Interpretation Completeness

IsoInfer Yes Partially Yes
Cufflinks No Yes Partially
Scripture No No Yes
IsoLasso Yes Yes Partially
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accuracy is not considered explicitly during the transcriptome assembly process.
By defining a “partial order” between reads, Cufflinks filters out “uncertain”
paired-end reads which may result in a sub-optimal path cover in the solution,
or miss some alternative splicing events. Finally, Scripture [17] reconstructs all
possible isoforms by enumerating all possible paths in the “connectivity graph”.
This approach may lead to many incorrect isoforms for complex genes with a
large number of exons, since the number of paths may be huge for such gene
models.

Another important objective in transcriptome assembly is completeness, which
requires that all exons (and exon junctions) appear in at least one isoform in the
solution (as done in IsoInfer [18]), or all mapped reads be contained in at least
one isoform (as done in Cufflinks [16]). In IsoInfer, the completeness is achieved
by solving a set cover instance that covers all expressed segments and exon
junctions. Since all the reads represented in the overlap graph are partitioned
into disjoint paths in Cufflinks, they are guaranteed to be supported by at least
one isoform (i.e., path). However, some “uncertain” paired-end reads (i.e., reads
that cannot be included in partial order and thus absent in the overlap graph)
may not be covered by the solution. Scripture adopts a conservative approach
to enumerate all possible paths in its connectivity graph, which is guaranteed to
cover all expressed segments and exon junctions. Like Cufflinks, the prediction
accuracy is not considered explicitly during the transcript assembly process of
Scripture. Moreover, retaining all possible isoforms clearly leads to a bad inter-
pretation. Table 1 lists all the principles (or objectives) that IsoInfer, Cufflinks
and Scripture abide by in the transcript assembly process.

In this paper, we present a new isoform assembly algorithm, IsoLasso, which
balances prediction accuracy, interpretation and completeness. IsoLasso uses the
LASSO algorithm, or Least Absolute Shrinkage and Selection Operator [24],
which is a shrinkage least squares method in statistical machine learning. By
adding an L1 norm penalty term to the least squares objective function, LASSO
achieves sparsity by setting the expression levels of unrelated isoforms to zero,
thus balancing both prediction accuracy and interpretation. The LASSO algo-
rithm is widely applied in many computational biology areas, such as genome-
wide association analysis [25,26], gene regulatory network [27], microarray data
analysis [28], etc. In IsoLasso, we expand the quadratic programming problem of
LASSO to take completeness into consideration. Our experiments demonstrate
that IsoLasso runs efficiently and achieves overall higher sensitivity and precision
than IsoInfer, Cufflinks and Scripture.

The rest of this paper is organized as follows. Section 2.1 presents our algo-
rithm for generating (or enumerating) candidate isoforms and its relationship
to minimum path covers used in Cufflinks [16]. These candidate isoforms will
be fed to our LASSO algorithm described in Section 2.2 for estimating isoform
expression levels (or, equivalently, for inferring expressed isoforms). Section 2.3
expands the basic LASSO approach to take completeness into consideration.
Experimental results are presented in Section 3, which include comparisons be-
tween IsoLasso, IsoInfer, Cufflinks, and Scripture on simulated and real datasets.
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Fig. 1. (Left) Removal of “uncertain” reads may cause splicing junctions undetected
in Cufflinks. Three paired-end reads, p1, p2 and p3, concern different splicing junctions.
Both pairs (p1, p2) and (p2, p3) are compatible, but the pair (p1, p3) is not. Removing
any of these reads will cause one or more junctions undetected. (Right) “Infeasible”
paths in the connectivity graph. In the example above, there are four possible combina-
tions of segments: ACD, ACE, BCD, and BCE. However, ACE and BCD are infeasible
since they cannot be assembled from the mapped paired-end reads.

Section 4 concludes the paper. For the convenience of the reader, we defer some
mathematical definitions and the proofs of theorems to the Appendix.

2 Methods

2.1 Enumerating Candidate Isoforms

IsoInfer [18], Scripture [17] and Cufflinks [16] enumerate candidate isoforms in
different ways. IsoInfer, assuming that expressed segment (or exon) boundaries
in a gene are given, enumerates all possible combinations of segments. Note that
it is possible that some lowly expressed segment are not hit by short reads and
thus many of the isoforms enumerated by IsoInfer might have very low expression
levels. Scripture enumerates all possible maximal paths in a connectivity graph;
but some of these isoforms may be “infeasible” because they cannot be assembled
from the mapped reads (Figure 1 (right) shows such an example). Cufflinks tries
to build an overlap graph from partially ordered reads, and assembles putative
transcripts by decomposing the overlap graph into a parsimonious path cover.
However, a strict partial order between reads is required here. Since the actual
sequence between the ends of each paired-end read is unknown, Cufflinks has to
exclude some paired-end reads (called uncertain reads) to maintain the partial
order. Removing uncertain reads may lead to two potential problems: (1) the
path cover solution is actually sub-optimal and (2) some alternative splicing
events are missed, if the reads including these events are removed. For instance,
Figure 1 (left) provides an example that removing such “uncertain” reads leaves
some splicing junctions undetected. Note that uncertain reads should be treated
separately from repeat sequences or incorrectly mapped reads.

