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ABSTRACT

Even though every cell in an organism contains the
same genetic material, each cell does not express the
same cohort of genes. Therefore, one of the major
problems facing genomic research today is to determine
not only which genes are differentially expressed and
under what conditions, but also how the expression of
those genes is regulated. The first step in determining
differential gene expression is the binding of sequence-
specific DNA binding proteins (i.e. transcription factors)
to regulatory regions of the genes (i.e. promoters and
enhancers). An important aspect to understanding how a
given transcription factor functions is to know the entire
gamut of binding sites and subsequently potential target
genes that the factor may bind/regulate. In this study, we
have developed a computer algorithm to scan genomic
databases for transcription factor binding sites, based on
a novel Markov chain optimization method, and used it to
scan the human genome for sites that bind to hepatocyte
nuclear factor 4 o (HNF4qa). A list of 71 known HNF4«
binding sites from the literature were used to train our
Markov chain model. By looking at the window of 600
nucleotides around the transcription start site of each
confirmed gene on the human genome, we identified 849
sites with varying binding potential and experimentally
tested 109 of those sites for binding to HNF4«. Our results
show that the program was very successful in identifying 77
new HNF4qa binding sites with varying binding affinities (i.e.
a 71% success rate). Therefore, this computational method
for searching genomic databases for potential transcription
factor binding sites is a powerful tool for investigating
mechanisms of differential gene regulation.
Contact: jiang@cs.ucr.edu

Analysisof the humangenomeaswell asthe genomes
of a variety of other organismsrecently shaved that an
unexpectedlylarge portion of the geneticcontentof cells
is devotedto the regulation of geneexpression(Lander
etal., 2001; Venteret al., 2001). This is consistentwvith

thelong establishedenetof cell anddevelopmentabiol-
ogy thateventhoughevery cell in the body containsthe
samecomplemenbf genesonly a subsetf thosegenes
areexpressedn a giventissueat a giventime during de-
velopmentandundergivenphysiologicalandpathological
conditions.One of the first stepsin determiningwhether
or not a geneis expresseds the binding of specialized
transcriptionalactivatorsor repressorgi.e. transcription
factors) to specific DNA sequencegi.e. promotes and
enhances), nearthe start site of transcription,typically
within a couplehundrednucleotides Subsequentlythese
factorsrecruitgeneratranscriptiorfactorsandRNA poly-
merasehattranscribeshe DNA into RNA, which is then
translatednto protein.Therefore cell- andtissue-specific
geneexpressionoccursdue to the presencepr absence,
of differentcohortsof transcriptiorfactors Whereashese
transcriptionfactorsexhibit sequence-specifiaNA bind-
ing propertieshereis almostalwaysvariability in the se-
guencethat they recognize,.e. they bind morethanone
sequencealthougha consensusequenceanoftenbe es-
tablished.This variability is thoughtto be critical to the
fine tuning of theregulationof geneexpressiorbut it also
malkesit very difficult to definitively identify all potential
bindingsiteswithout the aid of computationatechniques.
A prime example of promiscuity in DNA binding
is hepatocytenuclear factor 4 « (HNF4a), a highly
conseredfactororiginally foundin liver but alsopresent
in kidney, intestine,pancreasand stomach(Sladekand
Seidel,2001).HNF4« is amemberof thenucleareceptor
superamily of ligand-dependerttanscriptionfactorsthat
includessteroidandthyroid hormoneandvitaminsA and
D receptorsas well as a large numberof receptorsfor
which ligands have not yet beenidentified (i.e. orphan
receptos). WhereasHNF4qa is consideredan orphan
receptorin termsof ligand binding it is not an orphanin
termsof target genesand binding sites. Over 55 target
genesfor HNF4a have beenidentified experimentally
and can be groupedaccordingto the function of the
genesthat they encode.The cateyories include genes
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involvedin glucose lipid, steroid,xenobioticand amino
acid metabolismand transportas well asgenesinvolved
in blood maintenanceliver differentiationand hepatitis
B viral infections. Through thesetarget genesHNF4a:

is associatedvith several different humandiseasesFor

example, the HNF4a geneis mutatedin an inherited
form of diabetes maturity onsetdiabetesof the young
1 (MODY1) (Sladekand Seidel, 2001), and mutations
in HNF4« binding sitesare known to be the causenot

only of anotherform of MODY (MODY3) but also of

certain types of hemophilia(Sladekand Seidel, 2001).
Therefore knowing the entire complemenbf genesthat
HNF4a regulatesandthe DNA sequences thosegenes
that HNF4« binds s critical to determiningthe role of

HNF4a in humandiseasesnd potential susceptibilities
to thosediseases.

The experimentaltechniquesto determinewhethera
giventranscriptionfactorsuchasHNF4« bindsary given
DNA sequencen vitro are well established.Comple-
mentaryoligonucleotidegoligo’s) containingthe binding
site in questionare synthesizedannealedyadiolabeled,
and analyzedfor binding in a gel shift assayin which
oligo’s bound by the transcriptionfactor are separated
from unboundoligo’s by differential migration through
a native polyacrylamide gel under an electrical field.
However, usingthis methodto determinevhethera given
factor binds hundredsor thousandof potential sitesis
not only very time consumingand labor intensve but
alsocostly. Therefore the useof computationaimethods
to identify potentialtranscriptionfactor binding sitesis
highly desired,particularly now that the entire genomes
of avariety of organismshave beensequenced!

