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The Shortest Superstring Problem (II)

Applications:

1. Data compression. A set of strings can be repre-
sented by a superstring and positions of the strings
in the superstring and their lengths.

2. DNA sequencing. State-of-the-art biochemistry can
sequence a fragment of about 500 nucleotides. Longer
DNA molecules are “cut” into short overlapping
fragments that are sequenced separately. These
fragments are then "assembled” by a shortest su-
perstring algorithm.

The Shortest Superstring Problem (I)

Given a set of strings S = {si1,...,sm}, find a shortest
superstring s that contains all s; as substrings.

Example. “Alf ate half lethal alpha alfalfa.”

S = {alf, ate, half, lethal, alpha, alfalfa}

wi = atehalflethalalphaalfalfa  |wi| =25
wp = lethalfalfalphate  |wp| = 17

w3 = lethalphalfalfate  |ws| =17

Asume the input set S is substring-free.

The Shortest Superstring Problem (III)
The shortest superstring problem is MAX-SNP hard [GMS80,B.

Try to approximate!

Denote as opt(S) the length of a shortest superstring
and as maxov(S),

maxov(S) = |si| — opt(S),
S;€ES
the compression or total overlap between strings in a
shortest superstring.

maxov(S) is the maximum overlap in any superstring!

Overlap approximation seems to be easier than length
approximation.

[TU88] and [T89] prove that “the GREEDY”

algorithm %—approximates the overlap.

Conjecture: “The GREEDY” algorithm 2-approximates
the length. [BJLTY94] prove that it 4-approximates the
length.



The Shortest Superstring Problem (IV)

Length Approximation Algorithms |
Blum, Jiang, Li,
Tromp and Yannakakis 91 | 3
Teng and Yao 93| 2.89
Czumaj, Gasieniec
Piotrow and Rytter 94 | 2.83
Kosaraju, Park and Stein | 94 | 2.79
Armen and Stein 95 | 2.75
Armen and Stein 96 | 2.67
This work 96 | 2.67
This work 96 | 2.596
Sweedyk 96 | 2.5 7?77

|
| Overlap Approximation Algorithm |
| Kosaraju, Park and Stein | 94 | 0.603 |

The Distance Graph

Given a set of strings S = {s1,...,sm}, the distance
graph Gg has m vertices si,...,5m.

The edge (si,s;), i # j, has weight d(s;, s;).-

Example: Gg for S = {ate, lethal,alpha, alfalfa}:

leth/4 aph/4

afalf/e

Clare (ae)

/wud e

leth/4 @ dfalf/e

TSP(Gs) is the minimum weight of any Hamiltonian
cycle in Gg (i.e. optimal TSP solution).

Then, for each s; € S,
TSP(Gs) < opt(S) < TSP(Gs) + [sil-

opt(S) & pref(sy1),Sn(2)) - - - Pref (Sa(k—1)> Sr(m)) Sn(m)
TSP(S) &

pref (n(1)s $x(2)) -+ * PTf (Sr(k—1)> Su(m)) PTEf (8x(m)> Sx(1))

Basic Notations and Facts

Given strings s and t, let y be the longest string such
that s = zy and t = yz, for some non-empty =z and z.

s = lethal
half = ¢

ov(s,t) = 3
pref(s,t) = let
d(s,t) = 3
(s,t) = lethalf

(Sis,---,8i,) IS the shortest string containing the strings
in the specified order:

(8iry- - -, 8i,) = pref(siy, si,) - - - pref (si_y, si,) si,

(lethal, half, alfalfa) = lethalfalfa
Claim: The shortest superstring for S = {s1,...,8m} is
(Sx(1)s - - - > Sn(m)) TOr some permutation .
m m—1
maxov(S) = Z [si| — opt(S) = Z 0V (Sn(iys Sn(it1))
i=1 i=1

Cycle Covers

A cycle cover of a graph is a collection of disjoint cycles
that cover all vertices.

CYC(Gg) is the minimum weight of any cycle cover of
Gs.

Clearly CYC(Gs) < TSP(Gs) < opt(S).

opt(S) < ?CYC(Gs)?.

Good news:

We can compute CYC(Gg) in polynomial time.

This will be taken for granted in this talk.



Periods and Rotations of Strings

A string s has a factor z if s = z'y, for some integer i
and prefix y of x.

The factor of s, f(s), is the shortest factor of s.
Denote the period of s as p(s) = |f(s)|-

Two strings s and t are equivalent if f(s) is a rotation
of f(t). Namely if f(s) ==zy and f(t) = yz.

The factor x = f(s) of a semi-infinite string s is the
shortest string such that s = z*.

Examples:

The string aabaabaa has factors aab, aabaab, aabaaba, and
aabaabaa.

The factor f(aabaabaa) = aab.
The strings aba and baa are rotations of aab.

The string (baa)™ is equivalent to aabaabaa.

The Generic Superstring Algorithm (I)

First part:
1. Construct the distance graph Gg.
2. Find a minimum weight cycle cover C in Gg.

3. Choose a representative string t. for each cycle c €
C, such that for some j:

(a) te contains (si,.,..., 84, Sy, .-, i), and

(b) t. is contained in (si,,...,Si,,8i,---,Si)-
4. Let T be the set of representatives above.

Remark: The strings in T are pairwise inequivalent.

Lemma: opt(7T) < opt(S) + CYC(S) < 20pt(S).
Proof.