Here, we describe our method of enumerating isoforms based on the connec-
tivity graph ([17]) in Algorithm 1, from which the enumerated isoforms will be
the set of candidate isoforms to be considered in the LASSO algorithm. The
algorithm first enumerates isoforms from the connectivity graph as in [17], and
then uses two additional steps to remove isoforms that are impossible to assem-
ble. We will prove some important properties of Algorithm 1: if there are no
“uncertain” reads, then every isoform output by Algorithm 1 can be assembled
from a maximal path in the overlap graph given in [16]. Moreover, the isoforms
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enumerated by Algorithm 1 form a superset of all possible maximal paths in
the overlap graph. In other words, our LASSO algorithm in general considers
more isoforms than Cufflinks in the transcript assembly process. Before giving
a detailed description of this algorithm and proofs of these properties, we first
briefly review some necessary notations first introduced in [16] and [17].

A gene sequence S of length n is an ordered character sequence S = S1S2 · · ·Sn,
Si ∈ {A, T, G, C}. Define B(n) as the set of binary vectors of length n. For a vector
b ∈ B(n), bi indicates the ith element of vector b. For a subset U ⊂ B(n), define
OR(U) = b ∈ B(n) with bi = 1 iff there is an element c ∈ U such that ci = 1.
For a binary vector b ∈ B(n), define the start (or end) of b as the first (or last)
non-zero index of b, and is denoted as l(b) (or u(b)). Hence, each isoform on gene
S could be represented as a binary vector b ∈ B(n) with bi = 1 iff the nucleotide
Si is included in this isoform. A single-end or paired-end read mapped to S could
also be represented as an element b ∈ B(n) with bi = 1 iff this read contains Si.
A paired-end read is denoted as p = (b1, b2), where b1 and b2 are the two mapped
single-end reads, and l(b1) < l(b2). Given a set of single-end or paired-end reads
R, the coverage of Si, or cvg(Si), is the number of reads b with bi = 1.

A single-end read b is compatible with an isoform t, denoted as b ∼ t, iff bi = ti
for l(b) ≤ i ≤ u(b). Similarly, a paired-end read p = (b1, b2) is compatible with
isoform t, denoted as p ∼ t, iff b1 ∼ t and b2 ∼ t. Given a set of single-end
(or paired-end) reads R mapped to gene S, the connectivity graph (CG) [17]
is a directed acyclic graph (DAG) G = (V, E), where V = {v1, v2, . . . , vn} and
e = (vi, vj) ∈ E iff one of the following conditions is true:

Condition 1. There exists a single-end read or an end of some paired-
end read b ∈ R such that bi = 1, bj = 1, and bk = 0,
∀i < k < j;

Condition 2. cvg(Si) > 0, cvg(Sj) > 0, and cvg(Sk) = 0, ∀i < k < j.

Note that Condition 2 is designed to connect two mapped reads separated by a
coverage gap. Based on the definition of CG, a path h in the CG could be readily
treated as an isoform by defining the isoform t as ti = 1 iff vi ∈ h. Therefore, a
read b is compatible with h (denoted as b ∼ h) iff b ∼ t. The isoform enumeration
algorithm depicted in Algorithm 1 takes the connectivity graph as the input, and
outputs a set of maximal candidate isoforms T . The algorithm consists of three
phases, Enumeration, Filtration and Condensation. In the Enumeration phase,
all maximal paths in the connectivity graph are enumerated. However, some of
these isoforms are “infeasible” in the sense that they cannot be assembled from
the mapped reads (see Figure 1 (right) for an example). In this case, the second
phase (i.e., the Filtration phase) is required to remove such isoforms. For each
isoform t generated in the Enumeration phase, the Filtration phase first finds
all reads that are compatible with t, and then checks if t can be assembled from
these compatible reads (it replaces t otherwise). Finally, the Condensation phase
removes all the isoforms that are not maximal candidates.

Cufflinks assembles transcripts based on the overlap graph (OG), which is is
constructed from a set of mapped single-end or paired-end reads after remov-
ing uncertain reads and extending reads to include their nested reads [16]. It
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input : A CG G = (V, E), and a set of mapped single-end or paired-end reads
R

output: A set of isoforms T
begin

Enumeration:
T ← ∅
for vj ∈ V with indeg(vj) = 0 do

Enumerate all possible maximal paths P that begin at vj and end at
some vk with outdeg(vk) = 0
T ← T ∪ P

Filtration:
for t ∈ T do

Let t′ = OR({b ∈ R|b ∼ t})
T ← (T\{t}) ∪ {t′}

Condensation:
for t ∈ T do

Let Rt = {b ∈ R|, b ∼ t}
for t′ ∈ T\{t} do

Let Rt′ = {b ∈ R|, b ∼ t′}
if Rt ⊂ Rt′ then

T ← (T\{t})

end
Algorithm 1. Isoform Enumeration

generates transcripts by partitioning the overlap graph into a minimum path
cover, where a path cover is a set of disjoint paths in the overlap graph such
that every read appears in one and only one path. A minimum path cover is
a path cover with the minimum number of paths. The following theorems and
corollary state the relationship between the set of isoforms generated by Algo-
rithm 1 and the set of transcripts that could be constructed from the overlap
graph. Formal definitions of uncertain reads, nested reads and the overlap graph,
and complete proofs of these theorems are given in the Appendix. Let us consider
a fixed gene.

