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The emergence of high-throughput technologies leads to abundant protein-protein interaction (PPI) data and microar-
ray gene expression profiles, and provides a great opportunity for the identification of novel protein complexes using
computational methods. Although it has been demonstrated in the literature that methods using protein-protein in-
teraction data alone can successfully predict a large number of protein complexes, the incorporation of gene expression
profiles could help refine the putative complexes and hence improve the accuracy of the computational methods.

By combining protein-protein interaction data and microarray gene expression profiles, we propose a novel Graph

Fragmentation Algorithm (GFA) for protein complex identification. Adapted from a classical max-flow algorithm
for finding the (weighted) densest subgraphs, GFA first finds large (weighted) dense subgraphs in a protein-protein
interaction network and then breaks each such subgraph into fragments iteratively by weighting its nodes appropriately
in terms of their corresponding log fold changes in the microarray data, until the fragment subgraphs are sufficiently
small. Our extensive tests on three widely used protein-protein interaction datasets and comparisons with the latest
methods for protein complex identification demonstrate the superior performance of our method in terms of accuracy,
efficiency, and capability in predicting novel protein complexes. Given the high specificity (or precision) that our
method has achieved, we conjecture that our prediction results imply more than 200 novel protein complexes.

1. INTRODUCTION

With the advances in modern biophysics and bio-

chemistry, it has been widely accepted that the rise

of complicated biological functions is largely due to

the cooperative effects of multiple genes and/or gene

products. This understanding leads to the emer-

gence of high-throughput technologies for identify-

ing interactions between biological molecules and re-

sults in the prosperity of interactomics in the post

genomics and proteomics era. For example, with the

use of yeast two-hybrid assays 1–3 and pull-down

mass spectrometry experiments 4, 5, genome-wide

protein-protein interactions (PPIs) have been iden-

tified and encoded into global PPI networks for the

model species Saccharomyces cerevisiae (i.e. baker’s

yeast) 6–8. With the improvement of instruments

and increase in the throughput, these technologies

have also been applied to identify interactions of hu-

man proteins, providing an increasing understand-

ing of the global human PPI network 9. Parallel to

the boom of high-throughput identification of PPIs,

genome-wide microarray experiments regarding the

expression of genes and their products across a num-

ber of different conditions have also been conducted

and resulted in publicly available databases such as

the gene expression omnibus 10.
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As a major form of the cooperative effects of

two or more proteins, protein complexes play impor-

tant roles in the formation of complicated biologi-

cal functions such as the transcription of DNA, the

translation of mRNA, and many others. Tradition-

ally, protein complexes are identified using experi-

mental techniques such as the X -ray crystallography

and the nuclear magnetic resonance (NMR), or com-

putational methods such as protein-protein docking.

These methods, though successful, can hardly meet

the requirement of identifying all protein complexes

in known organisms, due to the large number of pro-

teins, the cost of biological experiments, and the lim-

ited availability of protein structure information. On

the other hand, since a protein complex is composed

of a group of two or more proteins that are associated

by stable protein-protein interactions, computational

methods that can make use of abundant data given

by the above high-throughput technologies have been

demonstrating increasing successes 11–15.

Many studies use PPI data alone for the purpose

of identifying protein complexes or biologically func-

tional modules. These methods assume that densely

connected components in PPI networks are likely to

form functional modules and hence are likely to be

protein complexes 16. With this assumption, the

methods generally use the density of interactions as

a main criterion and identify protein complexes by

finding dense regions in PPI networks. To mention

a few, Bader and Hoque proposed a clustering al-

gorithm called MCODE that isolates dense regions

in a PPI network by weighting each vertex accord-

ing to the topological properties of its neighborhood
11. Andreopoulos et al. presented a layered cluster-

ing algorithm that groups proteins by the similarity

of their direct neighborhoods 17. Spirin and Mirny

applied three methods (i.e. clique enumeration, su-

per paramagnetic clustering, and Monte Carlo sim-

ulation) to the MIPS PPI network for yeast 7 and

produced about 100 dense subgraphs that were pre-

dicted to be protein complexes 12. Their results were

found to be superior to many others in terms of ac-

curacy. Pei and Zhang introduced the use of a sub-

graph quality measure as well as a “seed-refine” al-

gorithm to search for possible subgraphs in a PPI

network 13. King et al gave a clustering algorithm

based on restricted neighborhood search to partition

a PPI network into clusters using some cost func-

tion 18. Bu et al. introduced a spectral method

derived from graph theory to uncover hidden topo-

logical structures that consist of biologically relevant

functional groups 19. Li et al. found maximal dense

regions by merging local cliques according to their

affinity 14. In a subsequent work, Li et al. devised

an algorithm, called DECAFF, to address two major

issues in current high-throughout PPI data, namely,

incompleteness and high data noise 15.

