Basic Notions in Computational Complexity *

Tao Jiang Ming Li
Department of Computer Science Department of Computer Science
McMaster University University of Waterloo

Hamilton, Ontario L8S 4K1, Canada Waterloo, Ontario N2L 3G1, Canada

Bala Ravikumar
Department of Computer Science
University of Rhode Island
Kingston, RI 02881, USA

1 Introduction

Computational complexity is aimed at measuring how complex a computational solution is. There
are many ways to measure the complexity of a solution: how hard it is to understand it, how
hard to express it, how long the solution process will take, and more. The last criterion—time—is
most widely taken as the definition of complexity. This is because the agent that implements an
algorithm is usually a computer—and from a user’s point of view, the most important issue is
how long one should wait to see the solution. However, there are other important measures of
complexity, such as the amount of memory, hardware, information, communication, knowledge, or
energy needed for the solution. Complexity theory is aimed at quantifying these resources precisely

and studying the amounts of them required to accomplish computational tasks.

This technical sense of the word “complexity” did not take root until the mid-1960s. To-
day, complexity theory is not only a vibrant subfield of computer science, but also has direct or

metaphoric impact on other fields such as dynamical systems and chaos theory. The seed of com-
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putational complexity is the formalization of the concept of an algorithm. Algorithms in turn
must be planted in some computational model, ideally one that abstracts important features of real
computing machines and processes. In this chapter we consider the Turing machine, a computer
model created and studied by the British mathematician Alan Turing in the 1930s [Turing, 1936].

Chapter 32 will discuss different (and equivalent) ways of formalizing algorithms.

With the advent of commercial computers in the 1950s and 1960s, when processor speed was
much lower and memory cost unimaginably higher than today, it became critical to design efficient
algorithms for solving large classes of problems. Just knowing that a problem was solvable, which
had been the main concern of computability theory since the 1930s, was no longer enough. Turing
machines provided a basis for Hartmanis and Stearns [Hartmanis and Stearns, 1965] to formally
define the measures of time complexity and space complexity for computations. The latter
refers to the amount of memory needed to execute the computation. They defined measures for
other resources as well, and Blum [Blum, 1967] found a precise definition of complezity measure
that was not tied to any particular resource or machine model. Together with earlier work by
Rabin [Rabin, 1963], these papers marked the beginning of computational complezity theory as an
important new discipline. A closely related development was drawn together by Knuth, whose
work on algorithms and data structures [Knuth, 1969] created the field of algorithm design and
analysis. All of this work has been recognized in annual Turing Awards given by the Association
for Computing Machinery. Hartmanis’ Turing Award lecture [Hartmanis, 1994] recounts the origins

of computational complexity theory and speculates on its future development.

The power of a computing machine depends on its internal structure as well as on the amount
of time, space, or other resources it is allowed to consume. Restricting our model of choice, the
Turing machine, in various internal ways yields progressively simpler and weaker computing ma-
chines. These machines correspond to a natural hierarchy of grammars defined and advanced by
Chomsky [Chomsky, 1956], which we describe in Chapter 31. In this chapter we present the most
basic computational models, and use these models to classify problems first by solvability and then
by complexity.

Central issues studied by researchers in computational complexity include the following.

e For a given amount of resources, or for a given type of resource, what problems can and



cannot be solved?

e What is the relationship between problems requiring essentially the same amount of the

resource or resources? May they be equivalent in some intrinsic sense?

e What connections are there between different kinds of resources? Given more time, can we

reduce the demand on memory storage, or vice-versa?

e What general limits can be set on the kind of problems that can be solved when resources

are limited?

The end thrust of Turing’s famous paper [Turing, 1936] was to demonstrate rigorously that several
fundamental problems in logic cannot be solved by algorithms at all. Complexity theory aims to
show similar results for many more problems in the presence of resource limits. Such an unsolv-
ability result, although “bad news” in most contexts (cryptographic security is an exception), can
have practical benefits: it may lead to alternative models, goals, or solution strategies. As will
come out in Chapters 33-34, complexity theory has so far been much more successful at drawing
relative conclusions and relationships between problems than in proving absolute statements about

(un)solvability.

2 Computational Models

Throughout this chapter, ¥ denotes a finite alphabet of symbols; unless otherwise specified, 3 =
{0,1}. Then X* denotes the set of all finite strings, including the empty string €, over ¥. A

language over 3 is simply a subset of ¥*.

We use regular expressions in specifying some languages. In advance of the formal definition
to come in Chapter 31, we define them as one kind of “patterns” for strings to “match.” The basic
patterns are € and the characters in ¥, which match only themselves. The null pattern () matches
no strings. Two patterns joined by “+” match any string that matches either of them. Two or more
patterns written in sequence match any string composed of substrings that match the respective

@, ”
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patterns. A pattern followed by a matches any string that can be divided into zero or more

successive substrings, each of which matches the pattern—here the “zero” case applies to ¢, which



matches any starred pattern. For example, the pattern 0(0 + 1)*1 matches any string that begins
with a 0 and ends with a 1, with zero or more binary characters in between. The pattern can be
used as a name for the language of strings that match it. In like manner, the pattern (0*10*1)*0*
stands for the language of binary strings that have an even number of 1s. This pattern says that
trailing Os are immaterial to any such string, and the rest of the string can be broken into zero or

more substrings, each of which ends in a 1 and has exactly one previous 1.

2.1 Finite Automata

The finite automaton (in its deterministic version) was introduced by McCulloch and Pitts in 1943
as a logical model for the behavior of neural systems [McCulloch and Pitts, 1943]. Rabin and Scott
introduced the nondeterministic finite automaton (NFA) in [Rabin and Scott, 1959], and showed
that NFAs are equivalent to deterministic finite automata, in the sense that they recognize the
same class of languages. This class of languages, called the regular languages, had already been
characterized by Kleene [Kleene, 1956] and Chomsky and Miller [Chomsky and Miller, 1958] in

terms of regular expressions and regular grammars, which will be described formally in Chapter 31.

In addition to their original role in the study of neural nets, finite automata have enjoyed
great success in many fields such as the design and analysis of sequential circuits [Kohavi, 1978],
asynchronous circuits [Brzozowski and Seger, 1994], text-processing systems [Lesk, 1975], and com-
pilers. They also led to the design of more efficient algorithms. One excellent example is the
development of linear-time string-matching algorithms, as described in [Knuth et al, 1977]. Other
applications of finite automata can be found in computational biology [Searls, 1993], natural lan-

guage processing, and distributed computing [Lynch, 1996].

A finite automaton, pictured in Figure 1, consists of an input tape and a finite control. The
input tape contains a finite string of input symbols, and is read one symbol at a time from left to
right. The finite control is connected to an input head that reads each symbol, and can be in one
of a finite number of states. The input head is one-way, meaning that it cannot “backspace” to
the left, and read-only, meaning that it cannot alter the tape. At each step, the finite control may
change its state according to its current state and the symbol read, and the head advances to the
next tape cell. In an NFA there may be more than one choice of next state in a step. Figure 1 also

shows the second step of a computation on an input string beginning aabab ... When the input
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Figure 1: A finite automaton.

head reaches the right end of the input tape, if the machine is in a state designated “final” (or
“accepting”), we say that the input string is accepted; else we say it is rejected. The following is

the formal definition.

