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Abstract Genome-scale assignment of orthologous genes is a fundamental and challenging problem in computational
biology and has a wide range of applications in comparative genomics, functional genomics, and systems biology. Many
methods based on sequence similarity, phylogenetic analysis, chromosomal syntenic information, and genome rearrangement
have been proposed in recent years for ortholog assignment. Although these methods produce results that largely agree with
each other, their results may still contain significant differences. In this article, we consider the recently proposed parsi-
mony approach for assigning orthologs between closely related genomes based on genome rearrangement, which essentially
attempts to transform one genome into another by the smallest number of genome rearrangement events including reversal,
translocation, fusion, and fission, as well as gene duplication events. We will highlight some of the challenging algorithmic
problems that arise in the approach including (i) minimum common substring partition, (ii) signed reversal distance with
duplicates, and (iii) signed transposition distance with duplicates. The most recent progress towards the solution of these
problems will be reviewed and some open questions will be posed. We will also discuss some possible extensions of the
approach to the simultaneous comparison of multiple genomes.
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1 Introduction

In this article, we review the new combinatorial ap-
proach that we recently introduced for genome-wide
assignment of orthologous genes between closely re-
lated species, and highlight a few algorithmic chal-
lenges. Essentially, the method, called the parsimony
approach, assigns the orthology relationship between
the genes in two input genomes so that the overall
number of genome rearrangement events (i.e., rever-
sals, translocations, fusions, and fissions) and dupli-
cation events required to transform one genome into
the other is minimized. It has been implemented as a
prototype ortholog assignment system, called MSOAR,
and tested on the human and mouse genomes with
very promising results. Our ongoing research attempts
to further improve MSOAR and make it an accurate,
high-throughput ortholog assignment system. How-
ever, many challenges faces us. In particular, our
parsimony approach could benefit from efficient al-
gorithms for several combinatorial optimization prob-
lems, including (i) signed reversal distance with dupli-
cates (SRDD), (ii) signed transposition distance with
duplicates (STDD), and (iii) minimum common sub-
string partition (MCSP). These problems, which will

be defined formally later, are all NP-hard. Efficient and
effective (approximation/heuristic) algorithms for them
will not only be crucial to the success of our ortholog as-
signment system, but may also reveal interesting com-
binatorial structures and new algorithmic design tech-
niques of interest to the general algorithms and compu-
tational biology communities, due to the elegant nature
of the problems and connection to well-known problems
in the literature. In addition, we will consider how to
extend the system MSOAR, which currently works only
for two species, to multiple species.

In the following, we first give a brief introduction
to the ortholog assignment problem and the existing
methods for assigning orthologs in Section 2, and then
describe our new parsimony approach for assigning
orthologs between closely related genomes based on
genome arrangement and show some promising prelimi-
nary experimental results in Section 3. We then present
some algorithmic problems that are critical to the suc-
cess of the parsimony approach and discuss some pos-
sible methods for solving these problems in Section 4.

2 Genome-Wide Assignment of Orthologous
Genes

In evolutionary biology, the term homology refers to
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the sharing of a common ancestor. Thus, homologous
genes (or simply homologs) are those that evolved from
the same ancestral gene. Orthologs and paralogs[1] are
two fundamentally different types of homologs. They
differ in the way that they arose: orthologs are genes
that evolved by speciation, while paralogs are genes that
evolved by duplication. To better describe the evolu-
tionary process and functional diversification of genes,
paralogs are further divided into two subtypes: outpa-
ralogs, which evolved via ancient duplications preced-
ing a given speciation event under consideration (i.e.,
by pre-speciation duplications), and inparalogs, which
evolved more recently via duplications subsequent to
the speciation event[2-3] (i.e., by post-speciation dupli-
cations). For a given set of inparalogs on a genome,
there commonly exists a gene that is the direct descen-
dant of the ancestral gene of the set, namely the one
that best reflects the original location of the ancestral
gene in the ancestral genome. Sankoff[4] named such a
gene the true exemplar of the inparalogous set. Given
two genomes, two sets of inparalogous genes (one from
each genome) are said to be co-orthologous if they are
descendants of the same ancestral gene at the time of
speciation. For two co-orthologous sets of inparalogous
genes, the main ortholog pair is defined as the two true
exemplar genes of each set. These concepts are illus-
trated in Fig.1.

Fig.1. Illustration of orthologous and paralogous relationships.

After two speciation events and two gene duplications, three

present genomes, G1 = (A1), G2 = (B1, C1) and G3 =

(B2, C2, C3) are formed. In this scenario, all genes in G2 and

G3 are co-orthologous to gene A1. Genes B1 and C1 are out-

paralogs with respect to G3 (i.e., the 2nd speciation), and are

inparalogs with respect to G1 (i.e., the 1st speciation). Gene

C2 is the direct descendant (i.e., true exemplar) of the ancestral

gene C while C3 is not, assuming that C3 is duplicated from C2.