Another group of methods combine PPI data

and microarray gene expression profiles for the pur-

pose of identifying protein complexes. These meth-

ods regard PPIs as static descriptions of the poten-

tial collaborative effects between proteins and treat

gene expression profiles as dynamic information of

genes under various conditions. Since proteins of a

complex usually work together to complete certain

biological functions, and there exists a simple map-

ping between genes and their products, the combi-

nation of PPI and microarray gene expression data

can clearly help the discovery of protein complexes

or functional modules 20, 21. Moreover, such a com-

bination is also often used in the search for regula-

tory modules and signalling circuits 22. As an exam-

ple, Guo et al. identified condition-responsive sub-

networks in a PPI network by weighting its edges

based on gene expression profiles 23.

Besides these methods, there exist some other

methods that aim at identifying protein complexes

by using comparative interactomics. For example,

Sharan et al. identified protein complexes by a com-

parative analysis of the PPI networks from yeast and

bacteria 24. Hirsh and Sharan developed a prob-

abilistic model for protein complexes that are con-

served across two species and applied it to yeast and

fly 25. These methods based on comparative anal-

ysis require the availability of quality PPI networks

from multiple species and can only identify protein

complexes conserved in multiple species.

Despite differences in the approach and use of

data, most of the computational methods mentioned

above follow a bottom-up local search strategy. For

example, Li et al. first finds small dense sub-

graphs (or components) in a PPI network and then

merges these components gradually to form protein

complex-like subgraphs 15. Pei and Zhang greedily
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expands some carefully selected seed subgraphs until

a given criterion is met 13. Because a local search

strategy does not return the optimal solutions in

general, the above bottom-up methods are not guar-

anteed to find the densest subgraphs in the input

PPI network and therefore may miss many impor-

tant protein complexes that are truely dense.

To overcome this drawback, we present a top-

down method to identify protein complexes that ex-

plicitly utilizes the density information in PPI net-

works as well as microarray gene expression profiles.

This work combines the classic maximum network-

flow based Densest Subgraph Algorithm (DSA) 26 to

find the densest subgraphs with a novel application

of microarray data. Our algorithm, named the Graph

Fragmentation Algorithm (GFA), first finds dense

subgraphs in a PPI network (many of which could

potentially be large), and breaks each of them into

fragments iteratively by weighting its nodes appro-

priately in terms their corresponding log fold changes

in the microarray data, until the fragment subgraphs

are sufficiently small. In order to test the perfor-

mance of our method, we apply GFA to three widely

used yeast PPI networks (i.e. the MIPS, DIP and

BioGRID PPI networks) and compare our predic-

tions with the known protein complexes in the MIPS

database as well as with those of the latest meth-

ods for protein complex identification (that are not

based on comparative analysis) 12, 15. The test re-

sults clearly demonstrate the superior performance

of our method in terms of accuracy, efficiency, and

capability in predicting novel protein complexes. For

example, GFA could be tuned to achieve sensitivity

73% and specificity 85% simultaneously on the DIP

PPI network. Our method also provides a rank-

ing of the predicted complexes, taking advantage

of the multiple conditions (or samples) in the mi-

croarray expression data. Putative complexes with

higher ranks are believed to have a larger likelihood

to be true protein complexes. Moreover, our predic-

tions result in more than 200 highly ranked dense

subgraphs that share no common proteins with the

known complexes in MIPS and are thus likely to be

novel protein complexes.

For the convenience of presentation, some of the

figures and tables are omitted in the main text and

given in the appendix.

2. MATERIALS AND METHODS

2.1. Data sources

Three PPI datasets concerning Saccharomyces cere-

visiae are used. The first one is the MIPS protein-

protein interaction network dataset 7, which is be-

lieved to contain the most credible PPI data and

will simply be denoted as MIPS-PPI. The second

one is the DIP protein-protein interaction network

dataset 6, denoted as DIP-PPI. The third one is Bi-

oGRID protein-protein interaction dataset 8, which

is the most comprehensive one and will be denoted

as BioGRID-PPI. Because a PPI network is treated

as an undirected simple graph, at most one edge will

be kept between any pair of proteins. The numbers

of nodes (or edges) in the MIPS, DIP and BioGRID

PPI networks are 4,554 (or 12,319), 4,932 (or 17,201)

and 5,201 (or 71,044), respectively.

We retrieved 58 sets of microarray gene expres-

sion data concerning yeast from the GEO database
10. The expression levels have been log transformed,

and the microarray data contain a total of 716 sam-

ples (or conditions). Since the genes expressed in

each sample are different, and they could also be dif-

ferent from the genes contained in a PPI network, we

will use a sample of the microarray data on a PPI

network if it covers at least 90% of the genes in the

network. This criterion results in 477, 571 and 623

samples that can be applied to the MIPS, DIP and

BioGRID PPI networks, respectively.

As in the previous studies 11, 12, 14, 15, the MIPS

complex database 7 is used as the benchmark (i.e.

the truth) to evaluate the protein complexes pre-

dicted by our method. This database contains pro-

tein complexes manually verified and those identified

by high throughput experiments. We denote the set

of complexes verified manually as MIPS-MAN and

the set of all protein complexes in the database as

MIPS-ALL. Furthermore, our GFA algorithm only

outputs connected subgraphs, but many complexes

in MIPS-ALL are not connected in the above PPI

networks. To evaluate our results in a more rea-

sonable way, we decompose each MIPS complex into

connected components according to the PPI net-

work under study. We will use MIPS-MAN-COMP

and MIPS-ALL-COMP to denote the sets of con-

nected complex components obtained from MIPS-
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MAN and MIPS-ALL, respectively. Finally, since

GFA does not output subgraphs consisting of a sin-

gle node or edge (because they are trivial), all com-

plexes or complex components with sizes 1 or 2

are removed from MIPS-MAN-COMP and MIPS-

ALL-COMP. Note that the contents of MIPS-MAN-

COMP and MIPS-ALL-COMP depend on the under-

lying PPI network used. In Table 1, we summarize

sizes of the benchmark sets with respect to each PPI

network.