Many algorithmic methodshave beenproposedn the
literature for the identification of transcription factor
bindingsites,e.g. (Brazmaetal., 1998;SinhaandTompa,
2000; Stormo, 2000; Tan et al., 2001; Thakurta and
Stormo,2001; Tompa,1999; Vanet, Marsan,and Sagot,
1999;Zhu andZhang,1999).While someof the methods
attemptto find sitesin a genomethat have interesting
characteristicand may bind to any transcriptionfactor,
others try to identify only binding sites for specific
transcriptionfactors.In this study we areconcernedvith
thelatterparadigm.

Most transcriptionfactors have a number of known
(i.e. experimentally verified) binding sites that can be
found by searchingthe literature. For example, at least
71 distinctbinding sitesfor HNF4a have beenpreviously
identified, each consistingof 13 nucleotidesas shovn

t Although a promising experimentaltechnique called genome-widdoca-
tion analysis(lyer et al., 2001; Lieb et al., 2001;Renet al., 2000),based
on DNA microarraytechnologyhasbeendevelopedrecently it is presently
still too complex and expensve to be usedon large genomessuchasthe

humangenome Moreover, the techniques designedo find targetgenesof

transcriptiorfactorsratherthantheir specifichinding sites.

in Table 1. From such a list of known binding sites,
one can build a model of the binding sequenceghat
characterizeshe sequencef some(often probabilistic)
way. Thencombinatoriaimatchingand/orstatisticaktesing
techniquescan be appliedto searcha genome(or some
selectedregions of the genome suchasregionsthat are
upstreamof verified or predicted genesand are near
transcription start sites) for putatve binding sites that
“match” themodelwith a high “confidence”.

The simplestway of modellinga binding sequencés to
useconsensusequencesr regular expressiongQuandt
et al.,, 1995). For example, the well-known Kozak’s
sequencéhatmarksthe startsite of translationcanbe de-
scribedas a regular expressionGCC[A|G|CCAT GG,
whereA or G areacceptabldor thefourth position.These
methods,of course,representan extremely simplistic
view of the binding sequenceand only work well for
short, highly consered sequencesThe most popular
representationsf transcriptionfactor binding sequences
are perhapsposition specific scoe matrices (PSSM5)
(Stormo, 2000). A PSSM for a binding sequencees-
sentially describesthe frequengy of eachnucleotideat
each particular position of the binding sequencen the
form of scores (which are usully basedon log ratios of
frequencies)(Stormo, 2000). Once a PSSM has been
establishedrom the known binding sequencegi.e. the
trainingset),onecandeterminehow well a potentialbind-
ing sequencenatcheghe PSSMby scoringthe nucleotide
at eachposition of the sequenceagainstthe PSSM (at
correspondingpositions) and summing up the scores.
PSSMis the primary methodfor expressingranscription
factor binding sequence# the Transac databaséWin-
genderet al., 2000). Sincea PSSMtreatseachposition
of the binding sequenceindependentlyfrom the other
positions,it doesnot captureary potential dependence
that may exist betweenpositionsandthus may not work
well when the positionsare strongly dependenbn each
other One possible way to improve the performance
of PSSMis to use maximal dependencelecomposition
(MDD) that attemptsto capture dependencebetween
positions (Burge and Karlin, 1997). Insteadof creating
a single PSSM basedon the entire training set, MDD
createsa tree of PSSMS, eachestimatedfrom a subset
of training sequencesThe correctPSSMusedto score
a sequences thendeterminedby “tokens” that occurin
the positionsthataredeterminedo be dependenon other
positions.This methodallows for the useof information
aboutdependentandindependenpositions,but requires
a training setthat is large enoughto be partitionedinto
smaller yetstill adequatetrainingsubsets.

For most transcriptionfactors,the numberof known
bindingsitesis relatively small.E.g., althougharelatively
large numberof HNF4« target geneshave beenchar
acterized,only 71 distinct binding sites were known at
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the beginning of our project.However, a simplestatisical
dependenceanalysis (i.e. x* test) on the 71 binding
sequencef 13 nucleotidesfor HNF4a revealedsignif-
icant dependencéetweensereral pairs of positions,e.g.
positions4 and8, positions4 and11, etc

A natural extension of the PSSM methodis to use
Markov chainsor hiddenMarkov modelstHMM' s). Here,
a binding sequences represente@s a Markov chain (or
HMM) thatgivesthe probabilityof eachnucleotideoccur
ring at a particularpositiondependingon the nucleotides
at precedingpositions.Markov chainsand HMM’ s have
beenusedextensiely in biomolecularsequenceanalysis
and, in particular transcriptionfactor binding sequence
identification (Durbin et al., 1998). Although these
modelsallow dependenceamongpositionsto beencoded
in the statetransition probabilities, not all dependence
are treatedequally Intuitively, dependencdetweentwo
positions is directly representedn the Markov chain
(or HMM) if the positionsare adjacentin the Markov
chain(or within closeproximity in the caseof high order
Markov chains/HMMS); otherwiseit is only indirectly
represented Correlation among non-adjacentpositions
could especially be important for transcription factor
binding sitessincethe binding betweena DNA molecule
and a protein molecule is essentiallya 3-dimensional
geometricalmatching processthat may involve cooper
ation betweennucleotides(or amino acid residues)at
non-adjacenpositionsof the primary DNA (or protein)
sequenceFor example, HNF4q is a dimer consisting
of two cooperatre “arms” that bind to differentregions
of the tamet sequenceHowever, the existing work on
usingMarkov chainsandHMM' s to identify transcription
factor binding sites typically arrangesthe statesin the
sameorderasthe positionsin the binding sequenceand
hencemay not capturethe mostsignificantinter-position
dependence.

