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Abstract

The emergence of high-throughput technologies leads todsnt protein-protein interaction (PPI)
data and microarray gene expression profiles, and providg®at opportunity for the identification
of novel protein complexes using computational methods.c8wybining these two types of data, we
propose a noveGraph Fragmentation Algorithn{GFA) for protein complex identification. Adapted
from a classical max-flow algorithm for finding the (weightetnsest subgraphs, GFA first finds large
(weighted) dense subgraphs in a protein-protein intevactetwork and then breaks each such subgraph
into fragments iteratively by weighting its nodes apprafely in terms of their corresponding log fold
changes in the microarray data, until the fragment subgrapé sufficiently small. Our tests on three
widely used protein-protein interaction datasets and @imspns with several latest methods for protein
complex identification demonstrate the strong performasfceur method in predicting novel protein
complexes in terms of its specificity and efficiency. Giver thigh specificity (or precision) that our
method has achieved, we conjecture that our predictionltseguply more than 200 novel protein

complexes.
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. INTRODUCTION

With the advances in modern biophysics and biochemisthgstbeen widely accepted that the
rise of complicated biological functions is largely duete tooperative effects of multiple genes
and/or gene products. This understanding leads to the emsz@f high-throughput technologies
for identifying interactions between biological molecikend results in the prosperity of interac-
tomics in the post genomics and proteomics era. For examytle the use of yeast two-hybrid
assays [1], [2], [3] and pull-down mass spectrometry expenits [4], [5], genome-wide protein-
protein interactions (PPIs) have been identified and ertaat® global PPl networks for the
model specieSaccharomyces cerevisiéiee., baker’s yeast) [6], [7], [8]. With the improvement
of instruments and increase in the throughput, these téoties have also been applied to
identify interactions of human proteins, providing an eesing understanding of the global
human PPI network [9]. Parallel to the boom of high-throughidentification of PPIs, genome-
wide microarray experiments regarding the expression okegeacross a number of different
conditions have also been conducted and resulted in pyldiailable databases such as the
gene expression omnib{i0].

As a major form of the collaborative effects of two or moretpios, protein complexes play
important roles in the formation of complicated biologifahctions such as the transcription of
DNA, the translation of mMRNAetc Traditionally, protein complexes are identified using &xp
imental techniques such as co-immunoprecipitation andsmspectrometry-based approaches,
or computational methods such as protein-protein dockiaget on protein structures. These
methods, though successful, can hardly meet the requiterhetentifying all protein complexes
in known organisms, due to the large number of proteins tkist @nd the cost of biological
experiments. On the other hand, since in most known casegsptairp complex is composed
of a group of two or more proteins that are associated by estpldtein-protein interactions,
computational methods that can make use of abundant data bivthe above high-throughput
technologies have been demonstrating increasing suct&gq12], [13], [14], [15].

Many studies use PPI data alone for the purpose of idengfyirotein complexes or bio-
logically functional modules. These methods assume thaselg connected components in PPI
networks are likely to form functional modules and hence lika&ly to be protein complexes

[16]. Under this assumption, the methods generally use #resity of interactions as a main
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criterion and identify protein complexes by finding densgiors in PPI networks. To mention a
few, Bader and Hogue [11] proposed a clustering algorithrredaVICODE that isolates dense
regions in a PPI network by weighting each vertex accordmghe topological properties of
its neighborhood. Andreopoulad al. [17] presented a layered clustering algorithm that groups
proteins by the similarity of their direct neighborhoodgir and Mirny [12] applied three
methods i(e., clique enumeration, super paramagnetic clustering, andt®Carlo simulation)
to an older version of the MIPS PPI network for yeast [7] anddpiced about 100 dense
subgraphs that were predicted to be protein complexesr Tégilt was found to be superior
to many others in terms of the specificity. Pei and Zhang [b8joduced a subgraph quality
measure as well as a “seed-refine” algorithm to search fosilplesprotein complexes in a PPI
network. Kinget al. [18] gave a clustering algorithm based on restricted nesgitod search
to partition a PPI network into clusters using some cost tionc Bu et al. [19] introduced a
spectral method derived from graph theory to uncover hiddpnlogical structures that consist
of biologically relevant functional groups. Warej al. [20] incorporated both a global metric
and a local metric to dissect PPl networks. dfi al. [14] found maximal dense regions by
merging local cliqgues according to their affinity. In a suipsent work, Liet al. [15] devised
an algorithm, called DECAFF, to address two major issues ireatl high-throughout PPI data,
namely, incompleteness and high data noise.

Another group of methods combine PPI data and microarray gapression profiles for
the purpose of identifying protein complexes or functiomaddules. For example, Segal al.
combined PPI and microarray data to identify pathways [Zlen and Yuan [22] extended
a betweenness-based patrtition algorithm to partition RFRWorks with weighted edges using
microarray data. Idekeet al. used such a combination to search for regulatory modules and
signalling circuits [23]. Gucet al. [24] identified condition-responsive sub-networks in a PPI
network by weighting its edges based on gene expressionlgsrofihe program MATISSE
presented in [25] combines PPl and microarray data to firmtig¢i€ondition specific functional
modules. The work was recently followed up in [26] with théraauction of another program,
called CEZANNE, that takes advantage of weighted PPI netsvatkose interactions have been
assigned reliable confidence scores.

These methods regard PPIs as static descriptions of that@dite collaborative effects be-

tween proteins and treat gene expression profiles as dynaformation of genes under various
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conditions. Since proteins of a complex usually work togetto complete certain biological
functions, and there exists a simple mapping between gemksha proteins, the combination
of PPl and microarray data could clearly help the discovérgrotein complexes or functional
modules. For the identification of protein complexes, anartgmt question is that to what
extent known complexes exhibit co-expression of their mensibJanseet al. investigated this
problem on yeast [27]. They found that generally, permaentplexes, such as the ribosome
and proteasome, have a particularly strong relationship @xpression, while transient ones do
not. This result has been confirmed by similar work such agda8 [29]. In [28], Simonist al.
found that “stable” complexes such as cytoplasmic ribosamethe proteasome are coherently
up or down-regulated in many different conditions. Howesgerch coherency is detected at some
level in only 71 out of 113 complexes containing at least Sgins. These work generally showed
that the members of some complexes are correlated in thpregsions while the members of
the other complexes are not. Therefore, methods for idemgifprotein complexes that are solely
based on expression profiles may not be very reliable.

Besides these methods, there exist some other methods itnait adentifying protein com-
plexes by using comparative interactomics. For exampleyaiet al. [30] identified protein
complexes by a comparative analysis of the PPI networks fyeast and bacteria. Hirsh and
Sharan [31] developed a probabilistic model for protein plaxes that are conserved across two
species and applied it to yeast and fly. These methods basedroparative analysis require
the availability of quality PPl networks from multiple spes and can only identify protein
complexes conserved in multiple species. See [32], [34], i@ more information about aligning
and comparing multiple PPI networks.

Despite differences in the approach and the use of data, ofidke computational methods
mentioned above define the density of a subgraph as the nushlitsredges over the number
of all possible edges in the subgraph and follow a bottomagall search strategy to find
dense subgraphs. For example etial. [15] first found small dense subgraphs (or components)
in a PPI network and then merged these components gradaafiyrin protein complex-like
subgraphs. Pei and Zhang [13] greedily expanded some tgrséllected seed subgraphs until
a given criterion was met. Because such a local search strategeneral does not return an
optimal solution (with respect to most objective functipnthe above bottom-up methods are

not guaranteed to find the densest subgraphs in the input @Rbrk and therefore may miss
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some important protein complexes that are actually dense.

