Dynamic Programming Method for Analyzing Biomolecular Sequences

Tao Jiang
Department of Computer Science
University of California - Riverside
(Type set by Kun-Mao Chao)

E-mail: jiang@cs.ucr.edu
http://www.cs.ucr.edu/~jiang

Outline
• The paradigm of dynamic programming
• Sequence alignment – a general framework for comparing sequences in bioinformatics
• Dynamic programming algorithms for sequence alignment
• Techniques for improving the efficiency of the algorithms
• Multiple sequence alignment

Dynamic Programming
• Dynamic programming is an algorithmic method for solving optimization problems with a compositional/recursive cost structure.
• Richard Bellman was one of the principal founders of this approach.

Two key ingredients
• Two key ingredients for an optimization problem to be suitable for a dynamic programming solution:
 1. optimal substructures
 2. overlapping subinstances
 Each substructure is optimal. (principle of optimality)
 (Otherwise, a divide-and-conquer approach is the choice.)
Three basic components

- The development of a dynamic programming algorithm has three basic components:
 - A recurrence relation (for defining the value/cost of an optimal solution);
 - A tabular computation (for computing the value of an optimal solution);
 - A backtracing procedure (for delivering an optimal solution).

Fibonacci numbers

The Fibonacci numbers are defined by the following recurrence:

\[
F_0 = 0 \\
F_1 = 1 \\
F_i = F_{i-1} + F_{i-2} \quad \text{for } i > 1.
\]

How to compute \(F_{10}\)?

Tabular computation

- Tabular computation can avoid redundant computation steps.

<table>
<thead>
<tr>
<th></th>
<th>(F_0)</th>
<th>(F_1)</th>
<th>(F_2)</th>
<th>(F_3)</th>
<th>(F_4)</th>
<th>(F_5)</th>
<th>(F_6)</th>
<th>(F_7)</th>
<th>(F_8)</th>
<th>(F_9)</th>
<th>(F_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
</tr>
</tbody>
</table>
Maximum sum interval

• Given a sequence of real numbers a_1, a_2, \ldots, a_n, find a consecutive subsequence with the maximum sum.

For each position, we can compute the maximum-sum interval starting at that position in $O(n)$ time. Therefore, a naive algorithm runs in $O(n^2)$ time.

O-notation: an asymptotic upper bound

• $f(n) = O(g(n))$ iff there exist two positive constant c and n_0 such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

For example, $5n + 108 = O(n)$ and $2n = O(n \log n)$.

How functions grow?

<table>
<thead>
<tr>
<th>Function</th>
<th>30s</th>
<th>$92n \log n$</th>
<th>$26n^2$</th>
<th>0.68n^3</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0 sec</td>
<td>0.001 sec</td>
<td>0.26 sec</td>
<td>0.48 sec</td>
<td>4×10^6 sec</td>
</tr>
<tr>
<td>100,000</td>
<td>1.0 min</td>
<td>2.6 min</td>
<td>3.0 days</td>
<td>22 yr</td>
<td></td>
</tr>
</tbody>
</table>

(Assume one million operations per second.)

For large data sets, algorithms with a complexity greater than $O(n \log n)$ are often impractical!

Maximum sum interval

• Define $S(i)$ to be the maximum sum of the intervals ending at position i.

$$S(i) \leftarrow a_i + \max \left\{ S(i-1), 0 \right\}$$

If $S(i-1) < 0$, concatenating a_i with its previous interval gives less sum than a_i itself.
Maximum sum interval (tabular computation)

\[
\begin{array}{ccccccccccccccc}
 & 9 & -3 & 1 & 7 & -15 & 2 & 3 & -4 & 2 & -7 & 3 & -2 & 8 & 4 & -8 \\
S(i) & 9 & 8 & 6 & 7 & 14 & -1 & 2 & 5 & -1 & 3 & -4 & 8 & 4 & 12 & 10 & 7 \\
\end{array}
\]

The maximum sum

\[\text{S}(6) = 6 \cdot 2 \cdot 8 \cdot 4\]

Running time: \(O(n)\).