Genes C1 and C2 form a pair of main orthologs, so do B1 and

B2.

Clearly, orthologs are evolutionary and, typically,
functional counterparts in different species. Therefore,

many existing computational methods for solving
various biological problems, e.g., the inference of func-
tions of new genes, analysis of phylogenetic relationship
between different species, and comparative inference of
biological pathways, use orthologs in a critical way. A
major complication with the use of orthologs in these
methods, however, is that orthology is generally not
a one-to-one relationship because a single gene in one
phylogenetic lineage may correspond to a whole family
of inparalogs in another lineage, as illustrated in Fig.1.
In practice, much caution should be taken while such
one-to-many and many-to-many relationships are ap-
plied to the transfer of functional assignments between
homologous genes because some inparalogs could have
acquired new functions during the course of evolution.
As a consequence, the identification of orthologs and in-
paralogs, especially the one-to-one relationship between
main orthologs, is critical for evolutionary and func-
tional genomics, and thus a fundamental problem in
computational biology and genomics. Note that, main
orthologs are more likely to be functional counterparts
in different species, since they are both evolutionary
and positional counterparts.

It follows from the definition of orthology and para-
logy that the best way to identify orthologs is to mea-
sure the divergence time between homologous genes in
two different genomes. As the divergence time could be
estimated by comparing the DNA or protein sequences
of genes, most of the existing algorithms for ortholog
assignment, such as the well-known COG system[5-6]

and INPARANOID program[3], rely mainly on sequence
similarity (usually measured via BLAST scores[7]). An
implicit, but often questionable, assumption behind
these methods is that the evolutionary rates of all genes
in a homologous family are equal. Incorrect ortholog
assignments might be obtained if the real rates of evo-
lution vary significantly between paralogs. On the other
hand, we observe that molecular evolution proceeds in
two different forms: local mutation and global rear-
rangement. Local mutations include base substitution,
insertion and deletion, and global (genome) rearrange-
ments include reversal, transposition, translocation, fu-
sion, fission, and so on. Apparently, the sequence
similarity-based methods for ortholog assignment make
use of local mutations only and neglect genome rear-
rangement events that might contain valuable informa-
tion. A more detailed account of recent work on or-
tholog assignment is given at the end of this section.

In our recent papers[8-11], we introduced a new ap-
proach for ortholog assignment between two closely re-
lated genomes that takes advantage of evolutionary evi-
dence from both local mutations and global genome
rearrangements. It begins by identifying homologous
gene families on each genome and the correspondence
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between families on both genomes using sequence simi-
larity (i.e., BLAST) search. The homologs are then
treated as copies of the same genes, and ortholog as-
signment is formulated as a natural combinatorial op-
timization problem of rearranging one genome consist-
ing of a sequence of (possibly duplicated) genes into
the other with the minimum number of rearrangement
events, where the most parsimonious rearrangement
process should suggest (main) orthologous gene pairs
in a straightforward way. Spurious assignments of in-
paralog are then detected by using a post-processing
procedure (called “noise” gene pair detection). A high-
throughput system, called MSOAR, was implemented
based on this approach. Our preliminary experiments
on simulated and real data demonstrate that MSOAR
outperforms or is at least comparable to other popular
ortholog assignment methods such as Exemplar[4] and
INPARANOID[3].

2.1 Existing Ortholog Assignment Methods
and Related Work

In the past decade, many computational methods
for ortholog assignment have been proposed, most
of which are based primarily on sequence similarity.
These methods include the COG system[5-6], EGO
(previously called TOGA)[12], INPARANOID[3], and
OrthoMCL[13], just to name a few. Some of these
methods combine sequence similarity and a parsimony
principle, such as the reconciled tree method[14] and
the bootstrap tree method[15], or make use of synteny
information, such as OrthoParaMap[16] and the recent
method proposed by Zheng et al.[17]. However, none
of these methods use genome rearrangement. See [18]
for a recent review on bioinformatics tools for ortholog
assignment.

On the other hand, there have been a few papers
in the literature that study rearrangement between
genomes with duplicated genes, which is closely re-
lated to ortholog assignment. Sankoff[4] proposed an
approach to identifying the true exemplar gene of a gene
family, by minimizing the breakpoint/reversal distance

between two reduced genomes that consist of only true
exemplar genes. El-Mabrouk[19] developed an approach
to reconstructing the ancestor of a modern genome by
minimizing the number of duplication transpositions
and reversals. The work in [20-21] proposed methods
that attempt to find one-to-one gene correspondence
between gene families based on conserved segments.
Very recently, Swenson et al.[22] presented some algo-
rithmic results on the cycle splitting problem in a com-
binatorial framework similar to the one introduced in
[8-10].