In this paper we proposean enhancemertb the above
Markov chain basedalgorithmsfor finding transcription
factorbindingsites.Givenasetof trainingsequenceé.e.
known binding sequence$or someparticulartranscrip-
tion factor),we first estimatethe pairwisedependencbe-
tweenpositionsin the targetbinding sequencethrougha
simple statistical(e.g. x?) analysis.The Markov chainis
thenorderedso that mostpairs (or groups,in the caseof
high-orderMarkov chain)of significantlydependenposi-
tionsareadjacentor within closeproximity). TheMarkov
modelis thentrainedusingthetrainingsequencesndthe
completednodelis usedto scangenomicsequencesf in-
terestto identify potentialbinding sites.We notein pass-
ing that correlationsand dependencebetweenpositions
in regulatory sequence$iave also beenpreviously stud-
ied (Agarwal andBafna,1998).

To demonstratethe utility of the above method, we
havefollowedthemethodto createan(optimized)Markov

chainmodelfor the HNF4q binding sequencedAs a first
application, the model was usedto scanan areafrom
—500bp to +100bp, relative to the transcription start
site, for eachof the approximately9, 500 verified genes
obtained from the UCSC Goldenpathhuman genome
annotation(seeht t p: / / genone. ucsc. edu/ ). The
scanyielded a total of 849 siteswith varying binding
potential Wethenselectedsubsebf 109 sites,andtested
their binding affinities in vitro using a gel shift assay
This resultedin the identificationof 77 new sitesin the
humangenome(including 69 new sequences)hat bind
HNF4a with a certainaffinity (i.e. a 71% successate).
This finding significantly impactsthe study of HNF4«
becausenly 71 binding siteswereknown to exist in all
genomestthestartof theproject.We have alsocompared
the optimizedMarkov modelwith the “unoptimized”one
wherethe positionsare sequentiallyorderedaccordingto
thatin the binding sequencein termsof (i) information
content(or relative entropy) of themodeland(ii) accurag
in predictingbinding sites,and found that the optimized
modelis superiorin both catgyories.Encouragedy the
succes®f theteston the HNF4q data,we think thatthis
improved Markov chainapproachwill be very usefulin
identifying bindingsitesfor mary transcriptionfactors.

The rest of the paperis organizedas follows. Section
2 describesthe improved Markov chain algorithm for
identifying transcription factor binding sites, and the
algorithm for orderingthe Markov chainto capturethe
most significant interposition dependenceln Section
3, we presentthe experimentalresults on the HNF4x
dataand somecomparison®f differentMarkov models.
Section4 concludeghe paperwith somepossiblefurther
improvements.

AN IMPROVED MARKQOV CHAIN ALGORITHM

In this section,we outline our algorithm for identify-
ing transcriptionfactor binding sites (TFBS's) through
Markov chainoptimization.The key is an algorithm for
orderingthe Markov chain to capturethe most signifi-
cant dependencemongpositionsin the tamget binding
sequencefor conveniencewe will illustratethe stepsin
the algorithmsmostly in termsof the HNF4a example,
althoughthe approachshouldwork for ary transcription
factorwith anadequatesetof known bindingsites.

A (nonstationaryMarkov chainof lengthn is a proba-
bilistic modelthatdescribesheprobability distribution of
sequencesf n statess;, ss, ..., s, by meansof transi-
tion probabilities wherethetransitionprobability P(s; =
q|si—1 = p) definesthe probability of states; = ¢ given
states;_; = p. Thisdefinitionscanbe easilyextendedo
high-order Markov chainsto allow the stateataparticular
positionto dependn statesatseseralprecedingpositions.
For example,a 3rd-orderMarkov chain, which was the
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. Input: a setof known binding sequencesor the target transcriptionfactor and a genomic
. Extractregionsof thegenomethatarelik ely to containbindingsitesfor thetargettranscription

. Performa dependencanalysis(e.g. x* test)on thetraining sequencew find an orderingof

sequence.
factor

the positionsin the Markov chainto be createdso that mostof the significantly dependent

sequenceanderthemodel.

bindingsites.

positionsareadjacen{or within closeproximity).
4. Trainthe (high-order)Markov modelusingthe known binding sequences.
5. Determineathresholdbasedon the meanandstandardieviation of the scoresof thetraining

6. Scantheregionsextractedin Step2 with the Markov modelto createalist of ranked candidate

Fig. 1. An improved Markov chainalgorithmfor finding TFBS's.

modelusedn theHNF4« project,hastransitionprobabili-
tiesof theform P(s; = q|si—1 = p, Si—2 = v, S;_3 = u).

Third-orderMarkov modelsareespeciallyusefulin scan-
ning genomedor motifs becausehey arecapableof cap-
turing 4-letter wordsthat may be of (e.g. functional)sig-
nificance(SinhaandTompa,2000).The framework of our
Markov chainalgorithmfor finding TFBS's is similar to

existing Markov chainalgorithms,exceptthat we explic-

itly orderthe positionsin the Markov chainto maximize
theinter-positiondependenceapturedn the model. The
algorithmis outlinedin Figurel.

The set of 71 training sequencesfor HNF4a are
shovn in Table 1 (Antes et al., 2000; Hauch et al.,
1994; Lahunaet al., 2000; Nicolas-Francet al., 2000;
Pinaire et al., 1999; Ozeki et al., 2001; Sladek and
Seidel,2001; Swensoret al., 1999; Yanai et al., 1999).
Each sequenceconsistsof two similar segments(direct
repeat} of 6 nucleotideseachseparatedy a “spacer”
(of onenucleotide)Actually, therearetwo morebinding
sequenceknown for HNF4a: that containtwo “spacers”;
but these sequencesvere not included in the training
of our Markov model. Sincemostknown TFBS's occur
near the transcriptionstart sites of genes,we focused
our attentionon regionssurroundingknown transcription
startsitesin the givengenomeThis not only reducedhe
searchspaceandthusthe runningtime, but alsoreduced
the numberof false positives. A similar idea was also
consideredTanetal., 2001).In thefirst searcHor HNF4a
binding sites, we used all regions containing —500bp
through +1006p of the transcriptionstart site of each
of the approximately9, 500 verified genesin the UCSC
Goldenpatthhumangenomeannotationfor atotal of about
6 million bps.