DEFINITION 2.1 A nondeterministic finite automaton (NFA) is a quintuple (Q, X, 8, g0, F),

where

e () is a finite set of states;

Y. is a finite set of input symbols;

4, the state transition function, is a mapping from @ X X to subsets of Q;

go € Q is the start state of the NFA;

e F C (@ is the set of final states.

If § maps |Q| X X to singleton subsets of @), then we call such a machine a deterministic finite

automaton (DFA).

Note that a DFA is treatable as a special case of an NFA, where the next state is always uniquely
determined by the current state and the symbol read. On any input string z € ¥*, a DFA follows
a unique computation path, starting in state ¢p. If the final state in the path is in F, then z is
accepted, and the path is an accepting path. An NFA, however, may have multiple computation

paths on the same input z. It is useful to imagine that when an NFA has more than one next state,



all options are taken in parallel, so that the “super-computation” is a tree of branching computation

paths. Then the NFA is said to accept z if at least one of those paths is an accepting path.

REMARKS: The concept of a nondeterministic automaton, and especially the notion of acceptance,
can be nonintuitive and confusing at first. We can, however, explain them in terms that should
be familiar, namely those of a solitaire game such as “Klondike.” The game starts with a certain
arrangement of cards, which we can regard as the input, and has a desired “final” position—in
Klondike, when all the cards have been built up by suit from ace to king. At each step, the rules of
the game dictate how a new arrangement of cards can be reached from the current one—and the
element of nondeterminism is that there is often more than one choice of move (otherwise the game
would be little fun!). Some positions have no possible move, and lose the game. Most crucially,
some positions have moves that unavoidably lead to a loss, and other moves that keep open the
possibility of winning. Now for a given position, the important analytical question is, “Is there a
way to win?” The answer is yes so long as there is at least one sequence of moves that ends in a
(or the) desired final position. For the starting position, this condition is much the same as for an
input to be accepted by an NFA. (Practically speaking, some winnable starting positions may give
so many chances to go wrong along the way that a player may have little chance to find a winning
sequence of moves. That, however, is beside the point in defining which positions are winnable. If
one can always (efficiently!) answer the yes/no question of whether a given position is winnable,
then one can always avoid losing moves—and win—so long as the start position is winnable to
begin with.)

In any event, the set of strings accepted by a (deterministic or nondeterministic) finite automa-
ton M is denoted by L(M). When we say that M accepts a language L, we mean that M accepts
all strings in L and nothing else, i.e. L = L(M). Two machines are equivalent if they accept the

same language.

Nondeterminism is capable of modeling many important situations other than solitaire games.
Concurrent computing offers some examples. Suppose a device or resource (such as a printer or a
network interface) is controllable by more than one process. Each process could change the state of
the device in a different way. Since there may be no way to predict the order in which processes may

be given control in any step, the evolution of the device may best be regarded as nondeterministic.



Figure 2: An NFA accepting 0(0 + 1)*1.

Sometimes a state change can occur without input stimulus. This can be modeled by allowing
an NFA to make e-transitions, which change state without advancing the read head. Then the
second argument of § can be ¢ instead of a character in X, and these transitions can even be
nondeterministic, for instance if 6(qo, €) = {q1, ¢2}. It is not hard to see that by suitable “lookahead”
on states reachable by e-transitions, one can always convert such a machine into an equivalent NFA

that does not use them.

ExAMPLE 2.1 We design an NFA to accept the language 0(0 + 1)*1. Recall that this regular
expression defines those strings in {0, 1}* that begin with a 0 and end with a 1. A standard way to
draw finite automata is exemplified by Figure 2. As a convention, each circle represents a state, and
an unlabeled arrow points to the start state (here, state “a”). Final states such as “c” have darker
(or double) circles. The transition function 4 is represented by the labeled edges. For example,
4(a,0) = {b}, and §(b,1) = {b,c}. When a transition is missing, such as on input 1 from state “a”
and on both inputs from state “c”, the transition is assumed to lead to an implicit non-accepting
“dead” state, which has transitions to itself on all inputs. In a DFA such a dead state must be
included when counting the number of states, while in an NFA it can be left out.

The machine in Figure 2 is nondeterministic since from “b” on input 1 the machine has two
choices: stay at “b” or go to “c”. Figure 3 gives a DFA that accepts the same language. The DFA

has four, not three, states, since a dead state reached by an initial ‘1’ is not shown.

ExAMPLE 2.2 The DFA in Figure 4 accepts the language of all strings in {0,1}* with an even

number of 1’s, which has the regular expression (0*10*1)*0*.

ExXAMPLE 2.3 For a final example of a regular language, we introduce a general “tiling problem”

to be discussed further in Chapter 32, and then strip it down to a simpler problem. A tile is a
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Figure 3: A DFA accepting 0(0 + 1)*1.

Figure 4: A DFA accepting (0*10*1)*0*.

unit-sized square divided into four quarters by joining two diagonals. Each quarter has a color
chosen from a finite set C' of colors. Suppose you are given a set T of different types of tiles, and
have an unlimited supply of each type. A k X n rectangle is said to be tiled using the tiles in 7 if the
rectangle can be filled with exactly kn unit tiles (with no overlaps) such that at every edge between
two tiles, the quarters of the two tiles sharing that edge have the same color. The tile set T is
said to tile an entire plane if the plane can be covered with tiles subject to the color compatibility
stated above. As a standard application of K6nig’s infinity lemma (for which see [Knuth, 1969],
Chapter 2, p. 381), it can be shown that the entire plane can be tiled with a tile set T if and only
if all finite integer sided rectangles can be tiled with 7". We will see in Chapter 32 that the problem
of whether a given tile set T can tile the entire plane is unsolvable. Chapter 32 will also say more

about the meaning and implications of this tiling problem.

Here we will consider a simpler problem: Let k be a fixed positive integer. Given a set T' of unit
tiles, we want to know whether T can tile an infinite strip of width k. The answer is yes if T can
tile any k x n rectangle for all n. It turns out that this problem is solvable by an efficient algorithm.

One way to design such an algorithm is based on finite automata. We present the solution for k



Figure 5: Numbering the quarters of a tile.

= 1 and leave the generalization for other values of k as an exercise. Number the quarters of each
tile as in Figure 5. Given a tile set T, we want to know whether for all n, the 1 X n rectangle can

be tiled using T'.

To use finite automata, we define a language that corresponds to valid tilings. Define ¥, the
input alphabet, to be T', the tile set. Each tile in T' can be described by a 4-tuple [A, B, P, Q] where
A, B, P, and @ are (possibly equal) members of the color set C. Next we define a language L over
¥ to be the set of strings T1T5...T;, such that (i) each 7} is in ¥, and (ii) for each 4, 1 <i<n -1,
T;’s third-quadrant color is the same as T;11’s first-quadrant color. These two conditions say that
T1T1,...T,, is a valid 1 x n tiling.

We will now informally describe a DFA Mj that recognizes the language L. Basically, My,
“remembers” (using the current state as the memory) the relevant information—for this problem,
it need only remember the third-quadrant color Q) of the most recently seen tile. Suppose the DFA’s
current state is Q. If the next (input) tile is [X,Y, W, Z], it is consistent with the last tile if and
only if = X. In this case, the next state will be W. Otherwise, the tile sequence is inconsistent,
so My, enters a “dead state” from which it can never leave and rejects. All other states of My
are accepting states. Then the infinite strip of width 1 can be tiled if and only if the language L
accepted by My contains strings of all lengths. There are standard algorithms to determine this

property for a given DFA.