To overcome this drawback, we adopt a new definition of thesitleof a subgraphif., the
number of edges over the number of nodes in the subgraph)rasdm a top-down method that
utilizes the density information in PPl networks expligitls well as microarray gene expression
profiles to identify protein complexes. Our work combines thassic maximum network flow
basedDensest Subgraph AlgorithfDSA) [35] to find the densest subgraphs with a novel
application of microarray data. Our algorithm, named@maph Fragmentation Algorithr(GFA),
first finds dense subgraphs in a PPI network, many of whichdcpotentially be large, and
breaks each of them into fragments iteratively by weighitsghodes appropriately in terms of
their corresponding log fold changes in the microarray ,datdil the fragment subgraphs are
sufficiently small. An important property of GFA is that it mby utilizes the protein interaction
information so that its performance will not be seriouslieefed by the possible inconsistency
among the expression profiles of the members of a complex.

In order to test the performance of our method, we apply GFfhitee widely used yeast PPI
networks {.e., the MIPS, DIP and BioGRID PPI networks) and compare our ptiedis with
the known protein complexes in the MIPS database as well tsthose of the latest methods
for protein complex identification (that are not based on parative analysis) given in [23],
[11], [36], [25], [37], [15], [26]. The test results clearjemonstrate the superior performance
of our method in predicting novel protein complexes in temhspecificity and efficiency (to
be defined below). For example, GFA could be tuned to achietgl specificity of 81%
while maintaining its sensitivity at 71% on the DIP PPI netkvaOur method also provides a
ranking of the predicted complexes, taking advantage ofrtbkiple conditions (or samples) in
the microarray expression data. Predicted complexes vigtheh ranks are supported by more
samples and thus have larger likelihoods to be true protaimpéexes. Moreover, our predictions
result in more than 200 highly ranked dense subgraphs tlae dittle common proteins with

the known complexes in MIPS and are thus likely to be novetgimocomplexes.

[I. MATERIALS AND METHODS
A. Data sources
Three PPI datasets concerniSgccharomyces cerevisidee., baker's yeast) are used. The

first one is the MIPS protein-protein interaction network hich contains manually compiled
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interactions from the literature and published largees@dperiments. This dataset will simply
be denoted as MIPS-PPI. The second one is the DIP protetaiprimteraction network [6],
denoted as DIP-PPI. The third one is BioGRID protein-proteteraction network [8], which
is the most comprehensive one and will be denoted as BioGRID-Rf file names, which
contains the download dates or release numbers, of the taeesets are PP18052006.tab,
Scere20081014.txt and BIOGRIBPI 2.0.35 for MIPS, DIP and BioGRID-PPI, respectively.
Because a PPI network is treated as an undirected simple,gaapiost one edge will be kept
between any pair of proteins. The numbers of nodes (or edigelse MIPS, DIP and BioGRID
PPI networks are 4,554 (or 12,319), 4,947 (or 17,257) an@15(8r 71,044), respectively.

We retrieved 51 sets of microarray gene expression dataecoing yeast from the GEO
database [10] where the log fold changes of expressionslewel provided. Each dataset contains
multiple samples (or conditions). Totally, 824 samples @uatained in the 51 datasets. Since
the genes expressed in each sample are different and thielyadea be different from the genes
contained in a PPI network, we will use a sample of the micegadata on a PPI network
if it covers at least 90% of the genes in the network under idenation. For genes that have
no expression data in a certain sample, we treat their (kngstormed) expression values as 0.
Finally, we chose (randomly) 500, 600, and 700 samples topipéeal on the MIPS, DIP, and
BioGRID PPI networks, respectively.

As in previous studies [11], [12], [14], [15], the MIPS corapldatabase [7] is used as the
benchmark i(e., the truth) to evaluate the protein complexes predicted tnynoethod.! This
database contains protein complexes verified manually losktidentified by high throughput
experiments. We use the manually verified complexes as thehbeark, denoted as MIPS-
MAN. Furthermore, our algorithm GFA only outputs connecsedbgraphs, but many complexes
in MIPS-MAN are not connected in the above PPI networks. Taluate our results more
reasonably, we decompose each MIPS complex into connectedanents according to the PPI
network under study. We will use MIPS-MAN-COMP to denote tkésf connected complex
components obtained from MIPS-MAN. Finally, since GFA niifocuses on complexes form-

ing dense subgraphs in the PPI networks, it does not outpgraphs consisting of a single node

Note that since MIPS complexes are not extracted (computationally) KtRS-PPI and vise versa, they could serve as a

valid benchmark for predicting complexes from MIPS-PPI.
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or edge (because they are trivial). Therefore, all comgetecomplex components with sizes
1 or 2 are removed from MIPS-MAN-COMP. Note that the actualtenhof the benchmark
MIPS-MAN-COMP depends on the underlying PPI network usece $ize of MIPS-MAN-
COMP is defined as the number of complexes or complex compemerthe benchmark. On
the MIPS, DIP and BioGRID PPI networks, the sizes of MIPS-MANNI®are 100, 114 and
134, respectively? The numbers of complexes and complex components with sizegea?0,
30 and 40 are 0, 1 and 2 in the three MIPS-MAN-COMP benchmarksegmonding to the
MIPS, DIP and BioGRID PPI networks, respectively. Besides MNPAN and MIPS-MAN-
COMP, we will also use the biological process and macroméde@omplex categories in Gene
Ontology (GO) [38] as benchmarks for additional comparssatith the programs CODEC [37]
and CEZANNE [26]. MIPS-MAN and these last two benchmarks fréi®@ were used in [26]

to compare methods for finding functional modules in PPI oeks.

B. An outline of GFA

A PPI network is considered as an undirected simple graplereveach node represents a
protein, and each edge represents an interaction betweemadades. A common strategy for
discovering protein complexes from a given PPl network isdéarch for dense subgraphs in
the network. Many methods based on such a strategy have lbepaspd in the literature as
reviewed in Section I. The density of a subgraph could be défin several ways. A widely
used definition of density i8 =2 - |E|/(|V]- (|V| —1)) [11], [12], whereE and V" denote the
sets of edges and nodes in the subgraph, respectively. Apnogeerty of this definition is that
d is in [0, 1]. Another possible definition i8 = |E|/|V|. Both definitions are sensitive to the
size {.e., the number of nodes) of a subgraph. It is easy to see thatrdtedéfinition favors
small subgraphs, as demonstrated in [12], while the secaedavors large subgraphs. In fact,
when the first definition is applied, we have to add a lower lboan |V'| to make the result
interesting. We will use the latter definition of density imst work, since there is an elegant
algorithm to find the densest subgraph under this defini@ur. experimental results will also
demonstrate that this definition of density works very welfinding protein complexes.

Theoretically, the problem of finding a subgraph with theagest density in a graph under
’These three datasets are provided as online supplementary material.
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the first definition is much harder than that under the secaored ®he problem under the first
definition is basically equivalent to finding the largestgak in a graph, a classical NP-hard
problem in theoretical computer science [39]. Howeverdhsg an elegant and fast algorithm to
solve the problem under the second density definition. Tigsrithm, simply denoted as DSA
(i.e., the Densest Subgraph Algorithnfinds a densest subgraph in a graph by iteratively solving
a series of maximum flow problems and has the time complefi9 (@F| - |V|-log(|V|*/|E|))
[35]. Although DSA can be iterated to find many dense subgraph PPI network, this approach
(alone) will likely not work very well in terms of finding pretn complex-like subgraphs, since it
tends to find large dense subgraphs while protein compleressaally smalli(e., containing no
more than 20 proteins). Nevertheless, DSA will form the daggedient of our algorithm GFA
for finding protein complexes. GFA actually uses a genezdlizersion of the second density
definition: 0 = |E|/w(V'), where we assume that the nodes in the graph are weighigdusing
the log fold changes in some sample of microarray data)wafid) denotes the total weight of
the nodes in the subgraph. The algorithm DSA mentioned abl®eeworks for this generalized
definition.