(Pearson)y? testis a standardmethod for studying
independencebetween two distributions (Hays and
Winkler, 1971).In our case,we are not concernedwith

independencas much as we are with dependenceWe
will usea liberal interpretationof x? testto determine
which distributions are “less independent’than other
distributions, thus sorting out pairs of distributions that
are not independent: To define the x? valuesfor a
given set of training sequenceslet f;(z) denote the
(obsened) frequeng of nucleotidez at position ¢, and
O;,.i,(x1,z2) the (obsered) frequeng of nucleotide
1 occurringat positions; andnucleotidez, occurring
at position ¢,. We can calculatethe expectedfrequengy

for x, to occurat positionz; andz, to occurat position
iy as By, (21,22) = fu(21)fi(22)/N (assuming
the positionsare independent)where N is the sample
size (i.e. the total number of training sequences)Let

X = {4, C, G, T} denotethe setof nucleotidesThe x?

valuefor positionsi; andi, is definedas

X2(i1;7;2)
-y ¥ (Oiyia (21, 22) = By iy (21, 2))?

Ei i ('Tla 372)

z1€X z2€X

For example,the x? valuesfor the 13 positionsin the
known HNF4«a binding sequenceare shavn in Table 2.
Noticing that the x* testhas(4 — 1) - (4 — 1) = 9
degreesof freedom,we can computethe p values of
the x? values (Hays and Winkler, 1971), as showvn in
Table 3. Here, eachp value representshe probability
thata pair of positionsareindependentln the tables,the
rows andcolumnsarenumberedrom 1 to 13 andsmaller
p values(i.e. larger x? values)indicate less probability
of independencdor more probability of dependence).
Usually, a p valuelessthanor equalto 0.05 is accepted

* Strictly speakingnon-independenagoesnot alwaysimply dependenci
statisticstheory Althoughthe x2 testworked well for the HNF4a project,
onemayalsoconsidemtherstatisticaltestsfor dependence.
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HNF4a Binding Site | HNF4a: TagetGene

|| HNF4a Binding Site | HNF4a TamgetGene

AGTTCAaGGA CA
AGGGTAaAGGTTG
GGTCCAaGGGCG
TGGGCAaAGGTCA
AGTCCAgAGGTCA
AGTTCAaAGTTCA
GGCAAGQTTCATA
GGGTTAaAGGTTG
CGGGTRaAGGTGA
GGGCCAaAGGTCT
GGACCAaAGTCCA
AGACCAaAGTGCA
AGGGCAarGGCAA
TGGACTtAGTTCA
CGGCCAaAGGTCA
GGAGTAaAGTTCA
GGTTTAaAGTTCA
GGATCAaAGGTCC
GGGTCAaAGGCAC
CGGGCAaAGTTCT
CTAGCAaAGGTTA
GTACCAaAGTACA
AGGTCGaGASGTC
AGGTCAaAGGCTG
GGTCCAaAGTTCA
AGGTCTCAGGTCA
AGTCAAaAGTCCA
GGGGMRaAGGTTC
AGGTTAaAGGTCT
GGGCCAaGGGTCA
GGGGCAaAGTCAA
CGGGCAaAGGCCA
GGTTCAaAGGTCT
CTTGGAaCCGGGG
TGTCCAaAGTCCA
AAACCAaAGTTCA

apolipoproteinAl
apolipoproteinAll
apolipoproteirB
apolipoproteirClll
apolipoproteirClil

intestinalfatty acid binding protein
transthyretin

sex hormone-bindingylobulin
medium-chairag/l CoA
3-hydroxy-3-methylglutaryl-CoA
cytochrome2C1

cytochrome2C3

cytochrome2D6

cytochrome?
phospho-enolyruvate carboxykinase
aldolaseB
ornithinetranscarbamylase
ornithinetranscarbamylase
aldenhydelehrogenasg2
FactorVII

FactorIX

FactorIX

erythropoietin

antithrombinlll

hepatogte nuclearfactorl o
macrophagstimulatingprotein
a-1-microglolulin & bikunin
hepatitisB virus enhancet
hepatitisB virus nucleocapsid

humanimmunodefvirus long terminalrepeat

prolactinreceptor
hepatogte nuclearfactor6
3-ketoagyl-CoA thiolaseB
angiotensinogenyealer site
dihydrodioldehydrogenasé
guarylyl cyclaseC