The next three theorems show the satisfying result that all the following language classes are

identical:

e the class of languages accepted by DFAs;
e the class of languages accepted by NFAs;

e the class of languages generated by regular expressions.



e the class of languages generated by the right-linear, or Type-3, grammars, which are formally

defined in Chapter 31 and informally used here.

This class of languages is called the regular languages.
THEOREM 2.1 For every NFA, there is an equivalent DFA.

Proof. An NFA might look more powerful since it can carry out its computation in parallel
with its nondeterministic branches. But since we are working with a finite number of states, we

can simulate an NFA M = (Q, %, 4, g0, F) by a DFA M' = (Q', 2,8, ¢, F'), where

e Q' ={[S] : SCQ}
e g5 = [{g0}];
o §'([S],a) = [S"] = [Ugyesd(a, a)];

e F’ is the set of all subsets of () containing a state in F.

Here square brackets have been placed around sets of states to help one view these sets as being
states of the DFA M’. The idea is that whenever M’ has read some initial segment y of its input
z, its current state equals the set of states ¢ such that M has a computation path reading y that
leads to state g. When all of z is read, this means that M’ is in an accepting state if and only if

M has an accepting computation path. Hence L(M) = L(M'). O

ExaMPLE 2.4 Example 2.1 contains an NFA and an equivalent DFA accepting the same language.
In fact the above proof provides an effective procedure for converting an NFA to a DFA. Although
each NFA can be converted to an equivalent DFA, the resulting DFA may require exponentially
many more states, since the above procedure may assign a state for every eligible subset of the
states of the NFA. For any k > 0, consider the language Ly = {z | z € {0,1}* and the kth letter
from the right of z is a 1}. An NFA of k+1 states (for ¥ = 3) accepting L, is given in Figure 6. Now
we claim that any DFA M accepting Ly, needs a separate state for every possible value y € {0,1}*
of the last k bits read. Take any distinct y;,y» € {0,1}* and let i be a position in which they differ.

Let z = 0. Then M must accept one of the strings y; z, y2z and reject the other. This is possible

10
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Figure 6: An NFA accepting Lg.

only if the state M is in after processing y; (with z to come) is different from that after y,, and
thus M needs a different state for each string in {0, 1}*. The 2* required states are also sufficient,

as the reader may verify.

The remaining results of this section point forward to the formal-language models defined in
Chapter 31. The point of including them here is to show the power of the finite automaton model.
Regular expressions have been defined above, while a regular grammar over X consists of a set V'

of variable symbols, a starting variable S € V', and a set P of substring-rewrite rules of the forms

A—cB,A—¢ or A— ¢, where A,B€V and c € X.

THEOREM 2.2 A language L is generated by a reqular grammar if and only if L is accepted by an

NFA.

Proof. Let L be accepted by an NFA M = (Q, X, 6, qo, F). We define an equivalent regular
grammar G = (X,V, S, P) by taking V = Q with S = ¢, adding a rule ¢; — cg; whenever
¢; € 6(¢i, ¢), and adding rules g; — € for all ¢; € F. Then the grammar simulates computations by
the NFA in a direct manner, giving L(G) = L(M).

Conversely, suppose L is the language of a regular grammar G = (X£,V, S, P). We design an
NFA M = (Q, %, 4, g0, F) by taking @ =V U {f}, g0 = S, and F = {f}. To define the § function,
we have B € 6(4,c) iff A — ¢B. For rules A — ¢, §(A,¢) = {f}. Then L(M) = L(G)—if this is

not clear already, the treatment of grammars in Chapter 31 will make it so. O

THEOREM 2.3 A language L is specified by a reqular expression if and only if L is accepted by an

NFA.

ProOOF SKETCH. Part I. We inductively convert a regular expression to an NFA that accepts

the same language as follows.

11



The pattern € converts to the NFA M, = ({¢},X%,0,q,{q}), which accepts only the empty

string.
The pattern @ converts to the NFA M, = ({¢}, %, 0, ¢, 0), which accepts no strings at all.

For each ¢ € X, the pattern ¢ converts to the NFA M, = ({¢, f},%,6(¢q,¢) = {f},q,{f}),

which accepts only the string c.

A pattern of the form a + 3, where o and S are regular expressions that (by induction
hypothesis) have corresponding NFAs M, and Mg, converts to an NFA M that connects M,
and Mg in parallel: M includes all the states and transitions of M, and Mg and has an extra

start state go, which is connected by e-transitions to the start states of M, and Mg.

A pattern of the form a3, where a and 3 have the corresponding NFAs M,, and Mg, converts
to an NFA M that connects M, and Mg in series: M includes all the states and transitions
of M, and Mg and has extra e-transitions from the final states of M, to the start state of
Mg. The start state of M is that of M,,, while the final states of M are those of Mjg.

A pattern of the form o, where a has the corresponding NFA M,, converts to an NFA M
that figuratively feeds M, back into itself. M includes the states and transitions of M, plus
e-transitions from the final states of M, back to its start state. This state is not only the

start state of M but the only final state of M as well.

Part 2. We now show how to convert an NFA to an equivalent regular expression. The idea

used here is based on [Brzozowski and McCluskey, 1963]; see also [Brzozowski and Seger, 1994] and

[Wood, 1987].

Given an NFA M, add a new final state £, and add e-transitions from each old final state of M

to t. Also add a new start state s with an e-transition to the old start state of M. The idea is

to eliminate all states p other than s and ¢ as follows. To eliminate a state p, we eliminate each

arc coming in to p from some other state ¢ as follows: For each triple of states ¢, p, ¢’ as shown in

Figure 7(a), add the transition(s) shown in Figure 7(b). (Note that if p does not have a transition

leading back to p, then 8 = * = €.) After we have considered all such triples, we can delete state

p and transitions related to p. Finally, we obtain Figure 8, and the final « is a regular expression

for L(M). O

12
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Figure 7: Converting an NFA to a regular expression.
Figure 8: The reduced NFA.

The last three theorems underline the importance of the class of regular languages, since it
connects to notions of automata, grammars, patterns, and much else. However, regular languages
and finite automata are not powerful enough to serve as our model for a modern computer. Many
extremely simple languages cannot be accepted by DFAs. For example, L = {zz | z € {0,1}*}
cannot be accepted by a DFA. To show this, we can argue similarly to the “L;” languages in
Example 2.4 that for any two strings y; = 0™1 and y, = 01 with n # m, a hypothetical DFA M
would need to be in a different state after processing y; from that after y,, because with z = 0™1
it would need to accept y;z and reject y2z. However, in this case we would conclude that M needs
infinitely many states, contradicting the definition of a finite automaton. Hence the language L is
not regular. Other ways to prove assertions of this kind include so-called “pumping lemmas” or
a direct argument that some strings y contain more information than a finite state machine can
remember [Li and Vitanyi, 1993]. We refer the interested readers to Chapter 31 and textbooks such
as [Hopcroft and Ullman, 1979], [Gurari, 1989], [Wood, 1987], and [Floyd and Beigel, 1994].