Table 1. Sizes of the benchmark sets of protein complexes
with respect to each PPI network.

Benchmark MIPS-PPI DIP-PPI BioGRID-PPI

MIPS-MAN-COMP 100 114 134
MIPS-ALL-COMP 272 759 804

2.2. An outline of GFA

A PPI network is considered as an undirected sim-

ple graph, where nodes represent proteins and edges

denote interactions between two nodes. To find

dense subgraphs, various computational methods

have been proposed (see the introduction section).

Nevertheless, these methods are mostly based on lo-

cal search strategies and can hardly find the densest

subgraphs in a given PPI network.

A widely used definition of the density for a sub-

graph is δ = 2·|E|/(|V |·(|V |−1)) 11, 12, where E and

V denote the sets of edges and nodes in the subgraph,

respectively. An alternative definition is δ = |E|/|V |.

In general, the former definition favors small sub-

graphs (see Spirin and Mirny 12), while the latter

favors large subgraphs. However, both definitions

are sensitive to the size of a subgraph. In fact, when

the first definition is applied, we have to add a lower

bound on |V | to make the result interesting. Con-

sidering this, we use the latter definition of density

in this work, since there exists an elegant algorithm

to find the densest subgraph under this definition.

Besides, our experimental results also demonstrate

that this definition of density works well in finding

protein complexes.

Theoretically, the problem of finding a subgraph

with the greatest density in a graph under the first

definition is much harder than that under the sec-

ond one. The problem under the first definition is

basically equivalent to finding the largest clique in

a graph, a classical NP-hard problem in theoretical

computer science 27. However, there is an elegant

and fast algorithm to solve the problem under the

second density definition. This algorithm, simply de-

noted as DSA (i.e. the Densest Subgraph Algorithm),

finds the densest subgraph in a graph by iteratively

solving a series of maximum flow problems and has

the time complexity of O(|E| · |V | · log(|V |2/|E|)) 26.

Although DSA can be iterated to find many dense

subgraphs in a PPI network, this approach (alone)

will likely not work well in terms of finding protein

complex-like subgraphs, since it tends to find large

dense subgraphs while protein complexes are usually

small (i.e. containing no more than 20 proteins).

Nevertheless, DSA will form the core ingredient of

our GFA algorithm for finding protein complexes.

GFA actually uses a generalized version of the sec-

ond density definition: δ = |E|/w(V ), where we as-

sume that the nodes in the graph are weighted (e.g.

using the log fold changes in some sample of microar-

ray data) and w(V ) denotes the total weight of the

nodes in the subgraph. The DSA algorithm men-

tioned above also works for this generalized defini-

tion.

GFA consists of two phases: (1) identify can-

didate subgraphs from the input PPI network us-

ing a single sample of gene expression data, and

(2) combine candidate subgraphs from multiple sam-

ples to form a ranked list of predicted protein com-

plexes. The basic idea behind the first phase is to

iterate DSA to obtain (large) dense subgraphs and

then break each large dense subgraph into fragment

subgraphs by weighting its nodes appropriately us-

ing the log fold changes of the nodes in the sam-

ple. This phase is executed on each sample sepa-

rately. In the second phase, we detect and remove

redundant (or overlapping) subgraphs found using

different samples and rank the subgraphs according

to the times that they are found in all samples. The

worst case time complexity of GFA is largely deter-

mined by the time complexity of phase 1, which is

O(|E| · |V |2 · log(|V |2/|E|) · MaxIter · SampleSize),

where MaxIter is a parameter defined below and

SampleSize is the number of samples of the microar-

ray data used in the computation.
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2.3. Identification of candidate

subgraphs

Again, the idea is to break each large dense sub-

graph found by DSA into smaller ones by weighting

its nodes appropriately using gene expression data.

Recall that the gene expression data contains hun-

dreds of samples. In this phase, we look at one

sample at a time. The log fold change of the ex-

pression value of gene A in the sample is denoted

as expr(A). At the beginning, the nodes in the in-

put PPI network with degree 1 are removed. This

will reduce the size of the network and will not affect

our final result much because a dense subgraph is

not expected to contain nodes with degree 1. Then

we weight every node uniformly as 1 and run DSA

to find the densest subgraph. If the size of the sub-

graph identified is above a certain threshold (denoted

as MaxSize), the weight of each node A in the sub-

graph is multiplied by a factor of e−expr(A) and DSA

is applied again to the subgraph. The effect of this

multiplication is that the weights of highly differen-

tially expressed genes in the subgraph are reduced.