GGGGTCaAGGTT | apolipoproteinAl
GTCACAaAAGTCC | apolipoproteimAlV
AGGCCAaAGTCCT | apolipoproteinCll
GGTCCAgAGGGCA | apolipoproteirClil
GAGTCAaAGGTCA | cellularretinol bindingproteinll
AGGTCAaAGATTG | transferrin
GGGGCBAGTCCA | a-l-anti-trypsin
GGGTCAaGGGTCA | se hormone-bindingylobulin
AGGACAaAGGTCA | ag/l-CoA oxidase
AGACCAaAGTCCG | cytochrome2A4
GGTCCAaAGTCCA | cytochrome2C2
TCCTGAaACTGGG | cytochrome2C9
GTACCAaAGTCCA | cytochrome3Al
AGGGCAaTGACGT | cytochrome?
GGGCCAgAGTCCA | livertype pyruvatekinase
AGATCAaAGAGCA | tyrosineaminotransferase
AGTTCAgAGGTTA | ornithinetranscarbamylase
GGCTTAaAGTTCA | ornithinetranscarbamylase
AGGGCAaAGGTCA | FactorVil
GGGGCAtAAGTCT | FactorVill
AGTGGTaAGGTCG | FactorlX
GGAGCAaAGTCCA | FactorX
AGTGTAgAGCCCA | antithrombinlll
AGTCCAaAGTTCA | hepatogte nuclearfactorl o
GGGTCACAGTGCA | macrophagstimulatingprotein
CTGCCAaGGGCCA | a-1-microglolulin & bikunin
GTCTAAgGAGTCCA | a-1-microglolulin & bikunin
AGTCCAaGAGTCC | hepatitisB virus enhancetl
AGTCCAaAGGTCC | woodchuckhepatitisvirus enhancetl
AGGTCAgGGTCCA | hepatoyte growth factorlike protein
GGGCTGaATCCA | hepatogte nuclearfactorla
AGAACAaAGAGCA | apolipoproteirB
ACGGGAQgACGGGA | angiotensinogen
AGGTCAgGGTCCC | aldehydedehydrogenase
TGATCAgACAAAG | biliary glycoprotein

Table 1. The 71 knovn HNF4a bindingsequences.

asa corvincing evidenceof dependence-ence,Table 3
illustratesmary pairsof dependenpositions.
Given a matrix of x? valuesandtheir p valuesfor all

pairs of positions,we wish to constructan ordering of
the positionsthat will maximizethe overall dependence
amongall “neighboring” positions.Here, the neighbor
hood size dependson the order of the Markov model
employed. For example,for a basic (1st-order)Markov
model, a neighborhoodcontainstwo positions,but for a
3rd-orderMarkov model,a neighborhoodshouldcontain
four positions.For atranscriptionfactorbindingsequence
of lengthn, therearen! possibleorderingsof positions
in the Markov chain,which could be too mary to search
exhausitvely. Sowe proposethe following simplegreedy

algorithminstead.Supposethat the order of the Markov
model consideredis k. For a pair of positions i, i,
wherei, # 1i,, definethe dependencescor, denoted
g(i1,12), as—logp(iy,i2) (assumehatp(iy,is) > 0).
The algorithm startsby picking the two positionswith
the greatestprobable dependencepr in other words,
the highestdependencacore.Then, we pick a position
suchthatits total dependencscorewith the two chosen
positionsis maximized. This is continueduntil & + 1
positionsarechosenThenwe pick a positionsuchthatits
totaldependencscorewith asubsebf k choserpositions
is maximized.This definesa partial order with two end
positionssandwichingt unorderegositions We next add
apositionat eitherendof the partialorderto maximizeits




Ellrott et al.

213.00
19.07
8.06
9.97
8.17
5.08
9.09
12.13
16.00
12.80
5.62
11.92
6.38

19.07
213.00
18.78
3.91
40.01
1.65
2.96
10.28
37.82
1.71
15.94
29.39
4.69

8.06
18.78
213.00
21.89
25.09
7.44
8.00
12.62
19.56
20.28
12.55
7.97
6.43

9.97
3.91
21.89
213.00
15.84
10.85
12.93
14.75
18.44
17.98
8.29
18.38
7.38

8.17
40.01
25.09
15.84

213.00
16.78

8.13
30.45
62.49
17.97
23.14
38.17
15.93

5.08
1.65
7.44
10.85
16.78
213.00
16.84
13.46
28.73
12.37
15.20
15.02
11.26

9.09
2.96
8.00
12.93
8.13
16.84
213.00
3.36
17.61
11.85
13.38
2.04
6.93

12.13
10.28
12.62
14.75
30.45
13.46
3.36
213.00
58.43
24.53
17.60
23.61
16.76

16.00
37.82
19.56
18.44
62.49
28.73
17.61
58.43
213.00
40.91
43.46
41.03
32.39

12.80
1.71
20.28
17.98
17.97
12.37
11.85
24.53
40.91
213.00
29.63
13.43
12.23

5.62
15.94
12.55

8.29
23.14
15.20
13.38
17.60
43.46
29.63

213.00
20.86
4.73

11.92
29.39
7.97
18.38
38.17
15.02
2.04
23.61
41.03
13.43
20.86
213.00
15.96

6.38
4.69
6.43
7.38
15.93
11.26
6.93
16.76
32.39
12.23
4.73
15.96
213.00

Table 2. The x 2 teston the positionsin the HNF4a bindingsequences.

0.0000
0.0245
0.5274
0.3528
0.5167
0.8265
0.4283
0.2057
0.0668
0.1716
0.7771
0.2178
0.7011

0.0245
0.0000
0.0270
0.9171
0.0000
0.9958
0.9656
0.3281
0.0000
0.9951
0.0679
0.0005
0.8597

0.5274
0.0270
0.0000
0.0092
0.0028
0.5905
0.5339
0.1801
0.0207
0.0162
0.1837
0.5364
0.6956

0.3528
0.9171
0.0092
0.0000
0.0700
0.2860
0.1655
0.0980
0.0303
0.0353
0.5049
0.0309
0.5973

0.5167
0.0000
0.0028
0.0700
0.0000
0.0522
0.5209
0.0003
0.0000
0.0354
0.0058
0.0000
0.0683

0.8265
0.9958
0.5905
0.2860
0.0522
0.0000
0.0512
0.1425
0.0007
0.1931
0.0854
0.0902
0.2578