Theorem 1. Suppose that R contains no uncertain or nested reads. If we denote
the set of isoforms constructed by Algorithm 1 as T and the set of the isoforms
formed by enumerating maximal paths on the OG (constructed from R) as TOG,
then T = TOG.

Corollary 1. If R contains no uncertain or nested reads, then for every min-
imum path cover H of the OG, there exists a set of maximal isoforms T ′ ={
t1, . . . tm

} ⊂ T , such that m = |H | and for every read b on a path h ∈ H,
b ∼ ti, 1 ≤ i ≤ m.

Note that each nested read r in R is removed in [16] by extending the reads that
r is nested in. On the other hand, if there are uncertain reads in R, Algorithm
1 may generate some isoforms that do not correspond to any paths on the OG
when these uncertain reads cover some unique splicing junctions as shown in
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Figure 1 (left). The following theorem states the relationship between maximal
paths on the OG and the isoforms generated by Algorithm 1 when uncertain
reads are present in R.

Theorem 2. Suppose that no reads in R are nested and denote the set of iso-
forms constructed by Algorithm 1 as T . For every maximal path h on the OG
constructed by removing uncertain reads in R, T contains an isoform which is
compatible with every read on the path h.

2.2 The LASSO Approach of Estimating Isoform Expression Levels

The Mathematical Model of RNA-Seq. Typical alternative splicing (AS)
events include alternative 5′ (or 3′) splice sites, exon skipping, intron retention,
mutually exclusive exons, etc., but all these events can be dealt with in a unified
mathematical model where a gene is partitioned into a sequence of expressed
segments (or simply segments) based on exon-intron boundaries [18]. More pre-
cisely, a gene is divided into a set of segments such that every segment is a
continuous region in the reference genome uninterrupted by exon-intron bound-
aries. Then, a given set of candidate isoforms T = {t1, t2, . . . , tN} for a gene
can be represented as a binary matrix A = (aij)N×M , where M is the number
of segments of the gene. Each isoform corresponds to a row in this matrix such
that aij = 1 if isoform ti includes the jth segment, and 0 otherwise.

If we assume that a read is uniformly sampled from expressed isoforms, then
the number of reads falling into each segment follows a binomial distribution,
which can be approximated by a Poisson distribution [21] or Gaussian distribu-
tion [18] if the number of sequenced reads is large and the length of segments
is small compared with the length of the reference genome. As a result, the
expected number of reads falling into the ith segment, ri, is proportional to
both the segment length li and the sum of the expression levels of all isoforms
containing the ith segment [21,18]:

ri = li

N∑

j=1

ajixj (1)

where xj , the expected number of reads per base in isoform tj , represents the
expression level of tj . Note that the expression level of an isoform can also
be measured as RPKM (i.e., Reads Per Kilobase of exon model per Million
mapped reads, [2]). If there are totally E mapped reads, then an isoform tj with
expression level xj has an expression level (in RPKM) 109xj/E.

Notice that compared with the traditional multivariate regression model, the
intercept is zero since we expect no read falling into the ith segment, if none of
the isoforms contain the segment, or if the expression levels of these isoforms are
all zero.

We observe that the above model simplifies the real situation. Because of
the sequencing errors and repeat sequences in the reference genome, it is some-
times hard to decide whether a read really comes from a certain gene or exon
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(i.e., the so called multi-read problem, which has been studied recently in [29]).
Recent studies on RNA-Seq data also show that the above binomial model of
read distribution may be an over-simplification [30,31]. Some more complicated
approaches have been proposed instead, such as using generalized Poisson dis-
tribution [32], considering the locality of bases [30], applying “effective length
normalization” [31,33], etc. In particular, the “effective length normalization”
model can be easily incorporated in our model, by replacing the segment length
li in Equation (1) with the “effective” segment length l′i, where the length is
calibrated by considering repeat sequences in the reference genome [33].

The LASSO Approach. Given all mapped short reads and candidate isoforms
of a gene, the expression levels X = {x1, . . . xN} of the candidate isoforms can
be estimated by minimizing the following residual sum of squares:

X∗ = argmin
X

f(X) =
M∑

i=1

(
ri

li
−

N∑

j=1

ajixj)2 (2)

with respect to the restrictions that xj ≥ 0 for all 1 ≤ j ≤ N . However, such an
approach may have several potential problems. For example, for a large value of
N and a small value of M , the solution is not unique. It is also possible that
a large number of estimated expression levels are small non-zero values which
damage the interpretability. To address this latter problem, IsoInfer enumerates
combinations of isoforms and chooses a minimum set of isoforms such that the
error

∑M
i=1(

ri

li
−∑N

j=1 ajixj)2 is in a specified range. To deal with an exponential
number of subsets of candidate isoforms, IsoInfer has to adopt several heuristics
to make the algorithm practical. Also, some “shrinkage” methods which restrict
the scale of X can be used, like ridge regression [34], LASSO (or its variations
like LARS [35], elastic-net [36], etc).