One can also try to generalize the DFA to allow the input head to move backwards as well as
forwards, in order to review earlier parts of the input string, while keeping it read-only. However,
such “two-way DFAs” are not more powerful—they can be simulated by normal DFAs. The point
of departure for a more-powerful model is to allow the machine to write on its tape and later review

what it has written. Then the tape becomes a storage medium, not just a sequence of events to

13



react to. This ability to write down intermediate results for future reference makes DFAs into

full-blown general-purpose computers.

2.2 Turing Machines

A Turing machine (TM), pictured in Figure 9, consists of a finite control, an infinite tape divided
into cells, and a read/write head on the tape. The finite control can be in any one of a finite set
Q@ of states. Each cell can contain one symbol from the tape alphabet T', which contains the input
alphabet X and a special character B called the blank. I' may contain other characters besides B
and those in ¥, but most often ¥ = {0,1} and I' = {0,1, B}. We refer to the two directions on
the tape as left and right, and abbreviate them by L and R. At any time, the head is positioned
over a particular cell that it is said to scan. Initially, the head scans a distinguished cell on the
tape called the start cell, the finite control is in the start state gy, and all cells contain B except
for a contiguous finite sequence of cells, extending from the start cell to the right, that contain
characters in X. These cells hold the input string @; in case ¢ = ¢ the whole tape is blank. The
machine is said to begin its computation on input z at time 0, and computation unfolds in discrete

time steps numbered 1,2, ...

In any step, contingent on its current state and the character being scanned, the device is

allowed to perform one the following two basic operations:

1. write a symbol from the tape alphabet I' into the scanned cell, or

2. shift the head one cell left or right.

Then it may change its internal state in the same step. The allowed actions of a particular machine
are specified by a finite set § of instructions. Each instruction has the form (g, ¢, d, r) with ¢,r € Q,
¢ € T, and either d € T or d € {L,R}. This means that if the machine is in state ¢ scanning
character ¢ on the tape, it may either change ¢ to d (if d € T') or move its head (if d € {L, R}),
and it enters state r. Either ¢ = d or ¢ = r is allowed. (Many texts use an alternate formalism

in which both basic operations may be performed in the same step, so that instructions have the

Figure 9: A Turing machine.
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form (gq,¢,d,D,r) with ¢, € Q, ¢,d € ', and D € {L, R}, sometimes adding the option D = S of
keeping the head stationary. The differences do not matter for our purposes.)

If for every combination of ¢ and c¢ there is at most one instruction (g, ¢, d, r) that the machine
can execute, then the machine is deterministic. Otherwise, the machine is nondeterministic. In
order for computations to possibly halt, there must be some combinations ¢, ¢ for which § has no
instruction (g, ¢, d, ). If a computation reaches such a state ¢ while scanning ¢, the device is said
to halt. Then if ¢ is designated as a final state, we say the machine accepts its input string z; if
q is not a final state, we say that the machine rejects the input. We adopt the convention that
there is only one final state labeled ¢y, and that g; is also a halting state, meaning that there is no

instruction (g, ¢, d, r) with source state ¢ = ¢4 at all.

DEFINITION 2.2 A Turing machine is a 7-tuple M = (Q,%, T, 6, B, qo, g7), where each of the

components has been described above.

Given an input z, a deterministic Turing machine M carries out a uniquely determined succes-
sion of operations, which may or may not terminate in a finite number of steps. If it terminates,
then the output M (z) is determined to be the longest string of characters over ¥ beginning in the
cell in which the head halted and extending to the right. (If the scanned cell holds B or some other
character in T' \ X, then the output is €.) A function f : ¥* — ¥* is computable if there is a
Turing machine M such that for all inputs z € ¥*, M(z) = f(z).

A nondeterministic Turing machine is analogous to an NFA. One may imagine that it carries
out its computation in parallel. The computation may be viewed as a (possibly infinite) tree,
each of whose nodes is labeled by a configuration of the machine. A configuration specifies the
current state ¢, the position of the tape head, and the contents of the tape, including the character
¢ currently being scanned. Each node has as many children as there are different instructions
(¢, ¢, -, ) to execute, and each child is the configuration that results from executing the corresponding
instruction. The root of the tree is the starting configuration of the machine. If any of the branches
terminates in the final state g¢, we say the machine accepts the input. Note that this is the same
“benefit of all doubt” criterion for acceptance that we discussed above for NFAs. Note also that
a deterministic Turing machine always defines a “tree” with a single branch that forms a simple

(possibly infinite) path.
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A language L is said to be recursively enumerable (r.e.) if there is a Turing machine M
such that L = {z : M accepts z}. Furthermore, if M is total; i.e., if every computation of M on
every input z halts, then L(M) is recursive. These terms reflect an important correspondence
between languages and functions. For any language L C 3*, define the characteristic function fi,
by fr(z) =1 of 2 € L, f(z) = 0 otherwise. Then a language L is recursive if and only if fz, is
computable—and computable functions were originally defined with regard to formalisms that used
recursion. Note that having L be acceptable by a Turing machine M is not enough for f1, to be

computable, because there may be inputs z ¢ L for which the computation of M on z never halts.

Conversely, given a function f :3* — 3*, and letting # be a new input symbol not in ¥, one
can define the language Ly = {z#y : y is an initial segment of f(z)}. Recognizing L allows one to
find successive bits of the value f(z). Hence it is common in the field to identify function problems
with language problems and concentrate on the latter. A language can also be identified with a
property of strings and with the associated decision problem “given a string @, does # have the
property?” For instance, the problem of deciding whether a given number is prime is identifiable
with the language of (binary string encodings of) prime numbers. The problem is decidable if
the associated language is recursive, and a total Turing machine accepting the language is said to
decide the problem. The term “decidable language” is a synonym for “recursive language,” and
“recursive function” is a synonym for “computable function.” A Turing machine M that does not
halt on all inputs computes a partial recursive function (whose domain is a proper subset of
¥*), and L(M) is a partially decidable language (or problem, or property). Any problem or
language that is not decidable by a Turing machine is called undecidable, and any (partial or

total) function that is not computable by a Turing machine is called uncomputable.

Now when we say that a Turing machine M’ simulates another Turing machine M, we usually
mean more than saying they accept the same language or compute the same (partial) function.
Usually there is some overt correspondence between computations of M and those of M’'. This
is so in the simulations claimed by the following theorem, which says that many variations in the

basic machine model do not alter the notion of computability.

THEOREM 2.4 All the following generalizations of Turing machines can be simulated by the one-

tape deterministic Turing machine model defined in Definition 2.2, with tape alphabet {0,1, B}.
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e enlarging the tape alphabet T';
e adding more tapes;
e adding more read/write heads or other access points on each tape;

e having two- or higher-dimensional grids in place of tapes, where the head may move to any

adjacent grid cell;

e allowing nondeterminism.

Extra tapes after the input tape are called worktapes provided they allow read-write access.
A two-tape Turing machine, or alternately a one-tape machine with two heads, has instructions
with six components: current state, two characters read by the heads, two head actions, next state.
Although these generalizations do not make a Turing machine compute more, they do make Turing
machines more efficient and easier to program. Many more variants of Turing machines have been

studied and used in the literature.

Of all the simulations in Theorem 2.4, the last one needs special comment. A nondeterministic
computation branches like a tree. The easiest way for a deterministic Turing machine to simulate
it is by traversing the tree in a breadth-first manner, which is the same as trying all possibilities
at any step with nondeterministic choices. However, even if there are at most two choices at any
step, simulating n steps of the NTM could take on the order of 2™ steps by the DTM. Whether
a more-efficient simulation is possible is bound up with the famous “P vs. NP” problem, to be

discussed below and in Chapter 33.