0.4283
0.9656
0.5339
0.1655
0.5209
0.0512
0.0000
0.9480
0.0398
0.2218
0.1461
0.9908
0.6438

0.2057
0.3281
0.1801
0.0980
0.0003
0.1425
0.9480
0.0000
0.0000
0.0035
0.0400
0.0049
0.0524

0.0668
0.0000
0.0207
0.0303
0.0000
0.0007
0.0398
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001

0.1716
0.9951
0.0162
0.0353
0.0354
0.1931
0.2218
0.0035
0.0000
0.0000
0.0005
0.1437
0.2002

0.7771
0.0679
0.1837
0.5049
0.0058
0.0854
0.1461
0.0400
0.0000
0.0005
0.0000
0.0132
0.8564

0.2178
0.0005
0.5364
0.0309
0.0000
0.0902
0.9908
0.0049
0.0000
0.1437
0.0132
0.0000
0.0677

0.7011
0.8597
0.6956
0.5973
0.0683
0.2578
0.6438
0.0524
0.0001
0.2002
0.8564
0.0677
0.0000

Table 3. Thep valuescorrespondingo thex 2 valuesin Table2. Notethat,someoff-diagonalvaluesareshavn as0 dueto limited precisionin thepresentation.

total dependencscorewith the neighboringendposition
and k — 1 of the unorderedpositions.This resultsin a
partial orderwith two orderedpositionsat eachendand
k — 1 unorderedpositionsin the middle. The processs
continueduntil 2k + 1 positionsare chosenand a total
(linear) order is formed. We then repeatedlyadd new
positionsat eitherendin a straghtforvard way until all
positionsareincluded.A pseudo-codef the algorithmis
givenin Figure2.

In the algorithm, P denotesthe setof all positionsto
be ordered,C denoteghe setof positionsthathave been
selectedand R denotegheremainingpositions Notethat,
when|C| < 2k+1, thepositionsin C form apartialorder
consistingof s linearly orderedpositions,followed by a
subsefof ¢ (unordered)ositions,which is thenfollowed
by anotheisetof s linearly orderedpositionsIn particular
when |C| < k + 1, the positionsin C' simply form
an (unordered)subset(i.e. ¢ > 1 ands = 0). When

k+1 < |C|] < 2k + 1, the sizesof alinear orderand
themiddle subsetalwaysaddupto k + 1 (i.e.t > 1 and
s+t = k + 1), becausef theway the algorithmworks.
When|C| > 2k+1, thepositionsin C form alinearorder
(.,e.t=0).

Figure 3 (the first row) illustrates the ordering of
positionsbasedon the p valuesin Table 3 for HNF4a
and a 3rd-order Markov model. One (generic) way of
measuringthe effectivenessof a Markov model is to
considerits relativeentropy (alsocalledKullback-Leibler
distancg with respectto the backgrounddistribution.
Here, the relative entropy of two distributions M (the
Markov model)and B (the backgroundcollectedfrom
the regionsextractedin Step?2 in Figurel) is definedas
>, M(z)In Ag((f)) wherez is an oligo consistingof k
nucleotidesAs illustratedin Table4 for the HNF4« data,
an“optimized” orderingof positionsmayin factincrease
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1. Findtwo positionswith themaximumdependencsecoreandputthemin C.
2. SetR=P-C.
3. while|R| > 0do
(a) Supposethat C' is a partial order of the form I4,...,ls,{m1,...,m¢},71,...,7s,
where2s +t = |C|,t # 1, andif t > 1theneithers=00rs+¢t =%k + 1.
(b) If |C| < k thenfor eache; € R, define

W(a) = > gler,e)
(c) Elseif|C| < 2k + 1 thenfor eachc; € R andc; € {ma, ..., m:}, define

Lci,e2) = Zg(cla L)+ > g(c1,c3)

Rene) =Y glenr)+ S glene)
i=1 cg€{m1,...,m¢}—{c2}
W (c1, c2) = max{L(c1, c2), R(c1,c2)}
Wi(e1) = max W (e, ¢2)

ca€{mi,...,m¢}

(d) Else(i.e. |C| > 2k + 1) for eachey € R define

8

Lia)= Y gle,li)

i=s—k+1

k
R(c1) = Zg(cw“z’)
W(c1) = max{L(c1), R(c1)}

(e) Findapositione: € R suchthatW (e1) is maximized.
(f) Movec; from R to C andmodify the partialorderin C appropriately

4. OutputC (asalinearorder).

Fig. 2. A greedyalgorithmfor orderingpositionsin a Markov chain.

the relative entroy of the Markov model. Note that, a
3rd-order Markov chain of length 13 has 10 effective
transitions.

After establishingthe ordering of positions in the

Orderingobtainedby the greedyalgorithm Markov modelasgjesc_ribechbo/e(i.e. thefirst row of Fig-
| 5 6 8 4 12 11 3 9 10 2 0 1 7 | ure 3), themodelis trainedby a standardnethod(Durbin
et al., 1998). The score of a sequences simply the

Orderingafterthe additionof new bindingsequences probability that the sequencés generatedby the model.
| 7 5 8 4 11 12 10 3 9 2 0 1 6 | The final step of the procedureis to determinea score
thresholdsothatonly sitesthatscoreabove the threshold
will be output. In the HNF4« project, we considered