GFA consists of two phases: (1) identify candidate subggdimm the input PPl network using
a single sample of gene expression data, and (2) combinadea@dsubgraphs from multiple
samples to form a ranked list of predicted protein compleXé® basic idea behind the first
phase is to iterate DSA to obtain (large) dense subgraphstlaard break each large dense
subgraph into fragment subgraphs by weighting its nodesogpiately using the log fold changes
of the nodes in the sample. This phase is executed on eachHesaeyarately. In the second
phase, we have to detect and remove redundant (or overtgpgibgraphs found using different
samples and rank the subgraphs according to the times #atate found in all samples. The
worst case time complexity of GFA, largely determined by tinge complexity of phase 1, is
O(|E| - |[V]? - log(|V|*/| E]) - MaxIter - SampleSize * where the parameteMaxiter limits the
number of times that DSA will be iterated to output a singleske subgraph, an8ampleSize

is the number of samples of the microarray data used in thepatation.

3Note that when each sample is used, at mibs$tdense subgraphs could be extracted by GFA. Thus, GFA may iterate DSA

|V] times on a sample. Clearly, this is a highly conservative estimation of the timplerity of GFA.
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C. Identification of candidate subgraphs

Recall that the gene expression data contains several ldusdreples. This phase (phase 1)
focuses on one sample at a time. For each fixed sample, weedthetog fold change of the
expression level of gend in the sample asxzpr(A). As mentioned above, the idea of this
phase is to find potentially large dense subgraphs using D&Atlzen break each large dense
subgraph into smaller ones by weighting its nodes apprgbyiaising their corresponding gene
expression level information. At the beginning, the nodethe input PPI network with degree 1
are removed iteratively. (On the MIPS, DIP and BioGRID PPI reeks, 35.5%, 25.5% and 8.3%
nodes are removed, respectively.) This step reduces theosithe network and will not affect
our final result much because a dense subgraph is not expgectedtain nodes with degree 1.
Then we weight every node uniformly dsand run DSA to find a densest subgraph. If the size of
the found subgraph is above a certain threshold (denotéthaSizg, the weight of each nodé
in the subgraph is multiplied by a factor ef**"(4) and DSA is applied again to the subgraph.
The effect of this multiplication is that the weights of higlexpressed genes in the subgraph are
reduced more than those of lowly expressed genes beeat@e) is a decreasing function.
The exponential factor of °*"(4) in this adjustment was chosen empirically. Note that since
DSA maximizes the ratioE|/w(V), it tends now to find a subgraph with nodes bearing small
weights. In other words, the above weighting adjustmenriegenes that are highly expressed
in the sample? As an effect, some nodes with large weights may be removedrengubgraph
is fragmented. This step is executed iteratively, untih&ita given maximum iteration count
(denoted adviaxlter) is reached or the size of the subgraph is beMaxSize

Once a sufficiently small dense subgraph is found, all theegad the subgraph and all the
edges adjacent to any one of the nodes in the subgraph argedritom the PPl network. Then,
we remove all the nodes with degree 1 in the remaining netwadkreiterate the above process

of using DSA to find the next sufficiently small dense subgrafite whole process ends when

“Note that here we do not use the absolute valuexgi-(A) in the multiplying factor because otherwise genes that are more
highly expressed than their normal expression levels would be treatee isathe way as those that are less expressed than
their normal expression levels, and thus such genes could be mixettidoge an output subgraph. We think that subgraphs
that contain genes whose expression levels change in significantlyedifferays are unlikely real protein complexes. In fact,
we tested the option of using the absolute valuexgir(A) in GFA on a few datasets and found that it always resulted in a

slightly worse performance.
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the PPI network exhausts. Note that although this step of @iArs highly expressed genes
when it has to break a large dense subgraph returned by D®Asmaller subgraphs, it may
very well identify many candidate dense subgraphs congisif genes with arbitrary expression

levels that are not very large (and thus do not have to be hrake.

D. Combining candidate subgraphs

The above phase 1 of GFA generates a set of candidate subdi@pbach sample of the
microarray data. When all the candidate subgraphs from alséimples are considered, many of
them are duplicated or similar. This phase (phase 2) remdupBcated and similar candidate
subgraphs and assigns a rank for each dense subgraph tla@seMore specifically, duplicates
and trivial subgraphs with sizes 1 or 2 are removed and similagraphs are merged. However,
because of the drastic difference in the densities of theetlP| networks considered in this
paper, we have to use two different strategies in this ph&fseuse a simple strategy for MIPS-
PPl and DIP-PPI, and a more general (and slightly more caaueld) strategy for BioGRID-PPI,
because the last network is much denser. We definevwbdap scorebetween two subgrapA
and B as

overlap(A, B) = |[AN B|*/(|A] - | B]).

where|A| is the size of the vertex set of subgraghand A N B is the intersection of the two
vertex sets of subgrapA and B. This overlap score was used in [11], [13], [15]. It is adabte
here to formally describe the similarity between two subbsa Clearly, the score lies between
0 (if |ANnB| =0) and 1 (if A = B). More importantly, it tends to be small whenevet]| is
very different from|B|.

1) The simple strategyThe simple strategy simply counts the frequenoy, how many
duplicates, of each candidate subgraph and ranks the giitsgbg their frequencies. A subgraph
with a high frequency is expected to be a promising protempmlex (or complex component),
since it is dense and many of its nodes are highly expressedultiple samples. After the
frequency of each candidate subgraph is calculated, wekéhieeo candidate subgraphs overlap.
If the overlap score between two graphs is above a certaoffcdenoted asMaxOverlap they
are deemed duplicates and the one with a smaller frequensymigly removed. If the two

subgraphs have the same frequency, we arbitrarily remogeobthem.
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As shown in our experimental results, this simple strategyk& very well on MIPS-PPI and
DIP-PPI, mainly due to the sparsity of these networks. FoOGBRtD-PPI which is much denser,
however, the simple strategy does not perform as well asgarse networks. This is mainly
due to the fact that a dense network such as BioGRID-PPI uscalitains a large number of
dense subgraphs and the sizes of dense subgraphs tend tgddola Consequently, a large
number of microarray samples are needed in order to makeeljedncies of dense subgraphs
sufficiently high. Therefore, when a limited number of man@y samples are available, the
simple strategy could become too conservative since it colnts subgraphs that repeat exactly
in all the candidate subgraphs.

2) The more general strategyAs mentioned in the last section, the simple strategy could
become too conservative on large dense PPI networks sucho@RHB)-PPI. Moreover, when
the input PPI network is dense, DSA becomes so slow that wenoagfford to examine every
sample of the microarray data. Hence, in this case, we neeaVige the definition of frequency
and introduce a more general strategy to combine results fliferent samples. Our basic idea
here is to merge similar candidate subgrapies, (subgraphs whose overlap scores exceed a
certain threshold). Three parameters will be used in thisegd strategy.

The first one is thesliding window ratio (denoted asy). This parameter determines the
maximum size difference between two subgraphs that will desiclered for similarity. Only
subgraphs whose sizes differ by less than a factot a¥ill be compared for similarity. The
second one is the parametdinFrequency(denoted as’), where the frequency of a subgraph
is now defined as the number of candidate subgraphs founceirfirgt phase of GFA (on all
samples) that are identical or similar to the subgraph oty itself). In other words, it describes
the number of samples from which the subgraph is extractegicfly or approximately). The
definition of similarity is given in step 1 of Algorithm 2. Thiparameter gives a lower bound
on the number of mutually similar subgraphs to be merged im fa putative protein complex
in the final result. The third one is theupport ratio(denoted asy). When a group of similar
subgraphs are merged, a node will appear in the final resudtdograph if it appears in at least
~ fraction of the similar subgraphs in the group. Algorithmarid 2 below give more details of
the merge process.