The exponentially factor of e−expr(A) in this adjust-

ment was chosen empirically. Note that, since DSA

maximizes the ratio |E|/w(V ), it tends now to find a

subgraph with nodes bearing small weights. In other

words, the above weighting adjustment favors genes

that are highly differentially expressed in the sample.

As an effect, some nodes with large weights may be

removed and the subgraph is fragmented. This step

is executed iteratively, until either a given maximum

iteration count (denoted as MaxIter) is reached or

the size of the subgraph is below MaxSize.

Once a sufficiently small dense subgraph is

found, all the nodes in the subgraph and all the edges

adjacent to any one of the nodes in the subgraph are

removed from the PPI network. Then, we remove all

the nodes with degree 1 in the remaining network and

reiterate the above process of using DSA to find the

next sufficiently small dense subgraph. The whole

process ends when the PPI network exhausts.

Now we discuss the two parameters MaxSize and

MaxIter. MaxSize determines the maximum size of

a subgraph found by GFA. In principle, it should be

set as the largest possible size of an expected pro-

tein complex component (see Section 2.1 for the def-

inition of protein complex components) for a given

PPI network. For example, in our experiments, for

MIPS-PPI, we select 20 as the bound because the

maximum size of a protein complex component in

MIPS-ALL-COMP does not exceed 20. However, our

experiments show that GFA is quite robust with re-

spect to this parameter and it is fine to use a slightly

larger MaxSize, especially when the microarray data

contains many samples, because only the “core” of a

subgraph will be found in multiple samples. For ex-

ample, we also tried to set MaxSize as 30 on MIPS-

PPI and got almost the same result. The parame-

ter MaxIter reflects how strictly we enforce the size

bound. A small MaxIter may lead to subgraphs with

sizes above MaxSize. This is useful when there are a

few protein complexes that are very dense and much

larger than the other protein complexes and we do

not want to make MaxSize too large. So, the pa-

rameters MaxSize and MaxIter together control the

sizes of the output subgraphs. Fortunately, our test

results show that the final result of GFA is not very

sensitive to either of these parameters.

2.4. Combining candidate subgraphs

The above phase 1 of GFA generates a set of can-

didate subgraphs for each sample of the microarray

data. However, many of these subgraphs are dupli-

cated or similar. We define the overlap score of two

sets A and B as overlap(A, B) = 2|A
⋂

B|/(|A| +

|B|). This step aims to distill promising subgraphs

from the candidate subgraphs. More specifically, du-

plicates and trivial subgraphs with sizes 1 or 2 are

removed and similar subgraphs will be merged. How-

ever, because of the drastic difference in the den-

sities of the three PPI networks considered in this

paper, we have to use two different strategies in this

phase. We use a simple strategy for MIPS-PPI and a

more general, slightly more complicated strategy for

DIP-PPI and BioGRID-PPI. The latter networks are

much denser.

2.4.1. The simple strategy

Here we simply count the frequency of each candidate

subgraph in all samples and rank the subgraphs by

their frequencies. A subgraph with a high frequency

is expected to be a promising protein complex (or

complex component), since it is dense and many of
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its nodes are highly differentially expressed in mul-

tiple samples. After the frequency of each candidate

subgraph is calculated, we check if two candidate

subgraphs overlap. If the overlap score between two

graphs (computed using their vertex sets) is above

a certain cutoff (denoted as MaxOverlap), they are

deemed duplicates and the one with a smaller fre-

quency is simply removed.

Note that, the result of this removal step de-

pends on the order that we process the candidate

subgraphs. For example, consider subgraphs A, B, C

with sizes a, b, c respectively, with a > b > c. A

overlaps with B and B overlaps with C, but A and

C do not overlap according to the given overlap cri-

terion. If A and B are processed after B and C

are processed, only A remains. But if we process A

and B first, then both A and C will remain. So,

for consistency, we consider the pairs of candidate

subgraphs in decreasing order of their overlap. This

simple strategy is also applied to the following more

general strategy and the combined strategy.

As shown in our experimental results, this simple

strategy works very well on MIPS-PPI, mostly due

to its sparsity. It also works on the DIP-PPI and

BioGRID-PPI, although it appears to be too conser-

vative in dealing with similar candidate subgraphs.

2.4.2. The more general strategy

Dense subgraphs in dense PPI networks tend to be

larger and we cannot expect that the subgraph corre-

sponding to a real protein complex will be discovered

by GFA from many samples exactly, since the sam-

ples generally have different expression levels. Thus,

the simple strategy is too conservative for this situa-

tion. Moreover, when the input PPI network is large

(such as BioGRID-PPI), DSA becomes quite slow

and we may not want to spend the time to exam-

ine every sample of the microarray data. Hence, in

this case, we need revise the definition of frequency

and introduce a more general strategy to combine

results from different samples. Our basic idea here

is to combine similar candidate subgraphs. Due to

the page limit, this general strategy and a combined

method to integrate it with the simple stragegy is

omitted in this extended abstract but will be given

in the full paper.