To achieve the minimization of interpretation without going through the ex-
haustive enumeration step in IsoInfer, we propose a new algorithm, called Iso-
Lasso, based on LASSO. The LASSO approach minimizes the following objective
function which seeks a balance between minimizing the overall error and mini-
mizing the number of expressed isoforms:

f(X) =
M∑

i=1

(
ri

li
−

N∑

j=1

ajixj)2 + λ

N∑

j=1

|xj | (3)

The sparsity of variables, i.e., minimizing the number of isoforms with non-
zero expression levels, is obtained through the addition of an L1 normalization
term, λ

∑N
j=1 |xj |, to the original sum of squares. Since the expression level of

each isoform should be non-negative, the above objective function leads to the
following quadratic programming (QP) problem:

min f(X) =
M∑

i=1

(
ri

li
−

N∑

j=1

ajixj)2 + λ

N∑

j=1

xj (4)

s.t. xj ≥ 0, 1 ≤ j ≤ N
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which is equivalent to the following “constrained form” [24]:

min f(X) =
M∑

i=1

(
ri

li
−

N∑

j=1

ajixj)2 (5)

s.t. xj ≥ 0, 1 ≤ j ≤ N

N∑

j=1

xj ≤ γ

The parameter λ (or γ) controls the number of isoforms with non-zero expression
levels in the solution. In the constrained form of LASSO (Equation (5)), a larger
value of γ will exert less restriction on the values of X , which prefer a smaller
sum of squares but more non-zero expression levels. In practice, a proper value
of γ is selected via the “regularization path” [37], where several values of γ,
γ1, . . . γk, are examined. If the values of the objective function in Equation (5)
and the number of non-zero variables are e1, . . . ek and L1, . . . Lk, respectively,
in these trials, then we define

i∗ = argmin
1≤i≤k

{Li : ei ≤ β ∗ min {e1, . . . ek}} (6)

and select γ = γi∗ , where β is a user-controlled parameter.

2.3 Completeness Requirement

To ensure completeness, i.e., each segments (or junction) with mapped reads
covered by at least one isoform, the sum of expression levels of all isoforms that
contain this segment (or junction) should be strictly positive. Formally, we add
additional constraints to the above QP:

min f(X) =
M∑

i=1

(
ri

li
−

N∑

j=1

ajixj)2 (7)

s.t. xj ≥ 0, 1 ≤ j ≤ N

N∑

j=1

xj ≤ λ

N∑

j=1

xjaji ≥ p, if segment i has mapped reads (8)

N∑

j=1

xjajiajk

k−1∏

h=i+1

(1 − ajh) ≥ p, if the junction between segments

i and k contains mapped reads (9)
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where p is a small positive threshold value to be decided empirically. The con-
straints (Equation (8) and Equation (9)) will ensure that all segments and junc-
tions with mapped reads be covered by isoforms with positive expression levels
in the solution of this QP.

The above QP problem can be solved by any standard QP solver, such as the
“quadprog” function in Matlab [38]. In practice, however, if a gene contains too
many segments and junctions, then there will be a large number of constraints
involved, which make the above QP impractical to solve. As a compromise, we
introduce the above constraints only for segments (or junctions) with expression
levels above a certain threshold.

3 Experimental Results

3.1 Simulated Mouse RNA-Seq Data

We use UCSC mm9 gene annotation to generate simulated single-end and paired-
end reads. An in silico RNA-Seq data generator, Flux Simulator [39], is used to
generate simulated reads. Flux Simulator first randomly assigns an expression
level to every isoform in the annotation, and then simulates the library prepara-
tion process in a typical RNA-Seq experiment (including reverse transcription,
fragmentation, size selection, etc). After that, reads are generated in the se-
quencing step. Various error models can be incorporated in these steps; but in
our simulations, only error-free reads are simulated to compare the performance
of different algorithms in the ideal situation.

The distribution of the expression levels of all 49409 isoforms in the UCSC
mm9 gene annotation is plotted in Figure 2 (A).
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Fig. 2. The distribution of simulated isoform expression levels (A), and the expression
level estimation accuracies of IsoLasso (B), IsoInfer without TSS/PAS (C), Cufflinks
(D), and Scripture (E). Note that Scripture computes a “weighted score” instead of
RPKM value for each predicted isoform.
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Matching Criteria. All assembled isoforms (referred to as “candidate iso-
forms”) are matched against all known isoforms in the annotation (referred to
as “benchmark isoforms”). Two isoforms match iff:

1. They include the same set of exons; and
2. All internal boundary coordinates (i.e., all the exon coordinates ex-

cept the beginning of the first exon and the end of the last exon) are
identical.

Two single-exon isoforms match iff the overlapping area occupies at least 50%
the length of each isoform.