Maximum sum interval (backtracing)

\[
\begin{array}{ccccccccccccccc}
 & 9 & -3 & 1 & 7 & -15 & 2 & 3 & -4 & 2 & -7 & 3 & -2 & 8 & 4 & -8 \\
S(i) & 9 & 8 & 6 & 7 & 14 & -1 & 2 & 5 & -1 & 3 & -4 & 8 & 4 & 12 & 10 & 7 \\
\end{array}
\]

The maximum-sum interval: 6 -2 8 4.

Defining scores for alignment columns

- **infocon** [Stojanovic et al., 1999]
 - Each column is assigned a score that measures its information content, based on the frequencies of the letters both within the column and within the alignment.

\[
\begin{array}{cccccccc}
 & \text{GATCAT} & = & \text{GGA} \\
\text{GFAACTTGGAA} & \text{GACATAGTA} \\
\end{array}
\]

Defining scores (cont’d)

- **phylogen** [Stojanovic et al., 1999]
 - Columns are scored based on the evolutionary relationships among the sequences implied by a supplied phylogenetic tree.

\[
\begin{array}{cccccccc}
 \text{Score} = 1 & \text{Score} = 2 \\
\end{array}
\]
Two fundamental problems we solved (joint work with Lin and Chao)

• Given a sequence of real numbers of length n and an upper bound U, find a consecutive subsequence of length at most U with the maximum sum --- an $O(n)$-time algorithm.

\[U = 3 \]
\[9 -3 1 7 -15 2 -3 -2 -7 6 -2 \]

Two fundamental problems we solved (joint work with Lin and Chao)

• Given a sequence of real numbers of length n and a lower bound L, find a consecutive subsequence of length at least L with the maximum average --- an $O(n \log L)$-time algorithm. This has been improved to $O(n)$ by others later.

\[L = 4 \]
\[3 2 14 6 6 2 \underline{10} 2 6 6 10 2 1 \]

Another example

Given a sequence as follows:
2, 6.6, 6.6, 3, 7, 6, 7, 2
and $L = 2$, the highest-average interval is the squared area, which has the average value $20/3$.

2, 6.6, 6.6, 3, $\underline{6, 7}$

GC-rich regions

• Our method can be used to locate a region of length at least L with the highest C+G ratio in $O(n \log L)$ time.

```
ATGACTCGAGCTCGTCA
0010101100101010
```

Search for an interval of length at least L with the highest average.

```
ATGACTCGAGCTCGTCA
0010101100101010
```
Length-unconstrained version

- Maximum average interval

3 2 6 6 2 10 2 6 6 14 2 1

The maximum element is the answer. It can be done in $O(n)$ time.

A naive algorithm

- A simple shift algorithm can compute the highest-average interval of a fixed length in $O(n)$ time

- Try $L, L+1, L+2, \ldots, n$. In total, $O(n^2)$.

A pigeonhole principle

- Notice that the length of an optimal interval is bounded by $2L$, we immediately have an $O(nL)$-time algorithm.

We can bisect a region of length $\geq 2L$ into two segments, where each of them is of length $\geq L$.

Future Development

- Best k (nonintersecting) subsequences?
- Max-average with both upper and lower length bounds
- General (gapped) local alignment with length upper bound.
- Measurement of goodness?
Longest increasing subsequence (LIS)

- The longest increasing subsequence is to find a longest increasing subsequence of a given sequence of distinct integers a_1, a_2, \ldots, a_n.

 e.g. $9 \ 2 \ 5 \ 3 \ 7 \ 11 \ 8 \ 10 \ 13 \ 6$

 \begin{align*}
 2 & \ 3 \ 7 \ \downarrow \text{are increasing subsequences.} \\
 5 & \ 7 \ 10 \ 13 \ \downarrow \\
 9 & \ 7 \ 11 \ \downarrow \\
 3 & \ 5 \ 11 \ 13 \ \downarrow
\end{align*}

 We want to find a longest one.

 \begin{align*}
 9 & \ 2 \ 5 \ 3 \ 7 \ 11 \ 8 \ 10 \ 13 \ 6 \\
 L[i] & = 1 + \max_{j=0..i-1} \{L[j] \mid a_j < a_i\}
\end{align*}