3. RESULTS

3.1. Some useful definitions and

notations

Before discussing the results, we need introduce sev-

eral definitions and notations. First, since we will

mainly validate our predictions against benchmark

protein complexes in MIPS, we define the effective

size of a predicted protein complex as the number of

proteins shared by this predicted complex and the

complexes in the relevant benchmark (i.e. MIPS-

MAN-COMP or MIPS-ALL-COMP). Obviously, we

could only hope to validate predicted protein com-

plexes with large effective sizes. We say that a pro-

tein complex (component) A in a benchmark set is

identified by a predicted complex B with some cutoff

p if |A
⋂

B|2/(|A| · |B|) ≥ p. Since a commonly used

value for p in the literature is 0.2 11, 15, we say that

B matches A if A is identified by B with the cutoff

p = 0.2. The following several (shorthand) notations

will be convenient to use in tables and figures:

(1) predicted (or P for short): The number of pre-

dicted protein complexes.

(2) matched (or M for short): The number of pre-

dicted complexes that match some protein com-

plex component in the relevant benchmark set.

(3) Pe≥n: The number of predicted complex with

effective sizes at least n.

(4) Pe=n : The number of predicted complexes with

effective sizes exactly n.

(5) identified(p) (or I(p) for short): The number of

complex components in the relevant benchmark

set that have been identified by any one of the

predicted complexes with cutoff p. This parame-

ter generally reflects the sensitivity of the predic-

tion. Although the widely used p value is 0.2, we

will also consider p = 0.5 since it could provide

more insight into the prediction result.

(6) effective specificity : The number of predicted

protein complexes that match complex compo-

nents in the relevant benchmark set divided by

the number of predicted complexes with effec-

tive sizes at least 2. In other words, it is equal

to M/Pe≥2. Hereafter, the term specificity refers

to effective specificity unless stated otherwise.
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Note that, because of overlaps in the predicted

results and the benchmark sets, the number of

matched predicted complexes may not be the same

as the number of the identified complex components

in the relevant benchmark. In other words, M may

be different from I(0.2). For example, M = 1 and

I(0.2) = 2 means that the result consists of one pre-

dicted complex that matches (and perhaps contains)

two complex components in the benchmark. On the

other hand, M = 2 and I(0.2) = 1 means that the re-

sult consists of two predicted complexes that match

(and are perhaps contained in) a single benchmark

complex component. In general, let us define the

efficiency of a prediction as the ratio between I(p)

and M . Clearly, with the same I(p) value (i.e. the

same sensitivity), we would prefer prediction results

with a small M since a smaller M would imply a

higher efficiency. In our test results, an important

property is that the number Pe≥2 is very close to M

when the parameter MinFrequency is large. Hence,

among the protein complexes predicted by GFA, a

top ranked protein complex either has a match in

the benchmark or has a very small effective size (i.e.

it is largely disjoint from the benchmark).

3.2. Matching to the benchmark

For succinctness, we give a detailed report of the

prediction result on MIPS-PPI and their matches in

MIPS-MAN-COMP, and sketch the other results. As

mentioned before, on MIPS-PPI, the simple strategy

in phase 2 of GFA is applied. MIPS-MAN-COMP

contains 100 complex components with respect to

MIPS-PPI. The actual output of GFA depends on

the parameters MinFrequency and MaxOverlap in-

volved in phase 2. By choosing different values for

these two parameters, we obtain prediction results

with different combinations of sensitivity and speci-

ficity. In general, a big MinFrequency implies a high

specificity and a low sensitivity.

Figure 1 shows the number of predicted com-

plexes and their matching benchmark complexes

with respect to various combinations of MinFre-

quency and MaxOverlap. An interesting observation

is the high accordance among Pe≥2, M and I(0.2).

The accordance between the former two terms im-

plies (as mentioned before) that a predicted protein

complex has either a match in the benchmark or a

very small (i.e. at most 1) effective size. While the

accordance between the latter two terms indicates

that GFA is very efficient and the accordance be-

tween the 1st and 3rd terms implies that GFA main-

tains a good (effective) specificity. The comparison

between the prediction results for MaxOverlap =

0.2 and MinOverlap = 0.5 shows that the parameter

MaxOverlap has little impact when MinFrequency is

greater than 2. This means that the predicted pro-

tein complexes in general do not overlap too much

with each other.
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Fig. 1. Protein complexes predicted by GFA on MIPS-PPI
and their matches in MIPS-MAN-COMP. Two MaxOverlap

values, 0.2 (left) and 0.5 (right), are considered. The notation
eff ≥ 1 stands for P

e≥1.

Table 2 gives the detailed results when two ex-

tremal values of MinFrequency are considered, with

MaxOverlap being fixed at 0.2. In the first group

of results where MIPS-MAN-COMP is used as the

benchmark (i.e. the more reliable benchmark), when

MinFrequency = 20, 49 out of the 100 complex

components in the benchmark are identified. Al-

though the sensitivity is only 49%, 44 out of the 45

predicted complexes with large effective sizes (i.e.

at least 2) have matches in the benchmark, which

means that the (effective) specificity of this predic-

tion is 97%. Moreover, among the 64 predicted pro-

tein complexes that have no matches in the bench-

mark, 58 of them have zero effective size. In other

words, their proteins do not appear in the bench-
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mark at all. We conjecture that these 58 predicted

complexes represent novel protein complexes (or at

least are involved in novel protein complexes).