In Algorithm 1, sliding windows are determined and Algonith2 is called on each sliding

window. Algorithm 2 calculates the overlap scores of eveayr pf candidate subgraphs in the
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Algorithm 1 MergeSubgraphsMain
1: Let U be the max size of all the candidate subgraphs.

2: for ¢ = U + 1 down to 4do

3 Ui

4 l—u—1—|a-ul.

5. MergeSubgraphs( [).

6: end for

7. Delete each merged subgraph that overlaps with anothereshargbgraph by a score greater

than the given cutofMaxOverlap

Algorithm 2 MergeSubgraphs( /)
1. Create a similarity grapl’. Each node inz corresponds to a subgraph with size in range

[[,u). There is an edge between nodésand B if and only if the two subgraphé&/ 4, and
Gp represented byl and B are similar,i.e., overlap(G4,Gg) > q-q/(l- (u — 1)), where
g=1—|a-1].

2: Decompose= into disjoint cliques by repeatedly finding and removing ma cliques in
G.

3: For each cliqu&”, suppose that the set of subgraphs correspondingiso{S;, Ss, ..., S}
If m > 3, create a new subgraph as follows: an element (protein) is containedSnif
and only if it appears in at least- m of the m subgraphsSi, Ss, ..., Sp,.

4: Remove all the candidate subgraphs that have been merged.

sliding window and merges each grouge( clique) of subgraphs that are mutually similar if the
group is large enough. Each candidate subgraph being mergechoved so that every subgraph
is merged once in the whole process.

The sliding window size: — I = |« - u] increases with the size of candidate subgraphs that
are processed. We may interpret the parameter Algorithm 2 as the minimum number of
nodes and edges in a common component among a group of ssubigraphs. When = 0
and~ = 1, this general strategy degenerates to the simple strategy.

In the second step of Algorithm 2, a clique with a larger siser&sponds to a larger group

of dense subgraphs that are going to be merged. Becauseediffd&nse subgraphs in a clique
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corresponds to different microarray data samples, a chgtle a larger size leads to a merged
subgraph (as defined at step 3 of Algorithm 2) that is morelestabross different conditions
(samples) so as to more likely be a true protein complex. Mewesearching for the maximum
clique in the similarity grapiG may be infeasible when many samples of the microarray data
are combined, becausgé could be very large and dense in this case. We adopt a common
heuristic here: repeatedly find a maximal clique and rembuaetil the whole similarity graph is
completely decomposed. This method is very efficient siheg e@asy to find a maximal clique.

The parameters involved in the general strategy seem oeémidy. Fortunately, this phase
is independent of phase 1, which means that we can run pha$eGEA many times with
different parameters to obtain a desirable balance betWeegrensitivity and the specificity. (In
the tests presented in this paper, we simply tune the paeasnet maximize the sensitivity since
our specificity is reasonably high.) Similar to the simpleatggy, the candidate subgraphs are
ranked by their frequencies. But, there is a subtle diffezemere. If we run the simple strategy
with two MinFrequencyaluesa andb (a < b) to produce two sets of subgrapAsand B, then
the subgraphs iB are exactly the topB| subgraphs inA. However, the results generated by
the general strategy may not have such a “monotonicity” @ryp

3) A combined strategyThe parametery is perhaps the most sensitive parameter in GFA.
To minimize the influence ofy, the general strategy is used after the simple strategyeMor
specifically, the simple strategy is applied to the set ofdadate subgraph€’ with some given
MinFrequencyand MaxOverlap to obtain a group of subgraptss Every subgraph i is then
compared with those if. If it overlaps with any subgraph ifi with a score abov&axOverlap
it is removed fromC'. Then, we apply the general strategy to the reduced camdsidigraph
set C’ and get another set of subgrapfis The final result is the union of and S’, where
each subgraph that overlaps with another subgraph with re sdmveMaxOverlapis removed.
This two-step strategy is referred to as twmnbined strategyBecause the simple strategy will
remove candidate subgraphs that repeat multiple timeglgxtigs combined strategy helps the

second step of Algorithm 2 by reducing the size of the sintylagraph.

E. Default parameters

In phase 1MaxSizedetermines the maximum size of a subgraph found by GFA. hcjpie, it

should be set as the largest possible size of an expecteglrpoaimplex component (see Section
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lI-A for the definition of protein complex components) for aven PPl network. For example,
in our experiments, for MIPS-PPI, we select 20 as the boumdse the maximum size of a
protein complex component in MIPS-MAN-COMP does not exce@dQur experiments show
that GFA is quite robust with respect to this parameter siterediction result does not vary
much as long adMaxSizeis sufficiently large. This is especially true when the maray data
contains many samples, because only the common componengm@up of similar subgraphs
will be found in multiple samples. For example, we also trssttingMaxSizeas 30 on MIPS-
PPI and observed almost the same result. The pararmebeiter controls how strictly the size
bound is enforced. A smaMaxlter may lead to output subgraphs with sizes abMexSize
This property is useful when there are a few protein complakat are very dense and much
larger than the other protein complexes and we do not wantatkeMaxSizetoo large. So, the
parameterdviaxSizeand Maxlter together control the sizes of the output subgraphs. Acngrdi
to our tests, 30 is a sufficiently large value fidlaxiter to make sure that the majority (more
than 99.75%) of the output dense subgraphs have sizes bhétou8Bize

For each sliding window, a similarity graph, defined in stegf Algorithm 2, will be created.
Each cligue whose siza.€., the number of nodes in the clique) abovenFrequencyin this
similarity graph corresponds to a merged subgraph. Theuémecy of each merged subgraph
is defined as the size of its corresponding cligue. When margkes are combined, a sliding
window with a certain size may contain more dense subgrapherefore, to use the same
MinFrequency the sliding window size should be reduced by setting a @mallwhen more
samples are combined. In this case, a larger support ¥asioould be used as well. Candidate
subgraphs are ranked according to their frequencies. AidmFrequencyeads to more reliable
predictions (see section llIMaxSize MaxIter and MaxOverlapare independent of the number
of samples used but dependent on the PPI network under $lakSizeshould be larger than
the largest size of the expected protein compleXéaxiter should be large enough to make
GFA break large subgraphs sufficiently smallaxOverlapis fixed to 0.2 according to [11],
[13], [15].

The values of all the parameters used on the three PPl nedvaoeklisted in Table |I. Because
some of the parameters depend on the number of samples cambwe also list the number
of samples used on each PPI network in bold. The table coalddg® a useful reference point

for setting the parameters when different datasets areestud
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TABLE |

PARAMETER VALUES USED IN OUR EXPERIMENTS

MIPS DIP BioGRID
number of samples 500 600 700

MaxSize 20 30 40
MaxlIter 30 30 30
MinFrequency 3 3 3

MaxOverlap 0.2 02 0.2
sliding window ratio  \ \ 0.2
support ratio \ \ 0.9

The parameterMaxSizeand Maxlter are used in phase 1 of GFA. The paramedisFrequencyand MaxOverlapare used
in phase 2 by both the simple and general strategies. The pararsiedeérg window ratioand support ratioare used by the

general strategy in phase 2 only.

I1l. RESULTS
A. Matching to the benchmark

We first introduce some definitions and notations. Since wi walidate the predictions
by GFA and other methods mainly against the benchmark MIPSNM OMP, we define the
effective sizeof a predicted protein complex as the number of proteinseshby this predicted
complex and the complexes in the benchmark. Obviously, wddconly hope to validate
predicted protein complexes with sufficiently large effeeisizes. We say that a protein complex

(component)A in the benchmark igdentifiedby a predicted comple® with some cutoffp if
[AnBI*/(|Al-|B]) > p (1)

A commonly used value fop in the literature i9).2 [11], [13], [15]. See [11] for an elaborate
analysis of this cutoff. We say thd& matchesA with cutoff p if A is identified by B with the
cutoff p. To test how this cutoff affects our test results, we alsoded the prediction results
of different methods using a more stringent cutef: 0.5. The following (shorthand) notations
and definitions will be used in the paper:

1) P: The number of predicted protein complexes.