ExXAMPLE 2.5 A DFA can be regarded as the special case of a Turing machine in which every
instruction moves the head right. Turing machines naturally accept more languages than DFAs
can. For example, a Turing machine can accept the non-regular language L = {zz | z € {0,1}*}

as follows. Given an input string w € {0,1}*:

e First find the middle point. A TM with two tape heads can do this efficiently by moving
one head twice for every move of the other, until the further-advanced head sees the blank
that marks the end of w. This stage can also tell whether w has even or odd length and

immediately reject in the latter case.
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e Then check whether the scanned characters match while moving both heads one cell left until
the leftmost head sees the blank to the left of the beginning of w. If all pairs match, accept,

else reject.

For a TM with only one head the strategy is more cumbersome. One way is to use “alias” characters
a for 0 and b for 1, aliasing first the leftmost 0/1 character on the tape, then the rightmost, then
the next-leftmost,...until finding the character just left of middle (if w has even length). Then
“un-alias” it and check that the rightmost aliased character matches it, un-aliasing the latter as
well. By looking for cases of an a or b immediately to the left of an un-aliased 0 or 1, the TM can
repeat this check until all of the left half is compared with the right half. Whereas the two-head
TM needs only 3n/2 steps to decide whether a string w of length n belongs to L, the one-head TM
takes about n? steps. It is known that n? steps are necessary (asymptotically) for any one-head TM

to accept the language L (see, for instance, [Hopcroft and Ullman, 1979] or [Li and Vitanyi, 1993]).

Three restrictions of the notion of a Turing machine tape merit special mention.

e A pushdown store (or stack) is a semi-infinite worktape with one head such that each time
the head moves to the left, it erases the symbol scanned previously. This is a last-in first-out

storage.

e A queue is a semi-infinite work tape with two heads that only move to the right, the leading

head is write-only and the trailing head is read-only. This is a first-in first-out storage.

e A counter is a pushdown store with a single-letter alphabet, except for a special bottom-of-
stack marker that allows testing the counter for zero. Then a push increments the counter

by one, and a pop decrements it by one.

ExAMPLE 2.6 A pushdown automaton (PDA) has one read-only input tape and one pushdown
store. A PDA can be identified with a two-tape Turing machine whose tape-1 head can never move
left and whose tape-2 head can move left only while scanning a blank (combined with a previous

step that writes a blank, this simulates popping the stack).

Pushdown automata have been thoroughly studied because nondeterministic PDAs accept pre-
cisely the class of context-free languages, to be defined in Chapter 31. Various types of PDAs have

fundamental applications in compiler design.
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The PDA has less power than a Turing machine. For example, L = {zz | z € {0,1}*} cannot
be accepted by a PDA, but it can be accepted by a Turing machine as in Example 2.5. However,
a PDA is more powerful than a DFA. For example, a PDA can accept the non-regular language
L' = {0™1™ | n > 0} easily: For each initial 0 read, push a 0 onto the stack; then pop a 0 for each 1
read, and accept if and only if a blank is read after the block of 1s exactly when the stack is empty.

Indeed, this PDA is a counter machine with a single counter.

Two pushdown stores can easily be used to simulate a tape—Ilet one stack represent the part
of the tape currently to the left of the input head, and let the other stack represent the rightward
portion. Much more subtle is the fact that two counters can simulate a tape; unlike the two-
pushdown case this takes exponentially more time. Finally, a single queue can simulate a tape:
send the lead head to the right end so that it can write the next-step update of the configuration
that the trailing head is reading. This involves encoding the current state of the TM being simulated
onto the tape of the queue machine that is simulating it. Hence a single-queue machine, with the
input initially resting in the queue, is as powerful as a Turing machine, although it may require the
square of the running time. For comparisons of powers of pushdown stores, queues, counters, and

tapes, see [van Emde Boas, 1990] and [Li and Vitdnyi, 1993].

Much more important is the fact that there are single Turing machines that are capable of
simulating any Turing machine. Formally, a universal Turing machine U takes an encoding
(M,w) of a (deterministic) Turing machine M and a string w as input, and simulates M on
input w. U accepts (M, w) if and only if M accepts w. Intuitively, U models a general-purpose
computer that takes a “program” M and “data” w, and executes M on input w. Universal Turing
machines have many applications. For example, the definition of Kolmogorov complexity (see

[Li and Vitanyi, 1993]) fundamentally relies on them.

ExamPLE 2.7 Let L, = {(M,w) | M accepts w}. Then L, is the language accepted by a universal
Turing machine, so it is recursively enumerable. We shall see in Chapter 32, however, that L, is
not recursive. The same properties hold for the language L), = {(M,w) : M on input w halts},

which is the language of the so-called Halting Problem.
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2.3 Oracle Turing Machines

In order to study the comparative hardness of computational problems, we often need to extend

the power of Turing machines by adding oracles to them.

Informally, a Turing machine 7' with an oracle A operates similarly to a normal Turing machine,
with the exception that it can write down a string z and ask whether z is in the language A. The
machine gets the correct yes/no answer from the oracle in one step, and can branch its computation

accordingly. This feature can be used as often as desired. We now give the definition precisely.

DEFINITION 2.3 An oracle Turing machine is a normal Turing machine 7' with an extra oracle
query tape, a special state g7, and two distinguished states labeled ¢, and ¢,,. Let A be any language
over an alphabet 3. Whenever T enters state ¢» with some string z € X* on the query tape, control
passes to state ¢, if z € A, or to g, if z ¢ A. The computation continues normally until the next

time the machine enters g». The machine T with a given choice of oracle A is denoted by T4.

ExamPLE 2.8 In Example 2.7, we know that the universal language L,, = {(M, w) | M accepts w}
is not Turing decidable. But if we can use L, as the oracle set, there is a trivial oracle TM T such
that T with oracle L, decides L,. T simply copies its input # onto the query tape and enters g-.

If control passes to g,, T' accepts; otherwise from g,, it rejects.

For something less trivial, suppose we have L, = {(M,w) : M on input w halts} as the oracle
set. Given a (non-oracle) Turing machine M, there is a standard way to modify M to the code of
an equivalent Turing machine M’ in which the accepting state gs is the only place where M’ can
halt. This is done by making every other combination ¢, ¢ where M might halt send control to an
extra state that causes an infinite loop. Thus M’ halts on w if and only if M accepts w. Now design
an oracle Turing machine 7’ that on any input z of the form (M, w) (rejecting if 2 does not have
the form) writes ' = (M’, w) on the query tape and enters g7, accepting if control goes to ¢, and
rejecting from ¢,,. Then T with oracle set Lj, decides whether z € L,,, since ¢ € L, <= 2’ € Lj,.

This is a simple case where an oracle for one problem helps one decide a different problem.

A language A is Turing-reducible to a language B, written A <7 B, if there is an oracle
Turing machine that with oracle B decides A. For example, we have just shown that L, <7 L.