On the other hand, if MinFrequency = 2, the

predicted protein complexes identify 70% of the com-

plex components in the benchmark, but the speci-

ficity drops. Among the 82 predicted complexes with

large effective sizes, 63 of them match complex com-

ponents in the benchmark, i.e. the specificity is 77%.

Comparing the values of I(0.2) and I(0.5), we see

that GFA could identify 21 additional complex com-

ponents in the benchmark using MinFrequency = 2

than using MinFrequency = 20, as suggested by

the values of I(0.2), but only 5 of them have been

identified with a high accuracy, as suggested by the

values of I(0.5). This means that generally speaking,

complexes predicted by GFA with higher frequencies

identify complex components in the benchmark more

accurately. In other words, a predicted complex with

a higher rank is more likely to be (or at least to be

involved in) a true protein complex. Again, we con-

jecture that the 176 predicted complexes that share

no proteins with the benchmark complexes represent

novel complexes. Note that, the 176 novel complexes

actually include the 58 novel complexes mentioned

above.

By examining the sets of subgraphs out-

put by GFA with MinFrequency = 20 and

MinFrequency = 2 in detail, we find that the for-

mer set could already identify most of the large and

dense complex components in the benchmark MIPS-

MAN-COMP. 18 out of the 30 complex components

in the benchmark missed by the latter (larger) set

are trees with at most 6 nodes, and the remaining 12

missing complex components have densities at most

2 in MIPS-PPI. The details of these results are not

shown here. It is also clear that GFA achieves very

good efficiency in both cases, with the ratio I(0.2)/M

being about 1.11.

In the second part of Table 2 where MIPS-

ALL-COMP is used as the benchmark, when

MinFrequency = 20, 57 out of the 61 predicted

complexes with large effective sizes have matches in

the benchmark. Thus, we still have the same prop-

erty that a protein complex predicted by GFA with

a high frequency has either a match in the bench-

mark or a very small effective size. The sensitivity

and specificity of the prediction are generally a bit

worse than those using MIPS-MAN-COMP. The sen-

sitivity is 135/272 = 50% for MinFrequency = 20

and 179/272 = 66% for MinFrequency = 2 and the

specificity is 57/61 = 93% for MinFrequency = 20

and 89/127 = 70% for MinFrequency = 2. This is

perhapss due to the noise in MIPS-ALL.

Table 2. Protein complexes predicted by GFA on MIPS-PPI
and their matches in MIPS-MAN-COMP and MIPS-ALL–
COMP. MAN and ALL stands for MIPS-MAN-COMP and
MIPS-ALL-COMP, respectively. f stands for MinFrequency,
and MaxOverlap is set to 0.2.

P I(0.2) I(0.5) M P
e≥2 Pe=0

MAN, f=20 108 49 36 44 45 58
MAN, f=2 287 70 41 63 82 176

ALL, f=20 108 135 82 57 61 43
ALL, f=2 287 179 91 89 127 129

It is interesting to note that only a small fraction

of the novel protein complexes conjectured above

have matches in MIPS-ALL-COMP (i.e. at most

15 = 58 − 43 for MinFrequency = 20 and at most

47 = 176 − 129 for MinFrequency = 2).

The GFA prediction results on DIP-PPI and

BioGRID-PPI and their matches in MIPS-MAN-

COMP are sketched below. The details are given

in the appendix (see Tables 5 and 6, and Figures 2

and 3). On DIP-PPI and BioGRID-PPI, the com-

bined strategy in phase 2 of GFA is used. In both

cases, MinFrequency = 3 is selected as the smallest

frequency threshold instead of MinFrequency = 2.

This is because the combined strategy in phase 2

introduces noise (i.e. spurious subgraphs) as it re-

laxes the definition of frequency. Such spurious sub-

graphs typically have very low frequencies and could

potentially be eliminated by using a moderate Min-

Frequency threshold.

On DIP-PPI, the parameter MaxOverlap is set

as 0.2 as before. With MinFrequency = 20, GFA

predicts 116 protein complexes. 51 of them are con-

jectured to be novel based on their (zero) effective

sizes, using MIP-MAN-COMP as the benchmark.

The sensitivity and specificity are 50% and 91%, re-

spectively. With MinFrequency = 3, GFA predicts

318 protein complexes, and 204 of them are conjec-

tured to be novel. The sensitivity and specificity
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are 73% and 85%, respectively. Unlike on the MIPS

or DIP PPI networks, the parameter MaxOverlap

has a significant impact on the prediction results for

BioGRID-PPI, since the network is much denser. We

will take MaxOverlap = 0.5 as an example to show

the results in this paper. With MinFrequency = 20,

GFA predicts 166 protein complexes and 111 of them

are conjectured to be novel. The sensitivity and

specificity are 31% and 83%, respectively, still us-

ing MIPS-MAN-COMP as the benchmark. With

MinFrequency = 3, GFA predicts 870 protein com-

plexes and 529 of them are conjectured to be novel.

The sensitivity and specificity in this case are 48%

and 63%, respectively.