Following [18], we use sensitivity, precision and effective sensitivity to evalu-
ate the performance of different programs. Sensitivity and precision are defined
as follows: if K out of M benchmark isoforms match K ′ out of N candidate
isoforms, then

sensitivity = K/M (10)
precision = K ′/N (11)

Note that several candidate isoforms may match the same benchmark isoform.
Effective sensitivity is calculated based on the isoforms satisfying Condition

I defined in [18]. Isoforms satisfying Condition I are those with all segment
junctions covered by at least one short read. If there are S benchmark isoforms
satisfying Condition I and K of them are matched, then

effective sensitivity = K/S (12)

Intuitively, isoforms satisfying Condition I are those that are relatively easy to
predict, since all their segment junctions are covered by short reads. It is shown
in [18] that an isoform with a higher expression level is more likely to satisfy this
condition.

3.2 Comparisons between IsoLasso, IsoInfer, Cufflinks, and
Scripture

Sensitivity, precision and effective sensitivity. In this section, we use the
sensitivity, precision and effective sensitivity defined above to compare IsoLasso
with the most recent versions of IsoInfer (version V0.9.1, downloaded from web-
site http://www.cs.ucr.edu/~jianxing/IsoInfer.html), Cufflinks (version
0.9.1, downloaded from website http://cufflinks.cbcb.umd.edu), and Scrip-
ture (beta version, downloaded from website http://www.broadinstitute.org/
software/scripture/home). We use TopHat [19] to map all simulated short
reads with multi-reads discarded. Then, the read mapping information serves
as the input for all four programs. Since IsoInfer is based on the assumption
that the boundaries of all genes and exons are known, we infer exon bound-
aries from mapped junction reads using TopHat and infer gene boundaries by
clustering overlapping mapped reads. Note that IsoInfer is actually designed to
take advantage of any known transcription start site and poly-A site (TSS/PAS)

http://www.cs.ucr.edu/~jianxing/IsoInfer.html
http://cufflinks.cbcb.umd.edu
http://www.broadinstitute.org/software/scripture/home
http://www.broadinstitute.org/software/scripture/home
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Fig. 3. Sensitivity (left), precision (middle) and effective sensitivity (right) on single-
end reads
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Fig. 4. Sensitivity (left), precision (middle) and effective sensitivity (right) on paired-
end reads

information, although it also works without such information. Since the other
three programs do not use the TSS/PAS information, neither does IsoInfer use
such information in the comparison.

Figure 3 and Figure 4 plot the sensitivity, precision and effective sensitiv-
ity using various numbers of single-end and paired-end reads, respectively. On
single-end reads, all transcriptome assembly tools achieve a higher sensitivity
and precision as more reads are used for the assembly. Among them, IsoLasso
outperforms all other programs with respect to all three criteria. This is perhaps
because IsoLasso is able to maintain a good interpretation by filtering out many
lowly expressed false predictions (which leads to a high precision), while keep-
ing highly expressed isoforms and a high effective sensitivity. Scripture seems
to benefit the most when more reads are available. Also, IsoInfer exhibits a
sharp increase in precision from less than 20% to more than 50%, at the cost of
decreased effective sensitivity (by about 10%).

On paired-end reads, IsoLasso also achieves the best precision and sensitivity
as well as a good balance between precision and effective sensitivity. However,
it is surprising to see that when the number of paired-end reads increases from
20M to 100M, a less than 10% increase in sensitivity and precision is observed
for all the algorithms. Also, none of the algorithms have a significant increase
in effective sensitivity. In fact, both Cufflinks and IsoInfer see their effective
sensitivities decreased a bit when more single-end and paired-end reads are used.
This is because more benchmark isoforms would satisfy Condition I of [18] as
the sequencing depth increases. In this case, more isoforms are expected to be
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expressed for each gene, which result in a more complicated overlap graph for
Cufflinks and a larger search space for IsoInfer.

Cufflinks reaches a high precision by filtering out many lowly expressed iso-
forms, but this sacrifices the effective sensitivity. On the other hand, Scripture
achieves the highest effective sensitivity by enumerating all possible paths in the
connectivity graph, but its precision is low since many of the paths are false
positives.

Expression Level Estimation. All programs estimate the expression levels of
predicted isoforms using different measures. Both IsoLasso and IsoInfer estimate
expression levels in RPKM [2], while Cufflinks uses the term FPKM (expected
number of Fragments Per Kilobase of transcript sequence per Millions base pairs
sequenced) [16]. Scripture does not predict expression levels directly; instead, it
computes a “weighted score” for each isoform to indicate how likely the isoform
is expressed.

Fig. 2 (B) ∼ (E) plot the predicted and true expression levels for all predicted
isoforms which are matched to the benchmark isoforms and have expression
levels > 1 RPKM, using the 80M paired-end read dataset. The plots show that
IsoLasso, IsoInfer and Cufflinks estimate expression levels quite accurately (the
squared correlation coefficient between the predicted and true expression levels
is R2 > 0.89), while the “weighted score” of Scripture does not directly reflect
the true expression level of isoforms (R2 = 0.50). Cufflinks shows the highest
prediction accuracy in expression level estimation (R2 = 0.91) partly because it
uses an accurate iterative statistical model to estimate the expression levels [16],
which could potentially be incorporated into our method as a refinement step.

More Isoforms, More Difficult to Predict. Intuitively, genes with more
isoforms are more difficult to predict. We group all the genes by their numbers of
isoforms, and calculate the sensitivity and effective sensitivity of the algorithms
on genes with a certain number of isoforms as shown in Figure 5 (middle) and
(right). Figure 5 (left) shows the total number of isoforms and isoforms satisfying
Condition I ([18]) grouped by the number of isoforms per gene.