3 Parsimony Approach to Ortholog
Assignment via Genome Rearrangement

Here, we give more details of the parsimony ap-
proach that we recently introduced in [8-10] for as-
signing orthologs between two closely related genomes.
Suppose that the two genomes to be compared, de-
noted as Π and Γ , have undergone a series of genome
rearrangement and gene duplication events since they
split from their last common ancestral genome. Clearly,
we could easily identify the main orthologs and inpar-
alogs if given such an evolutionary scenario. Based on
this observation and the parsimony principle, ortholog
assignment was posed as the problem of reconstruct-
ing an evolutionary scenario incurring the minimum
number of rearrangement and duplication events in [8-
10]. Equivalently, it can be formulated as a problem of
finding a most parsimonious transformation from one
genome into the other by genome rearrangements and
gene duplications, without explicitly inferring their an-
cestral genome. Let R(Π ,Γ ) and D(Π ,Γ ) denote the
number of rearrangement events and the number of
gene duplications in a most parsimonious transforma-
tion, respectively, and RD(Π ,Γ ) denotes the rearrange-
ment/duplication (RD) distance between Π and Γ sa-
tisfying RD(Π ,Γ ) = R(Π ,Γ ) + D(Π ,Γ ). The genome
rearrangement events considered in [8-10] include re-
versals, translocations, fissions, and fusions. Transpo-
sitions will also be considered in this proposed research.

Fig.2 presents a simple example to illustrate the ba-
sic idea behind our parsimony approach. Consider two

Fig.2. Evolutionary history of two genomes Π and Γ since the splitting from their ancestral genome. Π evolved from the ancestor by

one inversion and one gene duplication, and Γ by two duplications.
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(uni-chromosomal) genomes, Π = − b − a1 + c + a2 +
d+a4 +e+f +g and Γ = + a1 +b+c+a2 +d+e+a5 +
f +a3 + g, sharing a gene family a with multiple copies
and several “singleton” families. As shown in Fig.2,
both genomes evolved from the same ancestral genome
+a+b+c+d+e+f+g, Π by an inversion and a gene du-
plication and Γ by two gene duplications, respectively.
By computing the rearrangement/duplication distance
RD(Π ,Γ ) = 4, the true evolutionary scenario can be
reconstructed, which then suggests that the two genes
a1 form a pair of main orthologs, as well as the two
genes a2. Meanwhile, a3, a4, and a5 are inferred as in-
paralogs that were derived from duplications after the
speciation event. It is interesting to see that here a4

is not assigned orthology to a3 or a5 greedily.① This
simple example illustrates that, by minimizing the re-
arrangement/duplication distance, our approach is able
to pick correct main orthologs out of sets of inparalogs.

Fig.3. The most parsimonious transformation using three rever-

sals.

When we have two unichromosomal genomes of
equal gene content (i.e., each gene family has the same
number of members in both genomes) and all dupli-
cation events occurred before the speciation, the evo-
lutionary process after speciation only involves rever-
sals and thus the above problem reduces to finding a
transformation with the minimum number of reversals

(namely, sorting by reversals[23]). The following exam-
ple illustrates how in this (simpler) case we can as-
sign orthologs via sorting by reversals. Consider two
genomes, G = + c− b + a + b and H = + a− b− b− c,
consisting of four genes and one multi-gene family each.
Fig.3 shows the parsimonious transformation from G
into H using three reversals. In this transformation,
the first (or second) copy of gene b in G is found to
correspond to the first (or second, respectively) gene b
in H, indicating that they might be a pair of main or-
thologs.

The parsimony approach for ortholog assignment has
been implemented as a prototype high-throughput sys-
tem, called MSOAR[10-11].② An outline of MSOAR is
depicted in Fig.4. After defining gene families by ho-
mology search, the system employs a 4-step heuristic
algorithm to estimate the rearrangement/duplication
distance between the two input genomes, which can be
used to reconstruct a most (or nearly most) parsimo-
nious evolutionary scenario. The first three steps of
the heuristic try to find a transformation between the
two genomes with the minimum number of rearrange-
ments, matching as many homologous genes as possi-
ble. It then uses a post-processing step (the 4th step)
to detect assigned gene pairs whose deletion (or uncou-
pling) would decrease the rearrangement distance by at
least two.③ Such gene pairs are more likely to consist of
inparalogs caused by post-speciation duplications than
main orthologs and referred to as “noise” gene pairs.