We note that in all of the above tests, GFA

achieves the best sensitivity (of 73%) with a de-

cent specificity (of 85%) on DIP-PPI, whereas its

accuracy deteriorates significantly on BioGRID-PPI.

This does not surprise us because although MIPS-

PPI is supposed to be the most reliable one among

the three PPI networks, it may also miss many true

edges (interactions). In other words, it may be too

conservative. These missing edges, some of which

may exist in DIP-PPI, could provide useful density

information in the computation of GFA. On the other

hand. BioGRID-PPI may contain many false inter-

actions that could mislead GFA. The prediction ef-

ficiency of GFA remains good on both DIP-PPI and

BioGRID-PPI.

3.3. Comparison with the previous

methods

In this section, we compare the performance of GFA

with those of two existing methods for identifying

protein complexes from PPI networks that are pro-

posed or surveyed in Spirin and Mirny 12 and Li et

al. 15. We will not consider methods based on com-

parative analysis of PPI networks in this comparison,

since we are mostly interested in the interplays be-

tween PPI data and microarray gene expression data

in the current study and the issue of how gene ex-

pression profiles could help analysis of PPI networks.

Because the previous methods all predict complexes

that are connected in the input PPI network and

contain at least three proteins, MIPS-MAN-COMP

will be used as the benchmark for a fair comparison.

Table 3. Comparison of GFA and Spirin and Mirny 12 on
MIPS-PPI. The row MinFrequency = 58 shows the result of
GFA when MinFrequency is set as 58.

P I(0.2) I(0.5) M P
e≥2 Pe=0

V. Spirin 76 39 28 46 51 21
MinFrequency = 58 77 39 30 35 35 40

The first comparison is with the result reported

in Spirin and Mirny 12, which is a bit old but

still among the most accurate protein complex pre-

dictions. After removing duplicates from the pro-

tein complexes predicted in this reference, we ob-

tain 76 subgraphs. To match this number, we set

MinFrequency = 58 so that the number of sub-

graphs output by GFA is close to 76. Table 3 sum-

marizes the performance of both prediction results.

Both results identify almost the same number of com-

plex components in the benchmark (so the same sen-

sitivity) with the cutoff p = 0.2 or p = 0.5. But the

values of the parameter M show that our result is

more efficient, since the 35 matched predicted com-

plexes in our result achieve the same sensitivity as

that achieved by the 46 matched predicted complexes

in Spirin and Mirny 12. More importantly, because

of this efficiency, our result suggests 19 more novel

complexes that are completely disjoint from the pro-

teins in the benchmark complexes, as shown in the

Pe=0 column.

The comparison should be taken with a grain of

salt because Spirin and Mirny 12 used an older PPI

data from MIPS, which is no longer available. Note

that, a more recent MIPS-PPI may not give their

method a better result. Nonetheless, our algorithm

GFA is much simpler than theirs, especially when

the simple strategy is used in phase 2, because their

result is a combination of the outputs of three totally

different algorithms.

The second comparison is with DECAFF, an al-

gorithm proposed by Li et al. 15 recently. Since

they gave a detailed comparison between DECAFF

and many existing methods for protein complex iden-

tification in the literature, including MCODE 11,

LCMA 14, and an algorithm proposed by Altaf-Ul-

Amin et al. 28, and demonstrated the superiority of

DECAFF over these methods, we will only compare

GFA with DECAFF in this paper.

DECAFF uses the same MIPS PPI data as that
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used by GFA and predicts 1220 complexes. The first

group of results in Table 4 shows the matching of

the 1,220 complexes to the benchmark complexes.

For comparison, the matching of the 287 complexes

predicted by GFA with MinFrequency = 2 is listed

here too. As we can see, the GFA prediction result

contains less than 1/4 of the complexes predicted by

DECAFF while only losing 3% sensitivity. This com-

parison also suggests that the complexes produced by

DECAFF overlap with each other a lot. For a more

informative comparison, we remove overlapped pu-

tative complexes as described in Section 2.4.1. Since

the removal depends on the cutoff MaxOverlap, we

consider two cutoff values here: 0.5 and 0.2.

The second and third groups of results in Table 4

compare the predictions of GFA and DECAFF after

the removal. In each case, the MinFrequency parame-

ter in GFA is selected so that the number of predicted

complexes by GFA is close to that by DECAFF. The

comparison shows that GFA outperforms DECAFF

in terms of sensitivity (I/100), specificity (M/Pe≥2)

and efficiency (I/M). Moreover, GFA is able to find

more novel protein complexes, as shown in the Pe=0

column.

Table 4. Comparison of GFA and DECAFF on MIPS-PPI.
o and f stand for MaxOverlap and MinFrequency, respec-
tively.

P I(0.2) I(0.5) M P
e≥2 Pe=0

DECAFF 1,220 73 48 505 757 280
o=0.2, f=2 287 70 41 63 82 176

o=0.5, DECAFF 242 61 25 64 109 87
o=0.5, f=4 228 68 41 67 77 131

o=0.2, DECAFF 111 43 21 41 55 44
o=0.2, f=18 111 53 36 46 47 58

We also compare our results on BioGRID-PPI

with that generated by DECAFF on the same PPI

network as reported in Li et al. 15. A comparison

of the 2,840 predicted complexes predicted by DE-

CAFF and the benchmark complexes is given in the

first row of Table 7 in the appendix. Although this

prediction has a high (perfect) sensitivity and decent

specificity, it has a very low efficiency as the 118 com-

plex components in the benchmark are identified by a

large number (i.e. 1,141) of the predicted complexes.