2) M(p): The number of predicted complexes that match some proteimplex component

in the relevant benchmark set with cuteff
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TABLE Il

A SUMMARY OF THE PREDICTION RESULT

P I1(02) I(0.5) M(0.2) M(0.5) P.>s

MIPS 299 68 42 64 43 72
DIP 466 81 52 73 51 90
BioGRID 574 72 37 73 36 105

The MinFrequencyis fixed to 3.

3) P.>,: The number of predicted protein complexes with effectizes at least.

4) I(p): The number of complex components in the relevant benchreetrkhat have been
identified by any one of the predicted complexes with cutoffhis parameter generally
reflects the sensitivity of the prediction. As mentioned\ayonve will considerp = 0.2
andp = 0.5 since it could provide more insight into the prediction fesu

5) Effective specificity The number of predicted protein complexes that match cexnpl
components in the relevant benchmark set divided by the pumibpredicted complexes
with effective sizes at least 2. In other words, it is equalMdp)/P.>,. Hereafter, the
term specificityalways refers teeffective specificityinless stated otherwise. Note that the
notion of specificity as defined here as well as in many PPI oikt\@nalysis papers(g,
MCODE,CEZANNE) is often referred to gwecisionin the information retrieval literature.

6) Sensitivity The ratio of the complexes in the benchmark that have beentifeed. It is
equal tol(p)/B, whereB is the size of the benchmark.

7) Efficiency I(p)/M (p). It describes how many known complexes are covered by agteedi
complex that matches some known complexes. Therefore, layhajficient prediction
means that the predicted complexes do not overlap much ath ether.

A summary of the prediction results by GFA on MIPS, DIP and BRIB PPl networks is
listed in Tables Il and III> For example, when the cutoffs for identification and matgkire both
set 0.2, the sensitivity and the specificity on MIPS-PPI @ £100 = 0.68 and 64/72 = 0.89,
respectively. Because of the high efficiency achieved by thdiption results, GFA could predict
hundreds of novel protein complexe®  P.>;). On MIPS-PPI, for example, GFA predicts

299 — 72 = 227 potentially novel protein complexes.
The details of the predictions on the three PPI networks are providedliae snpplementary material.
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TABLE 11l

SENSITIVITY AND SPECIFICITY

Sens(0.2) Spec(0.2) Sens(0.5) Spec(0.5)

MIPS 0.68 0.89 0.43 0.58
DIP 0.71 0.81 0.46 0.57
BioGRID 0.54 0.70 0.28 0.34

The sizes of MIPS-MAN-COMP on MIPS-PPI, DIP-PPI and
BioGRID-PPI are 100, 114 and 134, respectively. Sens(0.2)
and Spec(0.2) stand for the sensitivity and specificity when

cutoff 0.2 is applied, respectively.

We further verify whether proteins in predicted complexes @nsistent in their functions by
performing a GO analysis. Suppose that in a totaNoproteins,n of them share a common GO
annotation specified in a certain GO term, while in a predigieotein complex with sizé/,
m proteins have the annotation defined by the same GO term,adup-calculated according to

the Fisher's Exact Test as
min{M,n} (n) (N—n)

p= Z k) \M—k

i W)

can then be used to characterize the statistical signifecaht¢he functional enrichment of the

(2)

predicted protein complex in the GO term. Note that althoogirte sophisticated and powerful
methods exist in the literature [40], [41], [42], [43] forishanalysis, the above simple method
suffices for us because it confirms that most of the top rankedigded complexes have good
matching GO terms and thus contain proteins that have densiginctions. Because the genes in
a protein complex are not expected to have similar molecutrhanisms, the molecular function
category in GO is not relevant and thus will not be used in émalysis [25]. We select all the
terms under either biological process (GO:0008150) or omaotecular complex (GO:0032991)
for this analysis. To focus on GO terms that correspond t@iBpdunctions, we collect only
GO terms that contain no more than 100 proteins. For eachgbeddcomplex, we calculate
the above p-value for each of such GO terms and then use thmatip-value to measure the
functional enrichment of the predicted complex. Finallgchuse we have hundreds of predicted
complexes, in order to keep the family-wise error rate nateexling a preset threshold.g,
0.05), we apply the Bonferroni correction [44] to all p-vaduley multiplying them with the
number of predicted complexes and the number of selectede@@stto address the multiple
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hypothesis testing problem. We further vary the maximum lbemof proteins allowed in a GO
term (.e., 50, 75, 100, 125) to assess the impact of this parametereoantalysis, and find that
its impact is negligible. For example, when the predictethglexes on MIPS-PPI are matched
to GO terms under biological process or under macromoleadaplex, the percentages of
significant predictionsif., those predicted complexes whose corrected p-values ftchmg
with GO terms under either biological process or macromdé&ccomplex are less than 0.05
when) are 33.1% and 32.8% when the maximum of number of pot@iowed in a GO term
is set to 125 and 50, respectively.

Table IV shows the top 25 predicted complexes with the higfieguencies. From this table,
we can see that many of these putative complegeag the 1st, 2nd, 3rd, 8th, 10th, 19th and 21th)
match complexes in MIPS-MAN-COMP quite accurately. Besidhsy are also functionally
enriched in some GO terms. For predicted complexes that havgood matches in MIPS-
MAN-COMP (e.g, the 7th and 14th), they are generally enriched in certain t&@s. For
example, the 7th predicted complex contains five proteifl3SR¥97C, YOL0O90W, YNLO82W,
YMR167W, YCR092C). Only three of them (YCR092C, YNL082W and YOLO90&@pear in
MIPS-MAN-COMP and match the complex (component) 510.180&0However, all the five
proteins are members of the “mismatch repair complex” (®32300). In the 14th predicted
complex, all the 8 proteins belong to the mRNA cleavage angaat@nylation specificity factor
complex (GO:0005847). Due to the incompleteness of datal PFASYMAN-COMP, only 5 of them
appear in MIPS-MAN-COMP and 4 of them match the complex 44Q@0@pre mMRNA3’-end
processing factor CFlIl) in MIPS. The most interesting grof@ipredicted complexes consists of
those that have zero effective sizes but have strong GO sigpjp@r example, the 6th predicted
complex is totally missed by MIPS-MAN-COMP, but all proteiimsthis predicted complex are
involved in the sphingoid biosynthetic process (GO:00495t the 13th predicted complex, 6
out of the 8 proteins are ingredients of preribosome (GQDBB3), a precursor of the eukaryotic
cytoplasmic large ribosomal subunit [45]. Finally, thet2gtedicted complex matches well with
GARP complex (GO:0000938).