The important special case in which the oracle TM T makes exactly one query, accepting from
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gy and rejecting from g, gets its own notation: A <,, B. Equivalently, A <,, B if there is a
computable function f such that for all 2 € ¥*, 2 € A <= f(z) € B. The function f represents
the computation done by T prior to making the sole query. This case is called a many-one
reduction (hence the subscript “m”) for the arcane historical reason that f need not be a one-to-
one function. The term “many-one reduction” is standard now. The above example actually shows
that L, <,, Lp. It is not hard to show that also L, <,, L,, so that the Halting Problem and the

membership problem for a universal Turing machine are many-one equivalent.

2.4 Alternating Turing Machines

Turing machines can be naturally generalized to model parallel computation. A nondeterministic
Turing machine accepts an input if there exists a move sequence leading to acceptance. We can
call any nondeterministic state entered along this sequence an ezistential state. We can naturally
add another type of state, a universal state. When a machine enters a universal state, the machine
will accept if and only if all moves from this state lead to acceptance. These machines are called

alternating Turing machines.

Let us describe the computation of alternating Turing machines formally and precisely. An
alternating Turing machine is simply a nondeterministic Turing machine with the extra power that
some states can be universal. A configuration of an alternating Turing machine A has the same

form as was described for a deterministic Turing machine, namely:
(current state, tape contents, head positions).

We write

atkpg

if, in one step, A can move from configuration a to configuration 8. A configuration with current

state ¢ is accepting if
e ¢ is an accepting state (i.e., ¢ = g¢); or
e ¢ is existential, and there exists an accepting configuration 8 such that a - 3; or

® ¢ is universal, and or each configuration 3 such that o F 3, 8 is an accepting configuration.
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This definition may seem circular, but by working backwards from configurations with g4 in the
current-state field, one may verify that it inductively defines the set of accepting configurations in
a natural manner. Then A accepts an input 2 if its initial configuration (with current state go, 2
on the input tape, heads at initial positions) is accepting.

Alternating Turing machines were first proposed by [Chandra, et al, 1981] for the purpose of
modeling parallel computation. In order to allow sub-linear computation times, a random-access
model is used to read the input. When in a special “read” state, the alternating Turing machine is
allowed to write a number in binary which is then interpreted as the address of a location on the
input tape, whose symbol is then read in unit time. By using universal states to relate different
branches of the computation, one can effectively read the whole input in as little as logarithmic

time.

Just as a nondeterministic Turing machine is a model for solitaire games, an alternating Turing
machine is a model for general two-person games. Alternating Turing machines have been success-
fully used to provide a theoretical foundation of parallel computation as well as to establish the
complexity of various two person games. For example, a chess position with White to move can be
modeled from White’s point of view as a configuration o whose first component is an existential
state. The position is winning if there exists a move for White such that the resulting position J3 is
winning. Here 8 with Black to move has a universal state ¢, and is a winning position (for White)
if and only if either Black is checkmated (this is the base case ¢ = ¢4) or for all moves by Black to
a position 7, v is a winning position for White. .. Chapter 34, Sections 5-6, will demonstrate the

significance of games for time and space complexity, to which we now turn.

3 Time and Space Complexity

With Turing machines, we can now formally define what we mean by time and space complexity.
The formal investigation by [Hartmanis and Stearns, 1965] and [Blum, 1967] in the 1960’s marked
the beginning of the field of computational complezity.

An important point with space complexity is that a machine should be charged only for those
cells it uses for calculation, and not for read-only input, which might be provided on cheaper non-

writable media such as CD-ROM or accessed piecemeal over a network. Hence we modify the
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Turing machine of Figure 9 by making the tape containing the input read-only, and giving it one

or more worktapes.

DEeFINITION 3.1 Let M be a Turing machine. If for all n, every sequence of legal moves on an
input z of length n halts within ¢(n) steps, we say that M is of time complexity ¢(n). Similarly,

if every such sequence uses at most s(n) worktape cells, then M is of space complexity s(n).

THEOREM 3.1 Fiz a number ¢ > 0, a space bound s(n), and a time bound t(n).

(a) Any Turing machine of s(n) space complezity, using any number of tapes or grids of any
dimension, can be simulated by a Turing machine with a single (one-dimensional) worktape

that has space complezity s(n)/c.

(b) Any Turing machine of t(n) time complezity can be simulated by a Turing machine, with the

same number and kinds of worktapes, that has time complezity n + t(n)/c.

The proof of these so-called linear speed-up theorems involves enlarging the original TM’s work-
tape alphabet T' to an alphabet I' large enough that one character in I can encode a block of ¢
consecutive characters on a tape of the original machine (see [Hopcroft and Ullman, 1979]). The
extra “n+” in the time for part (b) is needed to read and translate the input into the “compressed”
alphabet I'. If we think of memory in units of bits the idea that this saves space and time is
illusory, but if we regard the machine with I as having a larger word size, the savings make sense.
Definition 3.1 is phrased in a way that applies also to nondeterministic and alternating TMs, and

the two statements in Theorem 3.1 hold for them as well.

In Theorem 3.1, if s(n) > n, then we do not need to separate the input tape from the work-
tape(s). For any Turing machine M of linear space complexity, part (a) implies that we can simulate
M by a one-tape TM M’ that on any input & uses only the cells initially occupied by z (except
for one visit to the blank cell to the right of z to tell where z ends). Then M’ is called a linear

bounded automaton.

The main import and convenience of Theorem 3.1 is that one does not need to use “O()-
notation” to define complexity classes: space complexity O(s(n)) is no different from space com-

plexity s(n), and similarly for time. As we shall see, it is not always possible to reduce the number
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of tapes and run in the same time complexity, so researchers have settled on Turing machines with

any finite number of tapes as the bench model for time complexity.

DEFINITION 3.2 e DTIME(t(n)] is the class of languages accepted by multi-tape deterministic
TMs in time t(n);

e NTIMEJt(n)] is the class of languages accepted by multi-tape nondeterministic TMs in time
t(n);

e DSPACE[s(n)] is the class of languages accepted by deterministic TMs in space s(n);

e NSPACE[s(n)] is the class of languages accepted by multitape nondeterministic TMs in space
O(s(n));

e P is the complexity class | J, . DTIME[n¢];

e NP is the complexity class |J . NTIME[n];

e PSPACE is the complexity class [ J .y DSPACE[n];

e ATIME([s(n), t(n)] is the class of languages accepted by alternating Turing machines operating

simultaneously in time ¢(n) and space s(n).

ExaMPLE 3.1 In Example 2.5 we demonstrated how the language L = {zz | = € {0,1}*} can be
decided by a Turing machine. We gave a two-head, one-tape TM running in time 3n/2, and it
is easy to design a two-tape, one-head-per-tape TM that executes the same strategy in time 2n.
Theorem 3.1 says that by using a larger tape alphabet, one can push the time down to (1 + ¢)n for
any fixed € > 0. However, our basic one-tape, one-head Turing machine model can do no better

than time on the order of n2.

ExXaMPLE 3.2 Any multi-tape, multi-head Turing machine, not just the one accepting L in the
last example, can be simulated by our basic one-tape, one-head model in at most the square of
the original’s running time. For example, a two-tape machine M with tape alphabet I' can be
simulated by a one-tape machine M’ with a I'" large enough to encode all pairs of characters over

I'. Then M’ can regard its single tape as having two “tracks,” one for each tape of M. M’ also
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needs to mark the locations of the two heads of M, one on each track—this can be facilitated by
adding more characters to Y. Now to simulate one step of M, the one-tape machine M’ must
use its single head to update the computation at the two locations with the two head markers. If
M runs in time £(n), then the two head markers cannot be more than ¢(n) cells apart. Thus to
simulate each step by M, M’ moves its head for at most ¢(n) distance. Hence M’ runs in time at

most t(n)?.