Figure 5 shows that genes with more isoforms are more difficult to predict
correctly, as both sensitivity and effective sensitivity decrease for genes with more
isoforms. IsoLasso and Scripture outperform IsoInfer and Cufflinks in general.
IsoLasso has a higher sensitivity and effective sensitivity on genes with at most 5
isoforms, but Scripture catches up with IsoLasso on genes containing more than
5 isoforms.

Running Time. Figure 6 plots the running time of all four transcript assembly
programs using various numbers of paired-end reads. The time for data prepara-
tion is excluded, including mapping reads to the reference genome and preparing
required input files for both IsoLasso and IsoInfer. Surprisingly, although em-
ploying a search algorithm, IsoInfer runs much faster than that of any other
algorithm. This is partly due to the heuristic restrictions that IsoInfer adopts to
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Fig. 5. The total number of isoforms and isoforms satisfying Condition I (left), and
the sensitivity (middle) and effective sensitivity (right) of the algorithms grouped by
the number of isoforms per gene. Here, 100M paired-end reads are simulated.
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Fig. 6. The running time for all the algorithms

reduce the search space (e.g., requiring the candidate isoforms to satisfy Condi-
tion I and some other conditions), and the programming languages used in each
tool (IsoInfer, IsoLasso, Scripture and Cufflinks use C++, Matlab, Java, and
Boost C++, respectively). All programs are run on a single 2.6 GHz CPU, but
Cufflinks allows the user to run on multiple threads, which may substantially
speed up the assembly process.

3.3 Real RNA-Seq Data

Reads from two real RNA-Seq experiments are used to evaluate the performance
of IsoLasso, Cufflinks and Scripture. We exclude IsoInfer from the comparison
because its algorithm is similar to (and improved by, as seen from the simula-
tion results) the algorithm of IsoLasso. One RNA-Seq read dataset is generated
from the C2C12 mouse myoblast cell line ([16], NCBI SRA accession number
SRR037947), and the other from human embryonic stem cells (Caltech RNA-Seq
track from the ENCODE project [40], NCBI SRA accession number SRR065504).
Both RNA-Seq datasets include 70 million and 50 million 75 bp paired-end reads
which are mapped to the UCSC mus musculus (mm9) and homo sapiens (hg19)
reference genomes using Tophat [19], respectively.
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Isoforms inferred by programs IsoLasso, Cufflinks and Scripture are first
matched against the known isoforms from mm9 and hg19 reference genomes.
There are a total of 11484 and 12193 known mouse and human isoforms recov-
ered by at least one program, respectively (Figure 7 (A) and (B)). Among these
isoforms, 4485 (39%) and 4274 (35%) isoforms are detected by all programs,
while 8204 (71%) and 8084 (66%) isoforms are detected by at least two pro-
grams. These numbers show that, although there is a large overlap (more than
60%) among the known isoforms recovered by these programs, each program
also identifies a substantially large number of “unique” isoforms. Such “unique-
ness” of each program is shown more clearly if we compute the overlap between
their predicted isoforms directly (see Figure 7 (C) and (D)). Each of the three
programs predicts more than 40,000 isoforms on both dataset, but only shares
2% to 20% isoforms with other programs. About 49.5% of the mouse isoforms
(46% in human) inferred by IsoLasso are also predicted by at least one of other
two programs, which is substantially higher than Cufflinks (27.7% in mouse and
38.4% in human) and Scripture (4.6% in mouse and 7.4% in human). This may
indicate that IsoLasso’s prediction is more reliable than those of Cufflinks and
Scripture since it receives more support from other (independent) programs.

Note that among all the isoforms inferred by IsoLasso, Cufflinks and Scrip-
ture, 9741 mouse isoforms and 11381 human isoforms are predicted by all three
programs. These isoforms could be considered as “high-quality” ones. However,
fewer than a half of these “high-quality” isoforms (4485 in mouse and 4274 in
human) could be matched to the known mouse and human isoforms (see Fig-
ure 7 (A) and (B)). This suggests that the current genome annotations of both
mouse and human are still incomplete. An example of the “high-quality” iso-
forms is shown in Figure 7 (E). Here, an isoform with an alternative 5′ end of
gene Tmem70 in mouse is predicted by all three programs but cannot be found
in the mm9 RefSeq annotation or GenBank mRNAs (track not shown in the
figure).

