CS 215 (Open-book) Final Examination

Name:
SSN:

SPECIAL INSTRUCTIONS:
This is an open book exam, but you may only consult the textbook and lecture notes during the exam.
You must answer the first 6 questions with 60 points in total. The 7th question is optional.
You may use any results given in class or the text book without providing a definition or proof.
All constructions can be described informally.
Question Score

1
2
3
4
5
6

7

Total

QUESTION 1. [10 pts] Given a language L, let

$$
L^{\hookleftarrow}=\left\{u v \mid u, v \in \Sigma^{*}, v u \in L\right\}
$$

In other words, L^{\hookleftarrow} contains all words obtained from each word in L by dividing it into two (possibly empty) pieces and exchanging these pieces. (The exchange can also be thought of as a rotation operation.)

Prove that if L is regular, so is L^{\hookleftarrow}.

QUESTION 2. [10 pts] Consider the following problem: Given a PDA M, decide if M will ever pop its stack 3 times consecutively on some input. Either show that the problem is decidable or prove that it is undecidable.

QUESTION 3. [10 pts] Prove that it is undecidable whether a TM loops on an infinite number of distinct input strings.

QUESTION 4. [10 pts] Prove that the following variant of Vertex Cover (VC) is NP-complete: SQRT-VC $=\{G \mid G=(V, E), G$ has a vertex cover of size at most $\sqrt{|V|}\}$.

QUESTION 5. [10 pts] Show that DISJOINT DFA is in P. Here,
DISJOINT $_{D F A}=\left\{<M_{1}, M_{2}\right\rangle \mid M_{1}$ and M_{2} are DFAs and $\left.L\left(M_{1}\right) \cap L\left(M_{2}\right)=\emptyset\right\}$. What is the time complexity of your TM algorithm?

QUESTION 6. [10 pts] We know that NP \subseteq NPSPACE $=$ PSPACE. Prove that if any NP-complete language is also PSPACE-complete, then NP = PSPACE.

Optional QUESTION 7. [10 bonus pts] We claimed in class that optimization problems and decision problems are equivalent as far as polynomial-time solvability is concerned. Suppose that the language HAMPATH is in P. Show how to find a Hamilton path in graph G from vertex s to vertex t, for any given instance (G, s, t).