We have tested MSOAR extensively on both simu-
lated and real genomic data in [8-11]. The simulation
results show that MSOAR performs equally well as an
iterated version of the Exemplar algorithm of Sankoff[4]

in terms of detecting inparalogs and outperforms it sig-
nificantly in terms of identifying main ortholog pairs,
although the way that the genomic data was simulated
is a bit simplistic. So, we focus on the test results on
the human and mouse genomes below. The human
genome contains 20 181 protein-coding genes and the
mouse contains 17 858 protein-coding genes. As shown
in Table 1, before removing “noise” gene pairs, MSOAR

Fig.4. An outline of MSOAR.

①They are orthologs, but not main orthologs, by definition.
②The system has been recently updated with a new function to explicitly treat tandemly duplicated genes[24].
③Note that, in this case, the overall rearrangement/duplication distance will not increase since the deletion of a gene pair may

only increase the number of duplications required in an optimal scenario by two.
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assigned 13 395 main orthologs pairs. Then MSOAR
removed 177 “noise”gene pairs and output 13 218 main
orthologs pairs. The detailed result can be found at
website http://msoar.cs.ucr.edu/.

We have validated MSOAR’s assignment by using
gene annotation, in particular, gene names extracted
from UniProt[25] release 6.0 (September 2005). The to-
tal number of assignable pairs of orthologs, i.e., pairs
of genes with identical (known) names, between human
and mouse is 9891. Among the 13 218 (main) ortholog
pairs that MSOAR predicted, 9214 are true positives,
2126 involve unknown genes, and 1978 are false po-
sitives, resulting in a sensitivity of 93.16% and a speci-
ficity of 83.07%.

The detailed comparison result between MSOAR
and INPARANOID[3] is shown in Table 1. MSOAR
was able to identify 99 more true ortholog pairs than
INPARANOID, although it also reported more false po-
sitives. Fig.5 illustrates two examples where INPARA-
NOID failed to assign main ortholog pairs correctly be-
cause the two genes in each pair are not bidirectional

best hits of each other, but MSOAR successfully re-
solved them.

The HGNC Comparison of Orthology Predictions
(HCOP)[26] is a tool maintained by HUGO Gene
Nomenclature Committee that integrates and displays
the human-mouse orthology assertions made by six
methods including Ensembl, Homologene, INPARA-
NOID, PhIGS, MGD and HGNC, some of which involve
human expert curation. The following Fig.6 illustrates
that the main ortholog pairs predicted by MSOAR are
supported by most of these methods.

We have also validated MSOAR’s assignment by
considering protein functions as defined in the Panther
database of Applied Biosystems[27]. Among the 13 218
ortholog pairs assigned by MSOAR, 10 800 pairs have
both orthologous genes in the same protein subfamily.
Finally, MSOAR’s result is quite consistent with Jack-
son Lab’s human-mouse ortholog database[28]; 9603 of
the ortholog pairs predicted by MSOAR can be found
in Jackson Lab’s human-mouse ortholog database.

Table 1. Comparison of Ortholog Assignments Between MSOAR and INPARANOID

Assignable Orthologs Assigned True Positive Unknown Pairs

MSOAR (before removing “noise” pairs) 9 891 13 395 9 263 2 177

MSOAR (after removing “noise” pairs) 9 891 13 218 9 214 2 126

INPARANOID 9 891 12 758 9 115 2 034

Fig.5. (a) Assigned orthologs on segment (26 099 194 bp ∼ 26 981 180 bp) of human chromosome 1 and the corresponding segment

of mouse chromosome 4 (132 951 085 bp ∼ 133 745 914 bp), where MSOAR correctly identified mouse orthologs of genes PDIK1L and

RPS6KA1 which were missed by INPARANOID. (b) Segment of the human chromosome 5 (145 296 334 bp ∼ 147 574 892 bp) and the

corresponding segment in mouse chromosome 18 (42 179 639 bp ∼ 44 208 941 bp), where MSOAR identified orthologs of PPP2R2B and

STK32A which were missed by INPARANOID.
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Fig.6. Consistency with the six methods on HCOP.

4 Some Key Algorithmic Problems

The experimental and comparison results in the last
section demonstrate that:

1) The parsimony approach for ortholog assignment
is very promising because it takes into account not only
the sequence information of the genes, but also their
positional information on the genomes. This advan-
tage will become more apparent when more complete
genomes are sequenced and annotated. The program
MSOAR is very competitive to the existing methods
for ortholog assignment, including those that involve
human expert curation.

2) Genome-wide ortholog assignment still remains
as a very challenging problem. For example, none of
the methods listed on the HCOP website seem to yield
dominant assignment results.

Hence, there is need and a large room to improve
the performance of MSOAR.