Fig. 3. Ordering of positionsbasedon the x> analysisfor the threiholdsusmg(;he fo(rjmu(;;l,u_ - o ]:I,hwhere,u apdha
HNF4a data.The secondorderingwasobtainedby usingtheinitial arethe meanand standarcdeviation of the scoresot the

bindingsequenceplusthe new sequenceislentifiedin thisproject.  raining sequencesand J is a control parameter (But
other methodsare also possible.)One could choosean
appropriatevalue for J by looking at the percentageof
known bindingsitesthatarerecoveredby the program.in
the caseof HNF4a, whenJ wassetto 0.67, our program
produceda list of 849 potential binding sitesincluding
almostall of the expectedknown bindingsites.
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Transition | BeforeOrdering | After Ordering | After New Data |

0 1.477 2.753 2.752
1 4.676 7.791 6.897
2 2.824 5.662 6.993
3 6.696 1.733 1.828
4 3.984 1.937 2.565
5 3.547 8.462 4.447
6 9.192 5.063 12.413
7 8.728 4.634 4.083
8 8.427 7.025 6.212
9 3.202 4.345 5.580
| Total | 52.752 | 49.405 | 53.771 |

Table 4. Therelatve entropy of the 3rd-orderMarkov modelfor HNF4a.

“Before Ordering” meansthe model where the positions are ordered
sequentiallyasin the binding sequences'After Ordering” and“After New

Data” meanmodelsbasedon the ordersgiven in Figure 3. The resultsin

thetableshawv thatthe secondorderin Figure 3 is (slightly) betterthanthe
sequentiabrderin termsof relative entroyy, while thefirst orderis (slightly)

worse.

RESULTS ON HNF4«a BINDING SITES

In this section,we demonstratahe effectivenessof the
TFBS identificationalgorithmin Figure 1 by experimen-
tally validatingthe HNF4a: binding sitesfound by the al-
gorithmin thehumangenome.

As describedin the previous section,we have created
an (optimized) 3rd-order Markov model using the 71
known HNF4a binding sequencedisted in Table 1 and
scannedselectedregions of the humangenomewith a
carefully(andempirically)choserthresholdyesultingin a
list of 849 potentialbindingsites.Thesesitesweredivided
into groupsof approximatelyone hundredand given a
binding potentialindex from 9 (highestpotential) down
to 1 (lowestpotential),basedon the scorescomputedoy
the algorithms.We thenselected to 28 sitesfrom each
group, for a total of 109 sites,to test experimentally
The selectionwasbasedon a variety of factorsincluding
similarity of the potentialtarget geneto known HNF4«
talget genes,expressionin appropriatetissues,repeated
occurrence®f a genefamily, a known associationwith
a humandiseaseandcompleterandomnessiVhereasve
realize that such a selectionintroduceda bias, it was
a “knowledge based” bias and was meantto strike a
balancebetweendemonstratinggeneraleffectivenessof
the algorithm and identifying new HNF4a tamget genes
thatmight be of interestfor future study

For eachof the 109 sitesselectedpligo’s containing22
or 25 nucleotidesincluding the HNF4a: binding (motif)
sequenceand some short flanking sequencesvere syn-

thesizedby Genelink(Hawthorne,NY). The complemen-
taryoligo’swereanneale@ccordingo standargrotocols
(Ausubelet al., 1990) and testedfor bindingto HNF4«

usingcompetitionsn a gel shift assayessentiallyaspre-
viously describedn (Jiangetal., 1995).

Briefly, crude nuclearextractsfrom mammaliancells
containing over expressedrat HNF4a1 were incubated
with 0.5 ng of a double-strandedds) oligo containinga
well characterizeddNF4« binding site from the human
apolipoproteinB promoter(ApoB.85.47)(Maedaet al.,
2002) in the absenceor presenceof 200-fold molar
excessof the ds oligo’s containingthe sitesto be tested.
The ApoB.85.47oligo was radiolabeledwhile the sites
being tested were not labeled. After 30 minutes at
room temperaturethe reactionwasloadedonto a native
low ionic strength polyacrylamide gel and subjected
to an electrical field to separatethe oligo bound to
HNF4a (shifted band) from unbound oligo followed
by autoradiographyNon radiolabeledoligo’s containing
high affinity HNF4a: sitescompetedor binding with the
radiolabeledligo andresultedin the absencef a shifted
band;they weretermedstrong binders. Oligo’s with sites
that bind HNF4a: lesswell yielded a reducedamountof
the shifted band (weak binders) and oligo’s with sites
that do not bind HNF4a did not changethe amountof
the shifted band (hon-bindes). Reactionswere run in
parallelwith oligo’s containingor lacking known HNF4a
bindingsites(positive andnegative controls,respectiely)
and antiseraspecificto HNF4a was usedto verify that
all the binding obsened in the crude extract was dueto
HNF4a. All shift reactionswvereloadedin duplicateonto
2 gels and all oligo’s giving a negative result (i.e. no
competition)were re-testedto ensurethat thoseoligo’s
were indeed addedto the reaction. Some non-binders
were alsoradiolabeledand analyzeddirectly for binding
to HNF4«. The actualexperimentswill be describedin
greaterdetail(Yangetal., 2002).

Theresultsof the gel shift analysison the 109 selected
sitesaslisted in Table 5 indicatethat the algorithm was
very successfulin predicting binding sites for HNF4a.
Overall, 45 sites were found to bind HNF4a: strongly
(41%), 32 were found to bind HNF4a: weakly (29%),
and 32 were found not to bind HNF4a (29%). More
importantly althoughthe numberof sitestestedin each
group was rather small, the generaltrend of strongto
weak bindersas predictedby the algorithmwas verified
experimentally Namely the largestpercentagef strong
binderswerein the setof sitespredictedby thealgorithm
to bind the best (62% in group 9) and the largest
percentageof non-binderswere in the group of sites
predictedto bind the leastwell (over50%in thelastthree
groups).Of equalimportancevasthefactthatatleastone
of the sitespredictedby the algorithmwas subsequently
identified independentlyas a bonafide HNF4a binding
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site by anotheresearchgroup.Interestingly thatsite was
in the promoterregion of the HNF4a geneitself (Hatzis
andTalianidis,2001).A morethoroughdiscussiorof the
biologicalimportanceof thepotentiaHNF4« targetgenes
identifiedby thealgorithmwill bereportedn (Yangetal.,

2002).