(Sijy e v s Siy Siysnnnr8i,) = F({Sijy-vns iy Siyse--s8i,,)) S5,
opt(( J{s4}) < opt($)
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Periods and Cycles

Let C be a minimum weight cycle cover of Gg and
Cc= Si,,-..,8i,si € C.

pref(i1,i2)

(50 2
=
]
[=%

St G

pref(i j, ij+2
Opening the cycle at i; gives (si;,..., i, Siy,---8i,)-

f((‘%jv ey Sipy Sigy ey S’l;j—l)) =
me(s’ijV Sij+1) e pref(sir717 Sir)pref(siIV 5‘i2) o .pref(sij—17 Sij)

Lemma. These strings are all equivalent and have pe-
riod w(c) = d(si,,si,) + -+ + d(si,,;8:,) + d(si,, 8i)-

Lemma: Let ¢ = sp,...,s, € C be another cycle.
Then, <shp, ey Shyy Shyy s Sh,,1> and <Sij, e 380y Siyy ey 51};1)
are inequivalent.

10

The Generic Superstring Algorithm (II)

Second part:
1. Construct the distance graph Gr.
2. Find a minimum weight cycle cover CC in Gr.
3. Open each cycle of CC arbitrarily.
4. Let R be the set of the strings obtained above.

5. Concatenate the strings in R to produce a
superstring s of S.

Overlap Lemma: [FW65] For inequivalent strings s
and t,

ov(s,t) <p(s) +p(t).

Let OV be the overlap on the broken edges in all cycles
of CC. Then,

OV <> p(t) =Y _w(c) = CYC(Gs).

ceC ceC

Conclusion: Recalling CYC(Gr) < opt(T) < 20pt(S).

|8 = CYC(Gr) + OV < 20pt(S) + opt(S) < 30pt(S).
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The Overlap-Rotation Lemma

Let @ = ajas--- be a semi-infinite string.
Denote a rotation alk] = arag+1----

There exists an integer k, such that for any finite string
s that is inequivalent to o and satisfies p(s) < p(a),

ov(s,alk]) < 2((s) +p(@)).

Remarks:

The bound above is roughly tight as demonstrated by
the string o = (0"107+11).

«a is semi-infinite for convenience.
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The Improved Algorithm (II)
How to choose the representative t., for the cycle
C = Sjy...,8.
1. Take a = (f({si,---,8i)))>®.

2. Let B be the rotation of a with the properties of
the overlap-rotation lemma.

3. Let (si,,---,8i,S8i,.--,5;) be the first such string
that appears in 8.

4. Take t. to be the shortest prefix of 8 containing

(Sijpar =1 Siyy Siyy vy Si;)e
Clearly t. is contained in (s;;,..., i, Si,---,8i,)-

The string t. can be found in polynomial time.
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The Improved Algorithm (I)

First part:
Choose the representatives t. with care.
Second part:

Break each cycle of CC by deleting an edge that
goes from a string to another with equal or larger
period.

Now,

2 2 2
oV < — t.) = —=CYC(Gs) < —opt(S).
_3§p(c) 3 (s)_3p()
ceC
And,

2
|3l = CYC(Gr) + OV < 270p(S).
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The Second Improvement

O-R Lemma II: Va3kVs ov(s,alk]) < p(s) + 3p(a).

Lemma: If apx(T) is the length of the superstring of
T produced by some § overlap approximation algorithm,
then,

apx(T) < ) |t — & maxov(T)
(;T)t(T) + (1 — §)maxov(T).

Lemma: Assume that a shortest superstring of T is
(t1,...,t). Then,

r—1 r
3 3
maxov(T) = ti, t; < —p(t;)) = =CYC(Gyg).
(T) i=Z10v( i +1)_i=212p( i) > (Gs)

Consequence: Using the % overlap approximation
algorithm of [KPS94]:

apx(T)

IN

opt(T) + (1 — %)maxov(:r)
25 3
2opt(S) + o3 ECYC(GS)

25
Eopt(s) ~ 2.5960pt(S).

A

IN

2
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Proof of the O-R Lemma (I)

Va3kVs, s inequivalent to a and p(s) < p(a),

ov(s,alk]) < 2(p(s) + p(@)).

A string w is unbordered if it has no proper prefix that
is also a suffix. Namely, f(w) =w. E.g., ababb.

A non-trivial factorization (u,v) of w is a non-empty
prefix u and suffix v of w = ww.

The local factor of a factorization (u,v) of w = wv is
the shortest string x that is consistent with both sides
of the factorization (u,v).

Example:
a|baaaba ablaaaba abalaaba
ba ba aaab aaab a a
(a) (b) ()

A factorization (u,v) of w = ww is critical if its local
factor z has length p(w).

The Critical Factorization Theorem [CV78]:

Given any p(w) — 1 consecutive non-trivial factorizations
of w, at least one is a critical factorization.
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Proof of the O-R Lemma (III)

Let o' be a rotation of a with w = f(«’) unbordered.

Let w = wv be a critical factorization.

1. If ju| < p(g—“), B = (uv)*® is the required rotation.

2. Otherwise |v| < %2 and g = (vu)*™ is the required
rotation.
Since the rotation B starts with an unbordered factor,
ov(s, B) < p(a).
Since B has a critical factorization 8 = zB’ with
2| < P,

p(@)

0u(s,8) < p(s) + [o] < p(s) + 7.

|
!

C i |

Putting all this together we get:

p(a)

00(s,8) < Min(p(a), p(s) + 22) < 2(p(s) + p(@)).
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Proof of the O-R Lemma (II)

Lemma:

Let w be unbordered and have critical factorization (u,v).
Then,

1. the rotation w’ = vu is also unbordered; and
2. (v,u) is a critical factorization of w'.

Proof: by contradiction.
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Open Problems

1. Is GREEDY a 2-approximation?

2. Find better polynomial time approximation algo-
rithms for length or for overlap.
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