In this section, we present a few key combinato-
rial optimization problems that are critical to the suc-
cess of MSOAR and discuss possible ways of solving
them. The problems include (i) signed reversal dis-
tance with duplicates (SRDD), (ii) signed transposi-
tion distance with duplicates (STDD), and (iii) mini-
mum common substring partition (MCSP). Recall that
MSOAR is based on the estimation of the RD (i.e., rear-
rangement/duplication) distance between the two input
genomes, which is done in the 2nd stage of the program
as shown in Fig.4, and the crux of this estimation is
an efficient algorithm for calculating the rearrangement
distance between two genomes with equal gene content,
as shown in the first 3 steps in this stage. By using
the technique introduced in [29-30], the chromosomes
in two multichromosomal genomes can be appropriately
concatenated so that the rearrangement events (i.e., re-
versal, translocation, fission, and fusion) in an optimal

transformation between the genomes can all be thought
of as reversals in the concatenated (unichromosomal)
genomes. In other words, solving the rearrangement
distance between two multichromosomal genomes is es-
sentially equivalent to solving the reversal distance be-
tween two unichromosomal genomes, namely, the prob-
lem SRDD. The problem STDD considers the event
transposition (including transreversal) in addition to
reversal and is a straightforward extension of SRDD. It
will be useful when we try to incorporate transposition
into the parsimony approach. In the current version
of MSOAR, the event transposition is simply ignored
since it occurs less frequently than the other rearrange-
ment events in evolution and is harder to deal with
than reversal algorithmically. The problem MCSP is
used in MSOAR as a preprocessing step for solving the
SRDD problem and expected to help reduce the mul-
tiplicity in the instance (i.e., the maximum number of
duplicates of any gene in each genome). Such a reduc-
tion is very important because it could help the next
step of MSOAR (i.e., the 3rd step of stage 2) tremen-
dously which uses the algorithmic framework given in
[23, 29-31] for computing the reversal distance between
permutations without duplicates.

These problems are all NP-hard, so we will mostly
be interested in efficient approximation and heuristic
algorithms for them, although certain special cases and
variants implied by practical constraints will be con-
sidered too. The problems will be defined formally in
separate subsections below. In addition, we will discuss
how to extend MSOAR to deal with multiple species.

4.1 Signed Reversal Distance with Duplicates

From now on, a (unichromosomal) genome is repre-
sented as a string of signed symbols from a finite alpha-
bet A, where each sign (+ or −) represents a transcrip-
tional orientation and a symbol denotes a gene. All the
occurrences of a symbol in a genome constitute a gene
family. A gene is called a singleton if it is the only
member of its family; otherwise, it is a duplicated gene.
Two genomes G and H are related if they have the same
gene content, i.e., an equal number of gene families and
an equal size of each family.

A reversal operation ρ(i, j) transforms a genome
G = (g1 · · · gi−1gigi+1 · · · gj−1gjgj+1 · · · gn) into an-
other genome G · ρ(i, j) = (g1 · · · gi−1 − gj − gj−1 · · · −
gi+1− gigj+1 · · · gn), where −gi means the gene gi with
an opposite orientation. Given two related genomes
G and H, the signed reversal distance with duplicates
(SRDD) problem is to find the smallest number of re-
versals ρ1, ρ2, · · · , ρr such that G · ρ1 · ρ2 · · · ρr = H.
The signed reversal distance between G and H is thus
d(G,H) = r. We note in passing that the unsigned
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version of SRDD has been studied in [32], where some
complexity results and upper/lower bounds are ob-
tained.

If all the genes in G and H are singletons, the signed
reversal distance problem is usually referred to as the
problem of sorting signed permutations by reversals or
simply, sorting by reversals (SBR), and the distance can
be calculated by the well-known Hannenhalli-Pevzner
formula[23]:

d(G,H) = b(G,H)− c(G,H) + h(G,H) + f(G,H)

where b(G,H) is the number of black edges (each repre-
senting a breakpoint) in the breakpoint graph for G and
H, c(G,H) the number of cycles in a maximum cy-
cle decomposition, h(G,H) the number of hurdles, and
f(G,H) the number of fortresses, respectively. (The
reader is referred to [23] for the definitions of break-
point graph, black edges, hurdles, and fortresses.) The
basic idea behind this seminal work is to view one of
the input permutations as the identity permutation and
represent the other permutation as a breakpoint graph
whose edges are bi-colored. The reversal distance be-
tween the two permutations can then be calculated by
decomposing the breakpoint graph into a maximum
number of edge-disjoint cycles with alternating colors
and counting the numbers of breakpoints, cycles, and
hurdles, as well as checking the existence of a fortress.
The best running time for transforming a permutation
into the other with the minimum number of reversals is
quadratic[33], although the signed reversal distance can
be computed in linear time[34].