B. Comparison with existing methods

We compare the performance of the proposed GFA algorithrh ¥ive existing methods
(JActiveModules [23], MCODE [11], MCL [36], DECAFF[15], and MASSE [25]) on three
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GO ANALYSIS
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F MIPS S E B O BP B O P-value MC E B O P-value
1 447 60-1 11 11 11 11) 0008054 12 11 7.43e-2B0005680 11 16 11 6.06e-21
2 430 230.20.20-1 14 14 15 140016573 41 13 1.47e-1Y 0046695 14 19 14 6.66e-27
3 419 440.12.10-1 5 5 6 5/ 0000292 13 5 3.75e-06 0000177 10 5 6.27e-08
4 400 260.90-1 3 3 6 3|0000001 30 3 4.42e-01 0005885 8 3 1.36e-03
5 396 3 0006470 36 1 1
6 394 3 0046520 3 4.34e-04
7 386 | 510.180.50.10-1 5 3 3 3 0000710 5 7.63e-08 0032300 8.13e-10
8 358 133.50-1 3 3 3 3| 0032784 5 3 1.08e-03 0032806 3 3  2.43e-05
9 333 320-2 6 5 4 4] 0034728 61 6 1.11e-04 0000788 6 11 4  8.46e-05
10 329 260.60-1 10 10 10 10 0006888 88 10 4.53e-09 0030008 10 10 10 2.21e-22
11 318 500.20.10-1 4 3 4 3| 0006409 30 2 1 0005853 3 3 5.76e-04
12 317 0000002 31 2 1 0031942 1 1 1
13 310 0042273 26 4 6.39e-02 0030687 6 30 6 2.78e-06
14 304 440.10.20-1 8 5 0006378 18 8 1.51e-120005847 8 15 8 4.96e-14
15 282| 290.20.10-1 0045039 8 5 8.43e-08 0042721 6 4 4 2.56e-07
16 281 410.20-1 3 3 4 2| 0006267 15 3 4.94e-02 0005656 3 15 3 1.11e-02
17 281 3 0 0046839 8 3  6.07e-03 0
18 258 3 0 0051083 5 2 1 0005844 2 17 2 1
19 249 130-1 4 4 4 4| 0007010 61 4 1 0005832 4 11 1.67e-05
20 242 4 0 0007535 5 2 1 0
21 237 510.20-2 3 3 3 3|0006360 72 3 1 0000120 3 9 3  2.04e-03
22 235 4 0 0006097 8 2 1
23 229 4 0 0032197 95 4  7.30e-01
24 222 3 0 0042147 20 3 1.24e-01 0000938 3 4 3 9.71e-05
25 218 3 0 0007329 5 1 1 0

The top 25 predicted complexes ranked by GFA on MIPS-PPI. Thegrit2Bive complexes are compared with the benchmark

MIPS-MAN-COMP, the biological process categoBR) in GO and the terms rooted under macromolecular compiR) (in

GO. HereF stands for frequency for the size of a predicted complei for the effective sizeB for the size of the best-matching

benchmark complex or GO term, am@ for the size of the intersection between a predicted complex and the bestinga

benchmark complex or GO term. The colulitPS lists the best matching benchmark complexes. The coluBfhandMC list

the best-matching GO terms without the prefix “GCP:valuestands for the adjusted p-values for multiple hypothesis testing

with Bonferroni correction. The details of the 25 predicted complexasbeafound in the online supplementary material. 18

of them are significantly enriched in either the biological process catemottye macromolecular complex category (or both).
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PPI datasets (MIPS, DIP, and BioGRID-PPI). Furthermore, wié a@mpare GFA with two
recent programs CODEC and CEZANNE on the PPI datasets coediderthe papers that
introduced the programs [37], [26]. These methods reptettenmost advanced methods for
predicting protein complexes from PPI and microarray ddta single species.

JActiveModules [23] is one of the first tools that combine R#Pld microarray data to find
functional modules. In the comparison, except the numbenadules returned by jActiveMod-
ules, all parameters of jActiveModules are set to their aiefaalues. The number of modules
returned by jActiveModules is set to 1000, the maximum valllewved, because our tests show
that this value gives jActiveModules the best performance.

MCODE [11] pioneered the method of identifying protein coexas through finding dense
subgraphs in PPI networks. MCL is a clustering algorithm tisss only PPI information to find
protein complexes [36]. It was found to be the best performegsredicting protein complexes
from PPI data according to the 2006 evaluation study of Brarmekvan Helden [46]. A single
parameterinflation, controls the behavior of MCL. In order to tune the perfornentthe MCL
algorithm, we perform a grid search by varying this paramiten 1.2 to 5.9 with step size 0.1
(as suggested in [36]) to obtain the optimal value of thisapeater that can give us the highest
sensitivity at the identification cutoff = 0.2. According to our experience, such an optimal
parameter in many cases also leads to reasonably high spmsfi

DECAFF [15] is the latest work that uses PPI networks alonelémtify protein complexes.
Unfortunately, we have only been able to obtain the resuit®BCAFF on MIPS-PPI and
BioGRID-PPI, because the program is not available from thbast Note that the MIPS-PPI
and BioGRID-PPI data used in our studies are the same as thedeoy<DECAFF.

CODEC [37] treats co-immunoprecipitation data as a bigarjtaph and identifies dense
subgraphs in the bipartite graph. Note that a co-immundgpitation dataset could be considered
as a PPI network by treating each pray-bait relation as amaaotion between the pray and the
bait.

MATISSE has five parameterbetg min seed sizemax seed sizenmin module sizeand max
module sizeln our studies, we sdietato 0.95 as suggested in MATISSE [25], sein seed
sizeto 2 andmin module sizéo 3 for the purpose of predicting protein complexes thata&ion
at least 3 proteins, and set battax seed sizandmax module sizeo the defaultMaxSizevalue
in GFA to make the complexes predicted by MATISSE and GFA havaparable sizes.
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The programs jActiveModules, CODEC, MATISSE and CEZANNE ak usicroarray data.
For each PPI dataset, we apply the same subset of microamagies from GEO used by GFA
to MATISSE. Since we will compare GFA with CODEC and CEZANNE be tatasets in [37],
[26], we will use the reported prediction results of CODEC &#ZANNE instead of running
these programs. jActiveModules requires p-values as ctedpoy another program VERA [47]
for each protein in the input PPI network. However, we werabl@ to make VERA work for the
GEO microarray dataset or the dataset in [26] because eablemfis missing some information
required by VERA. Therefore, we use the microarray datasetiet in [47] that contains the
p-values generated by VERA as a part of the input to jActiveMesl. Note that the programs
JActiveModules, MATISSE and CEZANNE were not designed torskdor protein complexes
specifically.

In addition to these existing methods, we also run GFA withgaine expression values
randomly generated from a unifor-1, 1) distribution. We call this metho®&FA-R and use
it to check the effect of microarray data on the performant&BA. In our studies, we set
MinFrequencyto 3 for both GFA and GFA-R to ensure highly confident predics..

In the first group of comparisons, the prediction results 8AGGFA-R, MCODE, MCL,
DECAFF, and MATISSE on MIPS, DIP and BioGRID-PPI are comparethviienchmark
MIPS-MAN-COMP. The performance of each method is evaluateteims of sensitivity and
specificity. All predicted complexes with fewer than 3 progeare removed before the calculation
of sensitivity and specificity, because the benchmark d@ositanly complex components of
sizes at least 3. The comparison results are shown in Figuidd same set of methods are
also compared using benchmark MIPS-MANe( the manually curated MIPS complexes that
are not decomposed into connected components)Fantkasurewhich was used recently in
[26] to compare various functional module prediction me#oThe F-measure is defined as
F = 2xsensitivity x speci ficity / (sensitivity + speci ficity). Here, a predicted complex is said
to match a benchmark complex if the corrected p-value (asritbesl in the above GO analysis
section) of matching the two subsets of the proteins coethin the complexes is less than
0.05.° Again, a predicted complex is a true positive if it matchemxedenchmark complex

and a benchmark complex is identified if it has a matching ipted complex. As before, only

®Note that a cutoff of 0.0001 on uncorrected p-values was used in [26]
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predicted complexes of effective sizes at least 2 are ceraidin the calculation of F-measure.
The comparison is shown in Figure 2.

Figure 1 shows that GFA outperforms not only methods using dai®a alone i(e., MCL,
MCODE and DECAFF), but also MATISSE and jActiveModules whickeuboth PPl and
microarray data in specificity. This superiority is more @ when the identification cutoff
is set top = 0.5. GFA also outperforms MCL, MCODE, MATISSE, and jActiveModsl&
sensitivity.