 (use a dummy $a_0 = \text{minimum}$, and $L[0] = 0$)

 \begin{align*}
 9 & \ 2 \ 5 \ 3 \ 7 \ 11 \ 8 \ 10 \ 13 \ 6 \\
 L[i] & \begin{cases}
 1 & i = 0 \\
 1 & i = 1 \\
 2 & i = 2 \\
 2 & i = 3 \\
 3 & i = 4 \\
 4 & i = 5 \\
 4 & i = 6 \\
 5 & i = 7 \\
 6 & i = 8 \\
 3 & i = 9
 \end{cases}
\end{align*}

The maximum length

The subsequence 2, 3, 7, 8, 10, 13 is a longest increasing subsequence.

This method runs in $O(n^2)$ time.

A naive approach for LIS

- Let $L[i]$ be the length of a longest increasing subsequence ending at position i.

 \[
 L[i] = 1 + \max_{j=0..i-1} \{L[j] \mid a_j < a_i\}
 \]

 (use a dummy $a_0 = \text{minimum}$, and $L[0] = 0$)

 \begin{align*}
 9 & \ 2 \ 5 \ 3 \ 7 \ 11 \ 8 \ 10 \ 13 \ 6 \\
 L[i] & \begin{cases}
 1 & i = 0 \\
 1 & i = 1 \\
 2 & i = 2 \\
 2 & i = 3 \\
 3 & i = 4 \\
 4 & i = 5 \\
 4 & i = 6 \\
 5 & i = 7 \\
 6 & i = 8 \\
 3 & i = 9
 \end{cases}
\end{align*}

The subsequence 2, 3, 7, 8, 10, 13 is a longest increasing subsequence.

This method runs in $O(n^2)$ time.

Binary Search

- Given an ordered sequence x_1, x_2, \ldots, x_n, where $x_1 < x_2 < \ldots < x_n$, and a number y, a binary search finds the largest x_i such that $x_i < y$ in $O(\log n)$ time.

 \[
 a < \frac{a + b}{2} < \frac{a + c}{2} < \frac{b + c}{2} < \frac{b + d}{2} < \cdots
 \]
Binary Search

• How many steps would a binary search reduce the problem size to 1?

 \[n \rightarrow n/2 \rightarrow n/4 \rightarrow n/8 \rightarrow n/16 \rightarrow \ldots \rightarrow 1 \]

 How many steps? \(O(\log n) \) steps.

 \[n/2^s = 1 \]

 \[\Rightarrow s = \log_2 n \]

An \(O(n \log n) \) method for LIS

• Define \(\text{BestEnd}[k] \) to be the smallest end number of an increasing subsequence of length \(k \).

 \[
 \begin{array}{cccccccc}
 9 & 2 & 5 & 3 & 7 & 11 & 8 & 10 & 13 & 6 \\
 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13 \\
 \end{array}
 \]

 For each position, we perform a binary search to update \(\text{BestEnd} \). Therefore, the running time is \(O(n \log n) \).

Longest Common Subsequence (LCS)

• A subsequence of a sequence \(S \) is obtained by deleting zero or more symbols from \(S \). For example, the following are all subsequences of “president”: pred, sdn, predent.

• The longest common subsequence problem is to find a maximum length common subsequence between two sequences.
LCS

For instance,
Sequence 1: president
Sequence 2: providence
Its LCS is priden.

Another example:
Sequence 1: algorithm
Sequence 2: alignment
One of its LCS is algm.

How to compute LCS?