Fig. 7. The numbers of matched known isoforms of mouse (A) and human (B), and the
numbers of predicted isoforms of mouse (C) and human (D), assembled by IsoLasso,
Cufflinks and Scripture. (E) shows an alternative 5” start isoform of gene Tmem70 in
mouse C2C12 myoblast RNA-Seq data [16]. This isoform does not appear among the
known isoforms, but is detected by IsoLasso, Cufflinks and Scripture. Tracks from top
to bottom: Cufflinks predictions, IsoLasso predictions, Scripture predictions, the read
coverage, and the Tmem70 gene in the mm9 RefSeq annotation.
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4 Conclusion

RNA-Seq transcriptome assembly is a challenging computational biology prob-
lem that arises from the development of second generation sequencing. In this
paper, we proposed three fundamental objectives/principles in the transcrip-
tome assembly: prediction accuracy, interpretation, and completeness. We also
presented IsoLasso, an algorithm based on the LASSO approach that seeks a
balance between these objectives. Experiments on simulated and real RNA-Seq
datasets show that, compared with the existing transcript assembly tools (IsoIn-
fer, Cufflinks and Scripture), IsoLasso is efficient and achieves the best overall
performances in terms of sensitivity, precision and effective sensitivity.
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Appendix: Mathematical Definitions, Notations and
Proofs of the Theorems

Definitions

The formal definitions of uncertain reads, nested reads and the overlap graph
are given in [16], and are reviewed below for the reader’s convenience.

A single-end read b is nested in another single-end read b′ iff bi = b′i, l(b) ≤
i ≤ u(b), and at least one of the following two conditions is true: (1) l(b) 	= l(b′)
and (2) u(b) 	= u(b′). A paired-end read p is nested in another paired-end read p′

iff l(p) ≥ l(p′), u(p) ≤ u(p′) and at least one of the following conditions is true:
(1) l(p) 	= l(p′) and (2) u(p) 	= u(p′). If a single-end read b is nested in b′, b can
always be removed safely without losing any information.

Two single-end reads b and b′ are compatible, denoted as b ∼ b′, iff there exists
one isoform t such that b ∼ t, b′ ∼ t, and b and b′ are not nested to each other.
If b and b′ are not compatible, we denote b � b′. Two paired-end reads p and p′

are compatible, denoted as p ∼ p′, iff there exists an isoform t such that p ∼ t,
p′ ∼ t and p is not nested in p′ or vice versa. If p and p′ are not compatible, we
denote p � p′.

Define a partial order ≤ between two single-end reads b and b′: b ≤ b′ iff
b ∼ b′ and l(b) ≤ l(b′). It is impossible to extend the partial order to paired-
end reads, since the sequence within a paired-end read is not completely known.
Alternatively, for two paired-end reads p and p′, define p ≤ p′ with respect to a
given read set R iff the following conditions are true: (1) p ∼ p′, (2) l(p) ≤ l(p′),
u(p) ≤ u(p′), and (3) there is no paired-end read p′′ ∈ R such that p ∼ p′, p ∼ p′′

but p � p′′. Write p ≤ p′′|R if p ≤ p′ with respect to a given read set R, or write
simply p ≤ p′ if there is no ambiguity. If reads p, p′ and p′′ exist such that p ∼ p′,
p′ ∼ p′′ and p � p′′, then p, p′ and p′′ are said to be uncertain since no partial
order can be given to these reads.

Given a set of mapped single-end or paired-end reads R = {b1, b2, . . . }, the
overlap graph (OG) [16] is a DAG G = (V, E), where V = {v1, v2, . . . , v|R|}
and e = (vi, vj) ∈ E iff bi ≤ bj . A maximal path of length k on the OG is
a path h = {vi1 ≤ vi2 ≤ · · · ≤ vik

} on the OG, such that there exists no path

http://flux.sammeth.net
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h′ =
{
vj1 ≤ vj2 ≤ · · · ≤ vjk′

}
with h ⊂ h′. Because the vertices in the OG have

a one-to-one relationship with the mapped reads, we also treat vertices in the
OG as binary vectors to simplify notations below. For example, if a path h =
{vi1 ≤ vi2 ≤ · · · ≤ vik

}, we will use OR(h) to denote OR({bi1 ≤ bi2 ≤ · · · ≤
bik}).

Proofs of the Theorems

The following lemmas are necessary. Suppose that R is the set of reads mapped
to gene S.

Lemma 1. Denote the vertex set of the CG as V = {v1, v2, . . . , vn}. For 1 ≤
i < j ≤ n, there is a path from vi to vj if cvg(Si) > 0 and cvg(Sj) > 0.

Proof. We use an induction on n = j − i to prove this lemma. If j − i = 1, then
there is an edge between vi and vj by Condition 2 of the CG’s edge construction.
Assume that ∀k < n, there is a path from vi to vj if cvg(Si) > 0 and cvg(Sj) > 0,
j − i = k. For k = n, if cvg(Sl) = 0 for every i < l < j, then there is an edge
between vi and vj by Condition 2 of the CG’s edge construction. Otherwise, if
there exists i < l′ < j such that cvg(Sl′) > 0, then l′ − i < n and j − l′ < n.
Using the assumption above, there is a path from vi to vl′ and a path from vl′

to vj . Therefore, there is a path from vi to vj . 
�
Lemma 2. For any read set Q ⊆ R, if every two reads in Q are compatible,
then there is a maximal path h in the CG such that ∀b ∈ Q, b ∼ h.