DECAFF achieves the highest sensitivity, while GFA achietles highest specificity. The
high sensitivity of DECAFF is mainly due to its large number medictions. For example,
DECAFF predicts 2,840 complexes on BioGRID-PPI, and many amthéghly overlap with
each other. GFA, on the other hand, predicts only 574 corepleXlthough MCL was reported
as the best among protein complex prediction methods in dque study [46], the results in
Figure 1 demonstrate that GFA outperforms MCL in terms of ks®hsitivity and specificity.
When F-measure is used (as shown in Figure 2), GFA outperfoi®EISSE, MCODE and
JActiveModules on all three PPI networks. GFA also outperfe MCL on MIPS-PPI and
DIP-PPI and has a comparable performance as MCL on BioGRID-®#&thpared with GFA,
DECAFF performs slightly better on MIPS-PPI but significgnietter on BioGRID-PPI. As
stated before, the reason that DECAFF achieves better Funesasn MIPS and BioGRID PPI
networks is largely due to its large numbers of predicted meres that overlap with each other
significantly. Indeed, if we remove overlapping complexespat by DECAFF using the same
procedure in phase 2 of GFA, the F-measures of DECAFF drop #b®26 and 57.8% to 31.5%

"We estimated the statistical significance of the improved performanceAfo@ MCL, DECAFF, MATISSE, MCODE and
jActiveModules on MIPS-PPI and DIP-PPI when the identification cutoif set t00.5 using a standard Pearsqd test with
Yates’ continuity correction. The results are as follows. On MIPS-PRIs#nsitivity (43/100) of GFA is better than that of MCL
(30/100), MATISSE (13/100), MCODE (25/100) and jActiveModule&LD) with p-values of 0.04, 2.47e-6, 5.58e-3 and 1.86e-
10, respectively, and the specificity (42/72) of GFA is better than that ©LNB0/77), DECAFF (152/757), MATISSE (13/70),
MCODE (25/48) and jActiveModules (6/562) with p-values of 0.01, 843, 1.36e-6, 0.31 and 1.53e-65, respectively. On DIP-
PPI, the sensitivity (52/114) of GFA is better than that of MCL (25/114) TN&SE (6/114), MCODE (12/114), jActiveModules
(0/114) with p-values of 1.36e-4, 3.88e-12, 4.51e-9 and 4.85eebpectively, and the specificity (51/90) of GFA is better than
that of MCL (24/95), MATISSE (6/68), MCODE (12/38) and jActiveMdds (0/894) with p-values 1.34e-5, 8.04e-10, 8.19e-3
and 5.14e-116, respectively. Therefore, except the improveaven MCODE's specificity on MIPS-PPI, all other improvements
are statistically significant.
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and 37.5% on the two PPI networks, respectively.

The positive effect of gene expression profiles on the ifieation of protein complexes is also
clearly demonstrated in the comparison between GFA and BFA terms of the specificity,
GFA outperforms GFA-R on all datasets. In terms of the seitgit GFA outperforms GFA-R
on all datasets except MIPS-PPI. When the identificationftigcset top = 0.2, GFA-R has
a slightly better sensitivity over GFA. The main reason hdhihis is that the predictions of
GFA are concentrated on high frequencies. Consequently, Gfputs much fewer predictions
than GFA-R. For example, wheMinFrequencyis set to 3 and the identification cutoff is set to
p = 0.2, GFA only predicts 299 complexes, while GFA-R predicts 40fnplexes on MIPS-PPI.
Because the only difference between GFA and GFA-R is that G&&S unicroarray data while
GFA-R uses random expression profiles, the superior pedioca of GFA suggests that gene
expression profiles do have positive contributions to thediotion of protein complexes. On
the other hand, it is interesting to notice that GFA-R pernfeibetter than jActiveModules even
though the latter uses microarray data.

In the second group of comparisons, we compare GFA with CODER€ GEZANNE in
terms of F-measure on three benchmarks including MIPS-M&;:biological process, and
GO:macromolecular complex, as done in [26]. To compare WI@DEC, GFA is run on the
PPl network obtained from the co-immunoprecipitation dgiteen in [5] (which was used in
[37]) and the same set of microarray data that we used abaoveufming GFA on MIPS-PPI
(i.e, the microarray data with 500 samples). All the parametér&EA are set to the same
values as above when GFA was run on MIPS-PPI. The predicticBF#\ is compared with
the results reported by CODEC using the scoring scheme, which gives CODEC the best
performance. To compare with CEZANNE, the same PPI netwarkn ff48] and microarray
data [49] considered in [26] are used to construct the inpuGFA. All edges with confidence
scores below 0.2 (one of the cutoffs considered in [48]) areaved and the edge weightse(
confidence scores) of the PPI network are then ignored. Agdlinhe parameters of GFA are
set to the same values as above when GFA is run on MIPS-PPIcdrparisons, as depicted
in Figure 3, show that GFA in general performs better tharh SGODEC and CEZANNE on
the two datasets. The only exception is that when GO:mademualar complex is used as the
benchmark, CODEC performs slightly better than GFA. The loonéasures of CEZANNE

are due to its low sensitivities. Because the aim of CEZANNEoisdentify tissue/condition
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Fig. 1. Comparison of the sensitivities and specificities of the prediction&FA, GFA-R, MCODE, MCL, DECAFF,
MATISSE, and jActiveModules on MIPS, DIP and BioGRID-PPI using@8-MAN-COMP as the benchmark. The cutoffs for
the identification are 0.2 (left) and 0.5 (right). The sensitivities and sp#iEf obtained simultaneously by different methods
are shown in the upper and lower half planes, respectively.

specific functional modules, it predicted only 14 compléxexiules, which led to very low
sensitivities €.g, 14.1% on GO:macromolecular complex) but high specifiifeeg, 84.6% on

GO:macromolecular complex).

C. Ranking by frequency

GFA ranks predictions according to frequencies of the fodadse subgraphs. A subgraph
with a higher frequency will be ranked higher in the list ohdalates. It is therefore necessary
to verify whether subgraphs with higher frequencies areenlidely to correspond to true
protein complexes. For this purpose, we collect subgragiesse frequencies are above a certain
threshold and calculate the fraction of these subgraphshidnee matches in the benchmark.
This should provide equivalent information as setting edght MinFrequencythresholds and
observing how the specificity changes with the thresholdiasl As shown in Figure 4, the
specificity decreases with the decreaseMihFrequency suggesting that candidate subgraphs
with higher frequencies match the benchmark better. Thé®sfation is more obvious when the
identification cutoff is set tp = 0.5.
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Fig. 2. Comparison of GFA, GFA-R, MCODE, MCL, DECAFF, MATISS&nd jActiveModules on MIPS, DIP and BioGRID-
PPI using F-measure and benchmark MIPS-MAN.

We further verify if the proteins in more highly ranked sudygins are more consistent in their
functions by performing the same GO analysis that is useddtian IlI-A. Fixing MinFrequency
= 3, we rank the predicted protein complexes in a non-degrgasrder according to their
frequenciesi(e., a high frequency corresponds to a small rank). At each ratdf¢c we collect
the predictions that are ranked higher than the cutoff, tthe number of predictions that are
functionally enriched at a certain thresho#dd, their corrected p-values for matching with terms
under either biological process or macromolecular compbgegories are less than 0.05), and
calculate the ratio (fraction) of the significant predioso By doing this, we obtain a curve
that describes how the ratio of functionally enriched predns changes over different ranks,
as shown in Figure 5.