- Let A = a1a2...am and B = b1b2...bn.
- len(i, j): the length of an LCS between a1a2...ai and b1b2...bj
- With proper initializations, len(i, j) can be computed as follows.

```
len(0, 0) = 0
len(i, 0) = len(i-1, 0) + 1
len(0, j) = len(0, j-1) + 1
len(i, j) = max(len(i-1, j-1), len(i-1, j), len(i, j-1))
```

procedure LCS-Length(A, B)
1. for i ← 0 to m do len(0, i) = 0
2. for j ← 1 to n do len(0, j) = 0
3. for i ← 1 to m do
4. for j ← 1 to n do
5. if aᵢ = bⱼ then
 len(i, j) = len(i-1, j-1) + 1
6. else if len(i-1, j) ≥ len(i, j-1) then
 len(i, j) = len(i-1, j)
7. else
 len(i, j) = len(i, j-1)
8. prev(i, j) ← "
9. return len and prev
The backtracing algorithm

procedure Output-LCS(A, prev, i, j)
if \(i = 0 \) or \(j = 0 \) then return
if \(\text{prev}(i, j) = "\) then
\[\text{print} \] \(a_i \)
Output-LCS(A, prev, i-1, j)
else if \(\text{prev}(i, j) = \) then
Output-LCS(A, prev, i, j-1)
else
Output-LCS(A, prev, i-1, j-1)

The backtracing algorithm

procedure Output-LCS(A, prev, i, j)
if \(i = 0 \) or \(j = 0 \) then return
if \(\text{prev}(i, j) = "\) then
\[\text{print} \] \(a_i \)
Output-LCS(A, prev, i-1, j-1)
else if \(\text{prev}(i, j) = \) then
Output-LCS(A, prev, i-1, j)
else
Output-LCS(A, prev, i, j-1)

The backtracing algorithm

procedure Output-LCS(A, prev, i, j)
if \(i = 0 \) or \(j = 0 \) then return
if \(\text{prev}(i, j) = "\) then
\[\text{print} \] \(a_i \)
Output-LCS(A, prev, i-1, j)
else if \(\text{prev}(i, j) = \) then
Output-LCS(A, prev, i, j-1)
else
Output-LCS(A, prev, i-1, j-1)

Dot Matrix

Sequence A: CTTAACT
Sequence B: CGGATCAT

Output: priden
Pairwise Alignment

Sequence A: CTTAACT
Sequence B: CGGATCAT

An alignment of A and B:

```
C     G     G     A     T     C     A     T
C     T     T     A     A     C     T
```

A simple scoring scheme

- Match: +8 \(w(x, y) = 8 \), if \(x = y \)
- Mismatch: -5 \(w(x, y) = -5 \), if \(x \neq y \)
- Each gap symbol: -3 \(w(-, x) = w(x, -) = -3 \) (i.e. space)

```
C     G     G     A     T     C     A     T
C     T     T     A     A     C     T
+8   -3   -3   -8   -5   +8   -3   -3   +8 = +12
```

Alignment (or Edit) Graph

A simple scoring scheme
Scoring Matrices

- Amino acid substitution matrices
 - PAM
 - BLOSUM

- DNA substitution matrices
 - DNA is less conserved than protein sequences
 - Less effective to compare coding regions at nucleotide level

PAM

- Point Accepted Mutation (Dayhoff, et al.)
 - 1 PAM = PAM₃ = 1% average change of all amino acid positions
 - After 100 PAMs of evolution, not every residue will have changed
 - some residues may have mutated several times
 - some residues may have returned to their original state
 - some residues may not changed at all

PAMₓ

- PAMₓ = PAMₓ
 - E.g. PAM₂₅₀ = PAM₁²₅₀

PAM₂₅₀ is a widely used scoring matrix.

| | Ala | Arg | Asn | Asp | Cys | Gln | Glu | Gly | His | Ile | Leu | Lys | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>12</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>12</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

BLOSUM

- Blooms Substitution Matrix
 - Scores derived from observations of the frequencies of substitutions in blocks of local alignments in related proteins
 - Matrix name indicates evolutionary distance
 - BLOSUM₆₂ was created using sequences sharing no more than 62% identity
The Blosum50 Scoring Matrix

An optimal alignment
-- an alignment of maximum score

- Let $A = a_1a_2...a_m$ and $B = b_1b_2...b_n$.
- $S_{i,j}$: the score of an optimal alignment between $a_1a_2...a_i$ and $b_1b_2...b_j$
- With proper initializations, $S_{i,j}$ can be computed as follows:

\[
S_{i,j} = \max \left\{ S_{i-1,j} + w(a_i -), S_{i,j-1} + w(-, b_j), S_{i-1,j-1} + w(a_i, b_j) \right\}
\]