When the genomes G and H contain duplicated
genes, however, the signed reversal distance prob-
lem, i.e., SRDD, cannot be directly solved by the
Hannenhalli-Pevzner method anymore. In fact, SRDD
has been shown NP-hard in [9] (also, independently
in [35]) by a reduction from the NP-hardness of sort-
ing unsigned permutations by reversals[36-37]. The NP-
hardness holds even if the maximum size of a gene
family is limited to two. Nevertheless, as mentioned
above, it will be of tremendous interest to design an ef-
ficient and effective algorithm for SRDD. Below, we de-
scribe a lower bound on SRDD using a graphical struc-
ture similar to the breakpoint graph, which will be use-
ful for constructing efficient approximation algorithms
for SRDD.

Following the notations in [19, 32], we convert a
(signed) genome G = (g1g2 · · · gn) to an unsigned one
by replacing each gene gi with a string gh

i gt
i if gi is pos-

itive or gt
ig

h
i if gi is negative, as it is done in the break-

point graph[23,38]. A partial graph[19] associated with a
genome G = (g1g2 · · · gn) is the graph G(V, E), where
V = {gs

i |1 6 i 6 n, s ∈ {h, t}}, and each (undirected)

edge in E links two nodes in V that correspond to ad-
jacent symbols in the genome G except pairs of gh

i and
gt

i from the same gene gi. Let Ṽ be the set of distinct
symbols in V , where gh

i and gh
j are viewed as the same

symbol if gi and gj are from the same family. Clearly,
the partial graphs of a pair of related genomes have an
identical vertex set V and set Ṽ .

For each pair of elements {ṽ1, ṽ2} ∈ Ṽ , let fG(ṽ1, ṽ2)
denote the number of edges in E that link two nodes in
the partial graph G(V, E) of G with symbols ṽ1 and ṽ2,
respectively. The number of breakpoints between two
related genomes G and H is defined as:

br(G,H) =
∑

{ṽ1,ṽ2}∈Ṽ

δ(fH(ṽ1, ṽ2)− fG(ṽ1, ṽ2))

where δ(x) = x if x > 0 and 0 otherwise[32]. It is easy
to see that br(G,H) = br(H, G), although the above
definition is not explicitly symmetric with respect to
the two genomes. This new definition of breakpoints is
a natural extension to the concept of breakpoints em-
ployed in the Hannenhalli-Pevzner theory for SBR on
signed permutations with no duplicates. By observ-
ing that a reversal operation reduces the number of
breakpoints by at most two, we have a lower bound on
the reversal distance in terms of the number of break-
points (which can easily be calculated from the partial
graphs)[9]:

d(G,H) > dbr(G,H)/2e.
Although the lower bound resembles that in [39],

which was used to obtain a 2-approximation algorithm
for SBR (i.e., an algorithm that sorts the input per-
mutation with at most twice the minimum number
of reversals), at the moment we do not know of any
matching upper bound on SRDD in terms of the num-
ber of breakpoints and probably some other relevant
parameters that can be computed efficiently. Such an
upper bound, if exists, could potentially lead to an effi-
cient approximation algorithm for SRDD. However, we
know that the number of breakpoints alone cannot pro-
vide an upper bound on the reversal distance, since we
can prove that for any α > 0, there exist genomes G,H
such that

d(G,H) > α · br(G,H).

One approach to deriving feasible upper bounds is to
replace breakpoints by something more “global”, e.g.,
the number of pairwise inversions of the elements on
genome G with respect to their positions on genome H.
A greedy-style algorithm can potentially be designed to
reduce the number of pairwise inversions by perform-
ing reversals. However, it is unclear how to lowerbound
the reversal distance or upper bound the performance
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of the greedy algorithm in terms of the number of pair-
wise inversions. It would be interesting to know if this
approach could lead to a good approximation algorithm
for SRDD.

Another method is to define a graphical structure
similar to the breakpoint graph, called the complete-
breakpoint graph[19], and then analyze its cyclic struc-
ture as was done in [23, 38] for SBR. Following the
constructions in [23, 38], we could modify the defi-
nition of a cycle decomposition (by introducing some
constraints) so that it corresponds to a feasible solu-
tion of SRDD[9-10]. It would be interesting to consider
strategies to find a large feasible cycle decomposition
under the new definition and see if they could lead
to a promising approximation algorithm. (Currently,
MSOAR adopts a simple greedy strategy.) Besides the
well-known methods in [23, 33-34, 38], the new decom-
position strategy in [40] will also be consulted.