From the figure, we can see that the ratio of significant pteufis is in general high when the
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Fig. 3. Comparison of GFA with CODEC and CEZANNE in terms of F-measam the datasets used in [37] and [26],
respectively. The prediction results of CODEC and CEZANNE are doaddd from the websites given in [37], [26].

rank cutoff is small and low when the rank cutoff is large,igading that more highly ranked
predictions are more likely to be enriched in a certain G@nteCombining with the previous
observation that predictions with higher frequencies mdke benchmark better, we conclude

that our strategy of ranking predictions according to tlfieguencies is reasonable.

D. Effects of parameters in phase 1

There are several parameters associated with the propoBAdatgorithm. It is therefore
important to see how these parameters affect the perfoemnah&FA. Here we discuss the
influence of two parameterd8faxSizeand Maxlter, in phase 1, because these two parameters
are more important than the parameters in phase 2. Since ghastime consuming, we are
only able to consider a limited combinations of these twaapeaters.

On MIPS-PPI, we compare two configurations. ConfiguratiomaxSize=20andMaxIter=30
(default parameters). Configuration idaxSize=30and MaxIter=20. The (default) simple strat-
egy is used in phase 2 to combine candidate subgraphs.

On DIP-PPI, we compare two configurations. ConfiguratiodMaxSize=30and MaxIter=30
(default parameters). Configuration MaxSize=40and MaxIter=30. The (default) simple strat-

egy is used in phase 2 to combine candidate subgraphs.
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Fig. 4. Comparison of specificities of predictions by GFA when diffeMintFrequencyis used. The cutoffs for the identification
are 0.2 (MIPS(0.2), DIP(0.2) and BioGRID(0.2)) and 0.5 (M(®S), DIP(0.5) and BioGRID(0.5)).

On BioGRID-PPI, we compare three configurations. ConfigurafiorDefault parameters
MaxSize=40and MaxIter=30 are used in phase 1, and the combined strategy is used in phase
2. Configuration 2: Default parametekéaxSize=40and MaxIter=30 are used in phase 1, and
the simple strategy is used in phase 2. ConfiguratioN&xSize=50and MaxIter=20 are used
in phase 1, and the combined strategy is used in phase 2rdiffstrategies for combining
candidate subgraphs are considered here to evaluate rifigerices.

The overall performance of GFA under different configunasi@are shown in Table V, where
MinFrequencyis fixed as 3. From the table, we can see that both the setsiind specificity
vary with different configurations. The differences amohgnh in different configurations are,
however, very small. In other words, the comparison shows ttie performance of GFA is not

very sensitive taVlaxSizeor Maxlter.

December 31, 2009 DRAFT



28

S - — MIPS
444444 DIP
---- BioGRID
[o0)
@ |
o
@
[}
[8)
C
(o]
Q ©
e S 7
=3
(7]
<
S
[ I I I I [
0 100 200 300 400 500

Top ranked predictions

Fig. 5. The significance ratio of top ranked predictions by GFA. Therécted) p-value threshold for significance is 0.05.

TABLE V
SENSITIVITY AND SPECIFICITY IN DIFFERENT
CONFIGURATIONS

MIPS-PPI DIP-PPI BioGRID-PPI
Configuration 1  (0.68, 0.89) (0.71, 0.81)  (0.54, 0.70)
Configuration 2 (0.67, 0.89) (0.69, 0.88) (0.49, 0.68)
Configuration 3 \ \ (0.53, 0.67)

MinFrequencyis fixed to 3. The (sensitivity, specificity) pair
in each cell is calculated with the identification cutoff being
p=0.2.

E. Effects of microarray sample size

In section IlI-B, we have shown that microarray data do héle identification of protein

complexes. It remains interesting to see how the numberropkss in the microarray data affect
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the prediction results. For this purpose, we compare théomeance of GFA with different
number of samples, and show the results for the various aoatigns defined in the last
subsection on BioGRID-PPI in Figure 6

B Configuration 1 B Configuration 1
M Configuration 2 M@ Configuration 2
O Configuration 3 O Configuration 3

JJINRERE

50 100 200 300 400 500 600 700 50 100 200 300 400 500 600 700

P 05 0.5 |

Specificity & Sensitivity (0.2)
o
|
Specificity & Sensitivity (0.5)
o
|

0.5 0.5 —

Fig. 6. The effect of sample size on BioGRID-PPI. The cutoffs foritlentification arep = 0.2 (left) andp = 0.5 (right).

These figures show that on BioGRID-PPI, the sensitivity of GR&réases as the number
of samples increases, although the increase slows down5fftesamples. This is because as
more samples are used, more complexes are predicted wihfreguiency. For the same reason
and a fixedMinFrequency the specificity of GFA decreases. To maintain the same fpggia
larger MinFrequencyshould be selected when more samples are used. The conmpbetoeen
Configuration 1 and Configuration 2 shows that the combinedesglyain phase 2 provides a
better sensitivity with some sacrifice in specificity whee thumber of samples is insufficient.
This observation is useful when the PPI network studied ry @ense. Because a dense PPI
network likely contains many large dense subgraphs, a langeber of samples are required in
order for GFA to recover these dense subgraphs with suffifiequency counts. On sparse or
moderately-dense PPI networks such as MIPS-PPI or DIPtR®€kimple strategy of combining

candidate subgraphs (and counting frequency) suffices ahew hundred samples are applied.
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IV. CONCLUSIONS ANDDISCUSSION

We have presented a max-flow based algorithm, GFA, to igecdimplexes from PPI networks
by incorporating microarray data. Compared to the previoethods, GFA is actually able to find
the densest subgraphs in the input PPI network efficierdijper than using some local search
heuristic. Our experiments on the MIPS, DIP and BioGRID PPivoédts have demonstrated that
GFA outperforms the previous methods for predicting pro@mmplexes in terms of specificity
while maintaining a comparable sensitivity. Its predictesnplexes are highly efficient because
they do not overlap much with each other. One of the reasoas @A was not able to
identify some of the benchmark protein complexes is thagrmaved nodes of degree 1 from the
network in every iteration. This step is necessary sincedtvgnts GFA from producing many
small spurious predictions. We may have to explore a diffestrategy in order to improve its
sensitivity.

In phase 1 of GFA, multiple rounds of DSA have to be executedrder to find a dense
subgraph of a sufficiently small size. This is time consumifggspeed up this step, we can set a
small MaxlIter. We have demonstrated that the final result is not very semdd this parameter.
An alternative is to assign larger weights to nodes basedxpression data in each round.

As mentioned before, GFA uses the multiplying facto#**" () to reduce the weights of highly
expressed genes in order to fragment a large dense subgtaptavors highly expressed genes
and might tend to ignore some of the genes whose expressiels ke significantly lower than
their normal levels. A possible solution is to rerun GFA wikie reciprocal multiplying factor
ec*rr(4) to favor lowly expressed genes and combine the predictegleses appropriately with
those obtained with the original multiplying facter<*"(4), We have done some preliminary
testing on this strategy and found that it slightly improveEA's performance on some datasets.
We will investigate the strategy as well as the issue of optimgy the multiplying factor more
carefully in future work.

Our discussion in the previous section shows that the pedoce of GFA generally improves
when more samples are combined. However, the running tim@Fr# is proportional to the
number of samples and could become a concern when the PPorkeisvlarge/dense. For
example, in our tests, on MIPS-PPI (500 samples), DIP-PB0 @&mples) and BioGRID-PPI
(700 samples), GFA needs about 4, 15, and 96 hours (the exaging time depends on the
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parameters used), respectively, on a standard desktop PQ\ &dhgared with MCL, MCODE,
and MATISSE, which cost less than one hour on BioGRID-PPI, G&Auch slower. On the
other hand, since phase 1 of GFA (which costs the most tinrepeaexecuted independently on
each microarray sample, it is quite straightforward to rdeAGn parallel on a computer cluster

to achieve a reasonable speed.
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