The simulation idea in Example 3.2 does not work if M uses two- or higher-dimensional tapes,
or a more-general “random-access” storage (see the next section). However, a one-tape M’ can be
built to simulate it whose running time is still no worse than a polynomial in the time of M. It
is important to note that our basic one-tape deterministic Turing machine is known to simulate
all of the extended models we offer above and below—except nondeterministic and alternating
TMs—with at most polynomial slowdown. This is a key point in taking the class P, defined as
above in terms of Turing machine time, as the benchmark for which languages and functions are
considered feasibly computable for general computation. (See Chapter 33 for more discussion of this
point.) Polynomial time for nondeterministic Turing machines defines the class NP. Interestingly,
polynomial space for nondeterministic TMs does equal polynomial space for deterministic TMs

[Savitch, 1970], and polynomial time for alternating TMs equals the same class, namely PSPACE.

ExaMPLE 3.3 All of the basic arithmetical operations—plus, minus, times, and division—belong
to P. Given two n-digit integers  and y, we can easily add or subtract them in O(n) steps. We can
multiply or divide them in O(n?) steps using the standard algorithms learned in school. Actually,
by grouping blocks of digits in # and y and using some clever tricks one can bring the time down to
O(n'**) bit-operations for any desired fixed € > 0, and the asymptotically fastest method known
takes time O(nlognloglogn) [Schonhage and Strassen, 1971]. Computing z¥ is technically not in
P because the sheer length of the output may be exponential in n, but if we measure time as a
function of output length as well as input length, it is in P. However, the operation of factoring
a number into primes, which is a kind of inverse of multiplication, is commonly believed not to
belong to P. The language associated to the factoring function (refer to “L;” before Theorem 2.4
above) does belong to NP.

ExAMPLE 3.4 There are many other important problems in NP that are not known to be in P.

25



For example, consider the following “King Arthur” problem, which is equivalent to the problem
called HAMILTONIAN CIRCUIT in Chapter 34. King Arthur plans to have a round table meeting.
By one historical account he had 150 knights, so let n = 150. It is known that some pairs of knights
hate each other, and some do not. King Arthur’s problem is to arrange the knights around the
table so that no pair of knights who sit side by side hate each other. King Arthur can solve this
problem by enumerating all possible permutations of n knights. But even at n = 150, there are
150! permutations. All the computers in the whole world, even if they started a thousand years
ago and worked non-stop, would still be going on today, having examined only a tiny fraction of
the 150! permutations. However, this problem is in NP because a nondeterministic Turing machine
can just guess an arrangement and verify the correctness of the solution—by checking if any two
neighboring knights are enemies—in polynomial time. It is currently unknown if every problem in

NP is also in P. This problem has a special property—namely, if it is in P then every problem in

NP is also in P.

The following relationships are true:

P C NP C PSPACE.

Whether or not either of the above inclusions is proper is one of the most fundamental open
questions in computer science and mathematics. Research in computational complexity theory
centers around these questions. The first step in working on these questions is to identify the

hardest problems in NP or PSPACE.

DEeFINITION 3.3 Given two languages A and B over an alphabet ¥, a function f : ¥* — ¥* is

called a polynomial-time many-one reduction from A to B if
(a) f is polynomial-time computable, and
(b) for all z € ¥*, 2 € A if and only if f(z) € B.

One also writes A <P, B.

The only change from the definition of “many-one reduction” at the end of Section 2.3 is that
we have inserted “polynomial-time” before “computable.” There is also a polynomial-time version

of Turing reducibility as defined there, which gets the notation 4 <% B.
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DEFINITION 3.4 A language B is called NP-complete if

1. Bisin NP;

2. for every language A € NP, A <P B.

In this definition, if only the second item holds, then we say the language B is NP-hard. (Cu-
riously, while “NP-complete” is always taken to refer by default to polynomial-time many-one
reductions, “NP-hard” is usually extended to refer to polynomial-time Turing reductions.) The up-
shot is that if a language B is NP-complete and B is in P, then NP = P. An NP-complete language
is in this sense a hardest language in the class NP. Working independently, Cook [Cook, 1971] and
Levin [Levin, 1973] introduced NP-completeness, and Karp [Karp, 1972] further demonstrated its

importance. PSPACE and other classes also have complete languages.

Chapters 33 and 34 of this Handbook develop the topics of this section in much greater detail.
We also refer the interested reader to the textbooks [Yap, 1997], [Hopcroft and Ullman, 1979],
[Wood, 1987], [Lewis and Papadimitriou, 1981] and [Floyd and Beigel, 1994].

4 Other Computing Models

Over the years, many alternative computing models have been proposed. Under reasonable defini-
tions of running time for these models, they can all be simulated by Turing machines with at most
a polynomial slow-down. The reference [van Emde Boas, 1990] provides a nice survey of various
computing models other than Turing machines. We will discuss a few such alternatives very briefly

and refer our readers to Chapter 48 and [van Emde Boas, 1990] for more information.

4.1 Random Access Machines

The Random Access Machine [Cook and Reckhow, 1973] consists of a finite control where a program
is stored, several arithmetic registers, and an infinite collection of memory registers R[1], R[2],...
All registers have an unbounded word length. The basic instructions for the program are LOAD,

STORE, ADD, MUL, GOTO, and conditional-branch instructions. The LOAD and STORE com-

mands can use indirect addressing. Compared to Turing machines, this appears to be a closer but
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more complicated approximation of modern computers. There are two standard ways for measuring

time complexity of the model:

o The Unit-cost RAM: Here each instruction takes one unit of time, no matter how big the

operands are. This measure is convenient for analyzing many algorithms.

e The Log-cost RAM: Here each instruction is charged for the sum of the lengths of all data
manipulated by the instruction. Equivalently, each use of an integer 7 is charged logi time
units, since log ¢ is approximately the length of . This is a more realistic model, but sometimes

less convenient to use.

Log-cost RAMs and Turing machines can simulate each other with polynomial overheads. The
unit-cost assumption becomes unrealistic when the MUL instruction is used repeatedly to form
exponentially large numbers. Taking MUL out, however, makes the unit-cost RAM polynomially

equivalent to the Turing machine as well.