In other words, the predicted complexes overlap a

lot with each other. For a more informative com-

parison, we again remove overlapped putative com-

plexes using the method described in Section 2.4.1,

with MaxOverlap = 0.5 or MaxOverlap = 0.2. The

second and third groups of results in Table 7 com-

pare the predictions of GFA and DECAFF after the

removal. In each case, MinFrequency is selected

so that the number of predicted complexes by GFA

is close to that by DECAFF. The table shows that

GFA outperforms DECAFF significantly in terms of

specificity (M/Pe≥2), efficiency (I/M), and the abil-

ity to predict novel protein complexes (Pe=0). It is

only outperformed by DECAFF in sensitivity when

p = 0.2. In fact, it achieves a better sensitivity than

DECAFF when p = 0.5, although the sensitivities of

both methods are all pretty low.

3.4. The effects of microarray data and

parameters in phase 1

The experiments on the three PPI datasets show that

the number of samples combined in GFA has a big

impact on the final result, but the prediction results

of GFA are not very sensitive to the parameters in

phase 1. Due to the page limit, a detailed discus-

sion on these effects or non-effects is omitted in this

extended abstract but will be given in the full paper.

4. CONCLUSIONS AND DISCUSSION

We have presented a max-flow based algorithm,

GFA, to identify complexes from PPI networks by in-

corporating microarray data. Compared to the pre-

vious methods, GFA is actually able to find the dens-

est subgraphs in the input PPI network efficiently,

rather than using some local search heuristic. Our

experiments on the MIPS, DIP, and BioGRID PPI

networks have demonstrated that GFA outperforms

the previous methods in terms of specificity, effi-

ciency and ability in predicting novel protein com-

plexes, and it has a comparable sensitivity as those

of the previous methods. One of the reasons that

GFA was not able to identify some of the bench-

mark protein complexes is that it removes nodes of

degree 1 from the network in every iteration. This

step is necessary since it prevents GFA from produc-

ing many small spurious complexes. We may have to

explore a different strategy in order to improve the
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sensitivity.

In phase 1 of GFA, multiple rounds of DSA have

to be executed in order to find a dense subgraph of

a sufficiently small size. This is time consuming. To

speed up this step, we can set a small MaxIter. We

have demonstrated that the final result is not very

sensitive to this parameter. An alternative is to as-

sign larger weights to nodes based on expression data

in each round.

Our discussion in the previous section shows that

the performance of GFA generally improves when

more samples are combined. However, the running

time of GFA is proportional to the number of samples

and could become a concern when the PPI network

is large/dense.
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Appendix: additional figures and tables

Table 5. Protein complexes predicted by GFA on
DIP-PPI and their matches in MIPS-MAN-COMP and MIP-
S-ALL-COMP. MAN and ALL stands for MIPS-MAN–
COMP and MIPS-ALL-COMP, respectively. f stands for
MinFrequency, and MaxOverlap is set to 0.2.

P I(0.2) I(0.5) M P
e≥2 Pe=0

MAN, f = 20 116 57 35 49 54 51
MAN, f = 3 318 83 46 69 81 204

ALL, f = 20 116 171 75 77 97 6
ALL, f = 3 318 303 106 160 241 35

Table 6. Protein complexes predicted by GFA on Bi-
oGRID-PPI and their matches in MIPS-MAN-COMP. f and
o stand for MinFrequency and MaxOverlap, respectively.

P I(0.2) I(0.5) M P
e≥2 Pe=0

o = 0.5, f = 20 166 42 28 38 46 111
o = 0.5, f = 3 870 85 41 108 223 529

o = 0.2, f = 20 157 38 25 35 44 106

o = 0.2, f = 3 453 73 30 69 103 296

Table 7. Comparison of GFA and DECAFF on Bi-
oGRID-PPI. Again, o and f stand for MaxOverlap and
MinFrequency, respectively.

P I(0.2) I(0.5) M P
e≥2 Pe=0

DECAFF 2,840 118 81 1141 1,871 533

o = 0.5, DECAFF 610 101 30 144 264 215
o = 0.5, f = 4 582 75 40 79 144 369

o = 0.2, DECAFF 226 53 15 48 78 113
o = 0.2, f = 10 221 51 25 46 56 150
o = 0.2, f = 9 234 52 25 46 58 160
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Fig. 2. Protein complexes predicted by GFA on DIP-PPI
and their matches in MIPS-MAN-COMP. Two MaxOverlap

values, 0.2 (left) and 0.5 (right), are considered. Here, eff ≥ 1
stands for P

e≥1.
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Fig. 3. Protein complexes predicted by GFA on BioGRID
and their matches in MIPS-MAN-COMP. Two MaxOverlap

values are considered: 0.2 (left) and 0.5 (right). Again, eff ≥

1 stands for P
e≥1.