Proof. Let t = OR(Q). We construct h by defining its vertex set V (h) and edge
set E(h) separately. For every 1 ≤ i < m, ti = 1, if the set {k > i|tk = 1} is
not empty, denote j = mink{k > i, tk = 1}. If there is a read b ∈ Q such that
bi = bj = 1 and bk = 0, i < k < j, then there must be an edge e in CG from vi to
vj by Condition 2 of CG’s edge construction, and we put e in E(h). Otherwise,
there must be a path h′ from vi to vj by Lemma 1, because cvg(Si) > 0 and
cvg(Sj) > 0. We put edges in h′ in E(h). Define V (h) as the set of vertices
induced by E(h). A trivial case is that |{1 ≤ i < m, ti = 1}| = 1. In this case,
let V (h) = vi, ti = 1 for completeness.

We claim that all reads in Q are compatible with h. This is because for a
single-end read (or an end of some paired-end read) b in Q, if bi = 1 then
vi ∈ V (h). If bi = bj = 1 and bk = 0, i < k < j, vi and vj are directly connected
by edge (vi, vj) in h, which means that {vk|i < k < j} ∩ V (h) = ∅. Therefore
b ∼ h.

Once h is obtained, it is easily extended to a maximal path without violating
its compatibility with every read in Q. 
�
Lemma 3. Suppose that R has no uncertain or nested reads. For every maximal
path h on the OG constructed based on R, OR(h) ∈ T .

Proof. Let t = OR(h) and Rt be the set of reads corresponding to path h. By
Lemma 2, there is a maximal path h′ on the CG such that every read b ∈ Rt is
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compatible with h′. Denote the isoform corresponding to h′ as t′. Then, t′ ∈ T
after the Enumeration phase of Algorithm 1 and b ∼ t′.

Let Rt′ = {b ∈ R|b ∼ t′}. For any b ∈ Rt, b ∼ t′ so b ∈ Rt′ , then we have
Rt ⊆ Rt′ . Furthermore, for any b′ ∈ Rt′ , b′ ∼ t′, and thus we have b ∼ b′, ∀b ∈
Rt, ∀b′ ∈ Rt′ . If there is a read b ∈ Rt′ but b /∈ Rt, the vertex corresponding
to b in the OG could be added to path h, because b is compatible with all the
reads in Rt and b is not a nested or uncertain read. However, this contradicts the
assumption that h is maximal. Therefore, Rt = Rt′ and t ∈ T after the Filtration
phase of Algorithm 1. Note that t would not be removed in the Condensation
phase Algorithm 1 because t is maximal. 
�
Lemma 4. Suppose that R has no uncertain or nested reads. For every isoform
t output by Algorithm 1, there exists a maximal path h on the OG such that
OR(h) = t.

Proof. Let t be an isoform enumerated by Algorithm 1 and Rt = {b ∈ R|b ∼ t}.
Since R contains no uncertain or nested reads, the vertices corresponding to Rt

in the OG form a path h. If h is not maximal, it can be “expanded” to a maximal
path h′ by adding some vertices not in h. According to Lemma 3, there is an
isoform t′ ∈ T such that t′ = OR(h′). Denoting Rt′ = {b ∈ R|b ∼ t′}, then
we have Rt ⊂ Rt′ . Therefore, t would be removed in the Condensation phase of
Algorithm 1, which contradicts the fact that t is output by Algorithm 1. 
�
Lemmas 3 and 4 immediately lead to Theorem 1 and its corollary, Corollary 1.

Theorem 1. Suppose that R contains no uncertain or nested reads. If we denote
the set of isoforms constructed by Algorithm 1 as T and the set of the isoforms
formed by enumerating maximal paths on the OG (constructed from R) as TOG,
then T = TOG.

Corollary 1. If R contains no uncertain or nested reads, then for every min-
imum path cover H of the OG, there exists a set of maximal isoforms T ′ ={
t1, . . . tm

} ⊂ T , such that m = |H | and for every read b on a path h ∈ H,
b ∼ ti, 1 ≤ i ≤ m.

The following theorem holds when uncertain reads are present in R.

Theorem 2. Suppose that no reads in R are nested and denote the set of iso-
forms constructed by Algorithm 1 as T . For every maximal path h on the OG
constructed by removing uncertain reads in R, T contains an isoform which is
compatible with every read on the path h.

Proof. The proof is similar to the proof of Lemma 3. Let t = OR(h) and 1 ≤ l1 <
l2 < · · · < lm ≤ n be indices in t such that ti = 1 iff and only if i ∈ {l1, l2, . . . , lm}.
Let Rt be the set of reads corresponding to path h. By Lemma 2, there is a
maximal path h′ on the CG such that every read b ∈ Rt is compatible with
h′. Denote the isoform corresponding to h′ as t′. Therefore, t′ ∈ T after the
Enumeration phase of Algorithm 1 and b ∼ t′.
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Let Rt′ = {b ∈ R|b ∼ t′}. For any b ∈ Rt, b ∼ t and thus we have b ∼ t′ and
Rt ⊆ Rt′ . Furthermore, t′′ = OR(Rt′ ) would be in T after the Filtration phase
of Algorithm 1 and t′′ is compatible with every read in Rt.

During the Condensation phase of Algorithm 1, if t′′ is not removed, the
theorem holds. Otherwise, there must be another t′′′ ∈ T such that all reads
compatible with t′′ are also compatible with t′′′. In other words, all reads in Rt

would be compatible with t′′′. 
�
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