The third approach to approximating SRDD is based
on the problem of MCSP (to be defined formally in Sub-
section 4.3). Intuitively, given an instance of SRDD,
an algorithm for MCSP could be applied to divide the
genomes into corresponding segments. Since the seg-
ments are likely to be unique in practice, this prepro-
cessing step (as used in MSOAR) could result in a
pair of permutations without any duplicates (i.e., an
instance of SBR) or an instance with few duplicates.
Because SBR has very efficient algorithms, this could
be a very effective solution for SRDD in practice, if the
algorithm for MCSP performs well. In Subsection 4.3,
we will show that in fact, an α-approximation algorithm
for MCSP④ implies a 2α-approximation algorithm for
SRDD with essentially the same running time.

For any constant k > 0, let k-SRDD denote SRDD
restricted to instances with multiplicity bounded by k
(i.e., each gene family has the size of at most k). It
would be interesting to study k-SRDD taking advan-
tage of the bounded multiplicity. Efficient algorithms
for k-SRDD could still be very useful for ortholog as-
signment since there are very few large gene families
in practice. Note that the results in [32, 35] concern
SRDD with a bounded number of gene families (or al-
phabet size) instead and are only of theoretical interest.

4.2 Signed Transposition Distance with
Duplicates

A transposition operation ρ(i, j) transforms a
genome G = (g1 · · · gi−1gi · · · gjgj+1 · · · gkgk+1 · · · gn)
into another genome G · ρ(i, j) = (g1 · · · gi−1gj+1 · · ·
gkgi · · · gjgk+1 · · · gn) or G·ρ(i, j) = (g1 · · · gi−1gj+1 · · · gk−
gj · · · − gigk+1 · · · gn). Note that, the second case is

sometimes referred to as transreversals[41-42] and it in-
cludes reversals. Here, we will call it a transposition for
simplicity. Given two related genomes G and H, the
signed transposition distance with duplicates (STDD)
problem is to find the smallest number of transpositions
ρ1, ρ2, · · · , ρt such that G ·ρ1 ·ρ1 · · · ρt = H. The signed
transposition distance between G and H is defined as
dt(G,H) = t. Similar to k-SRDD, the restricted ver-
sion k-STDD can be defined for instances with bounded
multiplicity. As mentioned before, an efficient solution
to STDD or k-STDD will be crucial for our ortholog
assignment approach if we want to incorporate trans-
positions into our evolutionary model.

When no duplicates are present, STDD becomes the
problem of sorting signed permutations by transposi-
tions or sorting by transpositions (SBT). Although
SBT has been extensively studied in the literature, its
complexity remains open. In fact, the complexity of
its unsigned version is also open. Several approxima-
tion algorithms for SBT have been given (e.g., [41-42]),
with the best approximation ratio being 1.5. These
algorithms are all based on the breakpoint graph struc-
ture originally introduced in [43].

We can show that STDD is NP-hard by modifying
the reduction from 3-partition given in [35] for prov-
ing the NP-hardness of the unsigned version of STDD.
This reduction has to assume unbounded multiplicity
and thus does not work for k-STDD. An interesting
open question is the complexity of k-STDD (for any k)
and if the breakpoint graph structures in [41-43] can be
extended to produce efficient approximation algorithms
STDD and k-STDD.

4.3 Minimum Common Substring Partition

Given a genome G = g1g2 · · · gn, a segment si is a
substring (or its signed reversal) of G. A partition of
G is a list {s1, s2, · · · , sm} of segments of G such that
the concatenation of the segments (or their signed re-
versals) in some order results in G. The list can be
viewed as a contracted representation of G if we con-
sider each segment si as a symbol. A list of segments
is called a common partition of two (related) genomes
G and H if it is a partition of G and a partition of
H as well. Note that the contracted representations of
two related genomes induced by a common partition
are still related to each other. Furthermore, a mini-
mum common partition is a partition with the minimum
cardinality (denoted as L(G,H)) over all possible com-
mon partitions of G and H. For example, for genomes
G = + c + a + b − a + d and H = + c + a − d + a − b,
a minimum common partition is {+ c + a,+ b− a,+ d}

④That is, an algorithm that returns a common substring partition with cardinality at most α times the optimum. The parameter
α is also called the approximation ratio of the algorithm.
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with L(G,H) = 3. The minimum common substring
partition (MCSP) problem is defined as the problem of
finding the minimum common partition between two
given genomes.⑤

MCSP is used in MSOAR as a preprocessing step be-
fore solving SRDD. In fact, MCSP provides very good
upper and lower bounds on SRDD. It is shown in [9]
that for any two genomes G and H,

d(L(G,H)− 1)/2e 6 d(G,H) 6 L(G,H)− 1.