4.2 Pointer Machines

Pointer machines were introduced by [Kolmogorov and Uspenskii, 1958] in 1958 and in modified
form by Schonhage in the 1970s. Schonhage called his form the “storage modification machine”
[Schénhage, 1980], and both forms are sometimes named for their authors. We informally describe
Schonhage’s form here here. A pointer machine is similar to a RAM, but instead of having an
unbounded array of registers for its memory structure, it has modifiable pointer links that form a
A-structure. A A-structure S, for a finite alphabet A of size k, is a finite directed graph in which
each node has k out-edges labeled by the k symbols in A. Every node also has a cell holding an
integer, as with a RAM. At every step of the computation, one node of S is distinguished as the
center, which acts as a starting point for addressing. A word w € A* addresses the cell of the node
formed by following the path of pointer links selected by the successive characters in w. Besides
having all the RAM instructions, the pointer machine has various instructions and rules for moving
its center and redirecting pointer links, thus modifying the storage structure. Under the log-cost
criterion, pointer machines are polynomially equivalent to RAMs and Turing machines. There are
many interesting studies on the precise efficiency of the simulations among these models, and we

refer to the reader to the survey [van Emde Boas, 1990] as a center for further pointers on them.
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4.3 Circuits and Nonuniform Models

A Boolean circuit is a finite, labeled, directed acyclic graph. Input nodes are nodes without ances-
tors; they are labeled with input variables z4, ..., z,,. The internal nodes are labeled with functions
from a finite set of Boolean operations such as {AND, OR, NOT} or {NAND}. The number of
ancestors of an internal node is precisely the number of arguments of the Boolean function that
the node is labeled with. A node without successors is an output node. The circuit is naturally
evaluated from input to output: at each node the function labeling the node is evaluated using the

results of its ancestors as arguments. Two cost measures for the circuit model are

o depth: the length of a longest path from an input node to an output node.

e size: the number of nodes in the circuit.

These measures are applied to a family {C,, | » > 1} of circuits for a particular problem, where C,,
solves the problem of size n. Subject to the uniformity condition that the layout of C,, be com-
putable given n (in time polynomial in n), circuits are (polynomially) equivalent to Turing machines.
Chapters 33 and 48 give full presentations of circuit complexity, while [van Emde Boas, 1990] and

[Karp and Ramachandran, 1990] have more details and pointers to the literature.

5 Defining Terms

alternating Turing machine: a generalization of a nondeterministic Turing machine. In the
latter, every state can be called an existential state since the machine accepts if one of the possible
moves leads to acceptance. In an alternating Turing machine there are also universal states, from

which the machine accepts only if all possible moves out of that state lead to acceptance.
algorithm: a finite sequence of instructions that is supposed to solve a particular problem.

complexity class NP: the class of languages that can be accepted by a nondeterministic Turing

machine in polynomial time.

complexity class P: the class of languages that can be accepted by a deterministic Turing machine

in polynomial time.
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complexity class PSPACE: the class of languages that can be accepted by a Turing machine in

polynomial space.

computable function: a function that can be computed by an algorithm—equivalently, by a

Turing machine.

decidable problem/language: a problem that can be decided by an algorithm—equivalently,

whose associated language is accepted by a Turing machine that halts for all inputs.
deterministic: permitting at most one next move at any step in a computation.

finite automaton or finite-state machine: a restricted Turing machine where the head is

read-only and shifts only from left to right.

(formal) language: a set of strings over some fixed alphabet.

Halting Problem: the problem of deciding whether a given program (or Turing machine) halts
on a given input.

many-one reduction: a reduction that maps an instance of one problem into an equivalent
instance of another problem.

nondeterministic: permitting more than one choice of next move at some step in a computation.

NP-complete language: a language in NP such that every language in NP can be reduced to it
in polynomial time.

oracle Turing machine: a Turing machine with an extra oracle tape and three extra states
47, @y, @n- When the machine enters g7, control goes to state g, if the oracle tape content is in the
oracle set; otherwise control goes to state g,.

partial recursive function: a partial function computed by a Turing machine that need not halt
for all inputs.

partially decidable problem: one whose associated language is recursively enumerable. Equiv-
alently, there exists a program that halts and outputs 1 for every instance having a yes answer, but
is allowed not to halt or to halt and output 0 for every instance with a no answer.

polynomial time reduction: a reduction computable in polynomial time.

program: a sequence of instructions that can be executed, such as the code of a Turing machine

or a sequence of RAM instructions.
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pushdown automaton: a restricted Turing machine where the tape acts as a pushdown store (or

a stack), with an extra one-way read-only input tape.

recursive language: a language accepted by a Turing machine that halts for all inputs.
recursively enumerable (r.e.) language: a language accepted by a Turing machine.
reduction: a computable transformation of one problem into another.

regular language: a language which can be described by some right-linear/regular grammar (or
equivalently by some regular expression).

time/space complexity: a function describing the maximum time/space required by the machine
on any input of length n.

Turing machine: a simplest formal model of computation consisting a finite-state control and a
semi-infinite sequential tape with a read-write head. Depending on the current state and symbol
read on the tape, the machine can change its state and move the head to the left or right. Unless

otherwise specified, a Turing machine is deterministic.

Turing reduction: a reduction computed by an oracle Turing machine that halts for all inputs
with the oracle used in the reduction.

uncomputable function: a function that cannot be computed by any algorithm—equivalently,
not by any Turing machine.

undecidable problem/language: a problem that cannot be decided by any algorithm—
equivalently, whose associated language cannot be recognized by a Turing machine that halts for
all inputs).

universal Turing machine: a Turing machine that is capable of simulating any other Turing

machine if the latter is properly encoded.
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Further Information

The fundamentals of the theory of computation, automata theory, and formal languages can be
found in Chapters 31-33 and in many text books including [Floyd and Beigel, 1994, Gurari, 1989,
Harel, 1992, Hopcroft and Ullman, 1979, Lewis and Papadimitriou, 1981, Wood, 1987, Yap, 1997,
Sipser, 1997]. One central focus of research in this area is to understand the relationships between
different resource complexity classes. This work is motivated in part by some major open questions
about the relationships between resources (such as time and space) and the role of control mech-
anisms (such as nondeterminism or randomness). At the same time, new computational models
are being introduced and studied. One recent model that has led to the resolution of a number
of interesting problems is the interactive proofs (IP) model. IP is defined in terms of two Turing
machines that communicate with each other. One of them has unlimited power and the other
(called the verifier) is a probabilistic Turing machine whose time complexity is bounded by a poly-
nomial. The study of IP has led to new ways to encrypt information as well as to the proof of some
unexpected results about the difficulty of solving NP-hard problems (such as coloring, clique etc.)
even approximately. See Chapter 35, sections 3 and 5. Another new model is the quantum Turing
machine, which can solve in polynomial time some problems such as factoring that are believed
to require exponential time on any hardware that follows the laws of “classical” (pre-quantum)
physics. There are also attempts to use molecular or cell-level interactions as the basic operations

of a computer.

The following annual conferences present the leading research work in computation theory:
ACM Annual Symposium on Theory of Computing (STOC), IEEE Symposium on the Founda-
tions of Computer Science (FOCS), IEEE Conference on Computational Complexity (CCC, for-
merly Structure in Complexity Theory), International Colloquium on Automata, Languages and
Programming (ICALP), Symposium on Theoretical Aspects of Computer Science (STACS), Math-
ematical Foundations of Computer Science (MFCS), and Fundamentals of Computation Theory
(FCT). There are many related conferences in the following areas: computational learning theory,
computational geometry, algorithms, principles of distributed computing, computational biology,

and database theory. In each case, specialized computational models and concrete algorithms are
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studied for a specific application area. There are also conferences in both pure and applied math-
ematics that admit topics in computation theory and complexity. We conclude with a partial list
of major journals whose primary focus is in theory of computation: Journal of the ACM, SIAM
Journal on Computing, Journal of Computer and System Sciences, Information and Computation,
Theory of Computing Systems (formerly Mathematical Systems Theory), Theoretical Computer
Science, Computational Complexity, Journal of Complexity, Information Processing Letters, Inter-

national Journal of Foundations of Computer Science, and Acta Informatica.
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