Computing $S_{i,j}$

Initialization

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>G</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-3</td>
<td>-6</td>
<td>-9</td>
<td>-12</td>
<td>-15</td>
<td>-18</td>
<td>21</td>
<td>-24</td>
</tr>
<tr>
<td>C</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Global Alignment vs. Local Alignment

- global alignment:

- local alignment:
An optimal local alignment

- $S_{i,j}$: the score of an optimal local alignment ending at a_i and b_j
- With proper initializations, $S_{i,j}$ can be computed as follows.

$$s_{i,j} = \max \begin{cases} \ 0 \\ s_{i-1,j} + w(a_i, -) \\ s_{i,j-1} + w(-, b_j) \\ s_{i-1,j-1} + w(a_i, b_j) \end{cases}$$

local alignment

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Match: 8
Mismatch: -5
Gap symbol: -3

local alignment

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

$A-C-T$

A T C A T

$8+3+5+8+8 = 18$

Match: 8
Mismatch: -5
Gap symbol: -3

$A - C - T$

A T C A T

$8+3+5+8+8 = 18$
Affine gap penalties

- Match: +8 \(w(x, y) = 8 \), if \(x = y \)
- Mismatch: -5 \(w(x, y) = -5 \), if \(x \neq y \)
- Each gap symbol: -3 \(w(-, x) = -3 \), \(w(x, -) = -3 \)
- E.g. each gap is charged an extra gap-open penalty: -4.
- In general, a gap of length \(k \) should have penalty \(g(k) \)

\[
\begin{array}{cccccccc}
C & - & - & T & T & A & A & C & T \\
C & G & G & A & T & C & A & - & - \\
+8 & -3 & -3 & -3 & +8 & -5 & +8 & -3 & -3 \\
\text{alignment score: } 12 - 4 - 4 = 4
\end{array}
\]

Affine gap penalties

- A gap of length \(k \) is penalized \(x + k \cdot y \).
- Let \(D(i, j) \) denote the maximum score of any alignment between \(a_1, a_2, \ldots, a_i \) and \(b_1, b_2, \ldots, b_j \) ending with a deletion.
- Let \(I(i, j) \) denote the maximum score of any alignment between \(a_1, a_2, \ldots, a_i \) and \(b_1, b_2, \ldots, b_j \) ending with an insertion.
- Let \(S(i, j) \) denote the maximum score of any alignment between \(a_1, a_2, \ldots, a_i \) and \(b_1, b_2, \ldots, b_j \).

\[
\begin{align*}
D(i, j) &= \max (D(i-1, j) - y) \\
I(i, j) &= \max (I(i, j-1) - x - y) \\
S(i, j) &= \max (S(i-1, j-1) + w(a_i, b_j), D(i, j), I(i, j))
\end{align*}
\]
Affine gap penalties

(Gotoh’s algorithm)

\[
\begin{align*}
&\begin{array}{c}
D \\
I \\
S
\end{array} \\
&\begin{array}{c}
D \\
I \\
S
\end{array} \\
&w(a_i, b_j) - y
\end{align*}
\]

\[
\begin{align*}
&\begin{array}{c}
D \\
I \\
S
\end{array} \\
&\begin{array}{c}
D \\
I \\
S
\end{array} \\
&-x - y
\end{align*}
\]

\[
\begin{align*}
&\begin{array}{c}
D \\
I \\
S
\end{array} \\
&\begin{array}{c}
D \\
I \\
S
\end{array} \\
&-y
\end{align*}
\]

k best local alignments

- **Smith-Waterman**
 (Smith and Waterman, 1981; Waterman and Eggert, 1987)
 - linear-space version: sim (Huang and Miller, 1991)
 - linear-space variants: sim2 (Chao et al., 1995), sim3 (Chao et al., 1997)
- **FASTA**
 (Wilbur and Lipman, 1983; Lipman and Pearson, 1985)
 - linear-space band alignment (Chao et al., 1992)
- **BLAST**
 (Altschul et al., 1990; Altschul et al., 1997)
 - restricted affine gap penalties (Chao, 1999)

BLAST and FASTA are key genomic database search tools.