(Actually, in order for these bounds to hold precisely,
we need assume that the first genes of G and H, as well
as the two last genes, are identical and positive single-
tons, which can be easily satisfied in the general case
by padding the strings G and H with dummy sym-
bols.) This relationship suggests a method to appro-
ximate SRDD by MCSP. Unfortunately, MCSP is also
NP-hard[44]. The NP-hardness holds even if the in-
stance is restricted to have multiplicity at most k, i.e.,
an instance of k-MCSP, for any k > 2.

Approximation algorithms for MCSP have been re-
cently investigated in [9, 44-46]. In particular, [9]
presents an approximation algorithm based on a new
graphical structure called pair-match graphs. Given
two related genomes G and H, a single-match is a
pair of identical genes gi and hj from G and H that
may have different signs. A pair-match is a pair of
adjacent gene pairs gigi+1 and hjhj+1 that are iden-
tical or the (signed) reversal of each other. Clearly,
a pair-match consists of two single-matches. Observe
that two pair-matches may not co-exist in a common
partition. Such pair-matches are said to be incompat-
ible. For two related genomes G and H, we can con-
struct a pair-match graph P(V, E), where V consists
of all possible pair-matches between G and H, and E
includes edges connecting incompatible pair-matches.
Then it is not hard to see that MCSP on genomes G
and H is equivalent to the maximum independent set
problem on P(V, E). Since the complement of an in-
dependent set of P(V, E) is a vertex cover of P(V, E),
the algorithm in [9] approximates MCSP by using an
efficient approximation algorithm for the vertex cover
problem, and outputs a common partition of size at
most (r − 1)(|V | − n) + r · L(G,H), where r is the
approximation ratio for vertex cover, |V | the number
of vertices in the pair-match graph, and n the size of
genome G (or H). In particular, for 2-MCSP, the al-
gorithm achieves an approximation ratio of 1.5, since
the pair-match graph P(V, E) is 6-claw-free, |V | 6 n,
and there exists a 1.5-approximation algorithm for ver-
tex cover on 6-claw-free graphs[47]. This algorithm is

currently employed in MSOAR.

More recently, Kolman presented an efficient O(k)-
approximation algorithm for k-MCSP by using the con-
cept of hitting sets and efficient algorithms for suffix
trees and the disjoint set union problem[46,48]. Note
that, this implies an efficient O(k)-approximation al-
gorithm for k-SRDD as well. However, the approxi-
mation ratio of O(k) is clearly unsatisfactory since it
does not even imply a constant ratio approximation for
MCSP (or SRDD, respectively). Moreover, the algo-
rithm seems to perform worse than the above algorithm
based on pair-match graphs and vertex cover when k is
very small, and it may not be very useful in the real or-
tholog assignment practice since the parameter k could
be as large as 100 for Eukaryotic genomes such as hu-
man and mouse.

It would be interesting to know if there is an effi-
cient approximation algorithm for MCSP with a con-
stant approximation ratio (our conjecture is on the po-
sitive side). A plausible starting point would be trying
to improve the analyses in [9, 48] and considering a
hybrid combination of both algorithms (since both try
to preserve common pairs of adjacent genes), but per-
haps some new ideas (e.g., insights into the pair-match
graph) and techniques will be necessary too.

4.4 Comparison of Multiple Genomes

It is also interesting to study the orthology relation-
ship among genes from several species. The simulta-
neous comparison of multiple genomes may help boost
our confidence about true ortholog pairs and reduce
the number of false positives[13]. A natural extension
of the parsimony approach would be, given a set of
genomes (for each species) and a species tree depicting
the evolutionary history of the species, to reconstruct
a genome for each ancestor in the tree so that the to-
tal RD distance between each species and its parent
is minimized. However, this is obviously an NP-hard
problem, and moreover, the existing methods[49-50] for
dealing with multiple genome rearrangement (without
duplicated genes) do not seem to work well here, be-
cause of the presence of duplicates.

One idea is to run MSOAR on each pair of input
genomes and then combine the results consistently into
an ortholog assignment for all input genomes[51]. An-
other idea is to apply the “lifting” method introduced
in [52] for computing multiple sequence alignment un-
der a fixed phylogeny to the multiple genome ortholog
assignment problem. The basic idea is that we will try
to “lift” some input genome to each ancestral species
and then build the whole orthology relationship by

⑤The problem of MCSP was also independently introduced recently in [21], under the name sequence cover.
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computing pairwise ortholog assignment between each
species and its ancestor using MSOAR. As shown in
[52], the question of which genome should be lifted to
each ancestral species can be solved by simple dynamic
programming. Of course, the success of the approach
will rely on the performance and efficiency of MSOAR,
since it generally requires the computation of many
pairwise ortholog assignments.
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