Binding Results |

| Group | TotalTested|  Strong | Weak | Notbind |
9 21 13(62%) | 4(19%) | 4(19%)
8 28 16(57%) | 7(25%) | 5(18%)
7 18 5(28%) | 9(50%) | 4(22%)
6 7 3(43%) | 2(29%) | 2(29%)
5 8 3(38%) | 1(13%) | 4(50%)
4 8 3(38%) | 3(28%) | 2(25%)
3 8 1(13%) | 2(25%) | 5(63%)
2 8 1(13%) | 3(38%) | 4(50%)
1 3 0 (0%) | 1(33%) | 2(67%)

| Total | 109 | 45(41%) | 32(29%) | 32(29%) |

Table 5. Theresultsof thein vitro DNA bindingexperiments.

We have also comparedhe performanceof our “opti-
mized” (3rd-order)Markov modelwith the performance
of the “unoptimized” modelwherepositionsare sequen-
tially orderedas in the HNF4a: binding sequencesin
terms of ranking/scoringthe confirmed (previously and
in this paper) binding sites amongall predicted sites.
The resultsare shavn in Table 6. As a reference the
table also includesthe averagerank numbersachieved
by respectie 2nd,- 1st-, and Oth-orderMarkov models.
Note that a Oth order Markov modelis exactly a PSSM.
Although this comparisonmay be biasedin favor of the
“optimized” models(becausenary of the confirmedsites
were chosenbasedon the output of this model), it still
shows thatthe orderingof positionshasgreatlyimproved
theperformancéecausehe“unoptimized’modelranked
these confirmed binding sites poorly (in other words,
mary of thesesites would not have beenpicked up if
the “unoptimized” modelwere usedto make predictions
instead).! The table also demonstrateshat higher order
Markov modelsgenerallyperformmuchbetterthanlower
order Markov models,perhapsdue to variability in the
HNF4« bindingsequences.

Whereaghe resultsof the gel shift assayindicatedthat
thealgorithmwasvery goodat predictingHNF4a binding

§The poor performanceof the “unoptimized” model could perhapsbe
attributed to the lack of training datatoo; but thenthis is a reality that we
facein thesearcHor TFBS’s.

| | BeforeOrdering | After Ordering | After New Data |

3rd-Order 405 278 237
2nd-Order 1681 1432 720
1st-Order 14955 16832 13347
PSSM 86694 86694 86694

Table 6. The averageranksof the confirmedHNF4a binding sitesin the
predictedlists by 3rd-, 2nd-, 1st- and Oth-orderMarkov modelswith three
differentorderingsof positions.

sites, thereis room for improvementsince a significant
numberof sitespredictedto bind the bestdid not bind at
all (19%and18%in groups9 and8, respectrely). Some
of thepossibleémprovementswill bediscussedh thenext
section.

DISCUSSION AND CONCLUSION

Foramajority of transcriptiorfactorbindingsitesearches,
position specific score matrixes have becomethe norm.
Our experimentshows that the information in position
dependenceas importantto considey and can help in
the searchfor more new binding sites. While the main
contribution of our work is the novel idea of ordering
positionsin Markov modelto capturethe mostsignificant
inter-positiondependencegur work hasgreatlyadvanced
the numberof known HNF4« binding sites.Althoughthe
in vitro analysisdoesnot tell if HNF4a actually binds
ary of the 77 positively testedsitesin vivo, nor if the
transcriptionof the adjacentgenesare actually activated,
it doessene asa powerful complementaryool to in vivo
studiesfor identifying potentialtarget genesof a given
transcriptionfactor We would predictthata combination
of efficient computersearchandin vitro validation will
becomean effective approachfor the identification of
TFBSE.

Therearea numberof waysto improve the algorithm.
For example,the Markov modelfor HNF4a binding se-
guencesvascreatedvithouttakinginto accountheback-
grounddistribution of 13-nucleotideoligo’s in the human
genome(or in the selectedranscriptionregions). Incor
poratingsuchbackgroundnformationinto the modeland
scorefunctionwould likely improve its predicationaccu-
ragy. Our experiencehasshawn thatthe orderingof posi-
tionsin the Markov modelcan greatly affect the predic-
tion. We alsointendto study alternatve formulationsof
thedependencscore suchaslog(1 — p(iy,%2)), andsee
if they couldbemoreeffective in orderingpositions.

A usefulaspeciof combiningin vitro experimentswith
computersearchs thatmoretraining datais accumulated
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in the process.This new data can be potentially very

usefulin training the Markov modeland makingit more

accurateespeciallywhentheinitial trainingsetis notvery

large.For exampleusingthe77 new HNF4a bindingsites
identified in the first round of experiments,we have re-

orderedand re-trainedour Markov model. The relative

entropy and prediction accurag (in terms of ranking

the confirmedbinding sequencesare given in Tables4

and 6. A comparisonwith the (ordered)model without

the new datashaows that both the relative entropy andthe

predictionaccurag haveimproved.Moreover, thein vitro

experimentsalsoprovide negative examples(i.e. the non-

binders).This negative information can be incorporated
into the Markov model although the training will be
slightly morecomplicatedandtime consuming.
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