FASTA

1) Find runs of identities, and identify regions with the highest density of identities.
2) Re-score using PAM matrix, and keep top scoring segments.
3) Eliminate segments that are unlikely to be part of the alignment.
4) Optimize the alignment in a band.

Its running time is \(O(n)\).
FASTA

Step 1: Find runs of identities, and identify regions with the highest density of identities.

FASTA

Step 2: Re-score using PAM matrix, and keep top scoring segments.

FASTA

Step 3: Eliminate segments that are unlikely to be part of the alignment.

FASTA

Step 4: Optimize the alignment in a band.
BLAST

1) Build the hash table for sequence A (the database sequence).
2) Scan sequence B for hits.
3) Extend hits.

Also O(n) time.

Step 1: Build the hash table for sequence A. (3-tuple example)
For DNA sequences:
Seq. A = AGATCGAT
12345678
AAA
AAC
AGA 1
ATC 3
CGA 5
GAT 2 6
TCG 4
TTT

For protein sequences:
Seq. A = ELVIS
Add xyz to the hash table if Score(xyz, ELV) \geq T;
Add xyz to the hash table if Score(xyz, LVIS) \geq T;
Add xyz to the hash table if Score(xyz, VIS) \geq T;

Step 2: Scan sequence B for hits.

Step 3: Extend hits.

Terminate if the score of the extension fades away.

BLAST 2.0 saves the time spent in extension, and considers gapped alignments.
Remarks

• Filtering is based on the observation that a good alignment usually includes short identical or very similar fragments.
• The idea of filtration was used in both FASTA and BLAST to achieve high speed.

Linear space ideas
Hirschberg, 1975; Myers and Miller, 1988
(i) scores can be computed in (O(n)) space
(ii) divide-and-conquer

\[
S(a_1 \ldots a_{m/2}, b_1 \ldots b_j) + S(a_{m/2+1} \ldots a_m, b_{j+1} \ldots b_n)
\]
maximized

Two subproblems
½ original problem size

Four subproblems
¼ original problem size
Time and Space Complexity

- Space: $O(m + n)$
- Time: $O(mn)(1 + \frac{1}{2} + \frac{1}{4} + \ldots) = O(mn)$

Band Alignment

(K. Chao, W. Pearson, and W. Miller)

Sequence A

Sequence B

Band Alignment in Linear Space

The remaining subproblems are no longer only half of the original problem. In worst case, this could cause an additional $\log n$ factor in time.
Multiple sequence alignment (MSA)

- The multiple sequence alignment problem is to simultaneously align more than two sequences.

Seq1: GCTC GC-TC
Seq2: AC A---C
Seq3: GATC G-ATC

How to score an MSA?

- *Sum-of-Pairs (SP-score)*

\[
\text{Score} = \left\{ \begin{array}{c}
\text{Score}^{(GC-TC)} + \\
\text{Score}^{(A---C)} + \\
\text{Score}^{(G-ATC)}
\end{array} \right.
\]

MSA for three sequences

- an \(O(n^3)\) algorithm

General MSA

- For \(k\) sequences of length \(n\): \(O(n^4)\)
- NP-Complete (Wang and Jiang)
- The exact multiple alignment algorithms for many sequences are not feasible.
- Some approximation algorithms are given.
 \((e.g., 2^{-l/k} \text{ for any fixed } l \text{ by Bafna et al.})\)
Progressive alignment
• A heuristic approach proposed by Feng and Doolittle.
• It iteratively merges the most similar pairs.
• “Once a gap, always a gap”

The time for progressive alignment in most cases is roughly the order of the time for computing all pairwise alignment, i.e., $O(k^2n^2)$.

Concluding remarks
• Three essential components of the dynamic programming approach:
 – the recurrence relation
 – the tabular computation
 – the backtracing
• The dynamic-programming approach has been used in a vast number of computational problems in bioinformatics.