CS 215 (Open-book) Final Examination

SPECIAL INSTRUCTIONS: This is an open book exam, but you may only consult the textbook and lecture notes during the exam. You must answer the first 6 questions with 60 points in total. The 7th question is optional. You may use any results given in class or the text book without providing a definition or proof. All constructions can be described informally.

Name: SSN:

Ques	stion	Score
1		
2		
3		
4		
5		
6		
7		
Тс	otal	

QUESTION 1. [10 pts] Given a language L, let

$$L^{\leftarrow} = \{uv|u, v \in \Sigma^*, vu \in L\}$$

In other words, L^{\leftarrow} contains all words obtained from each word in L by dividing it into two (possibly empty) pieces and exchanging these pieces. (The exchange can also be thought of as a rotation operation.)

Prove that if L is regular, so is L^{\leftarrow} .

QUESTION 2. [10 pts] Consider the following problem: Given a PDA M, decide if M will ever pop its stack 3 times *consecutively* on some input. Either show that the problem is decidable or prove that it is undecidable.

QUESTION 3. [10 pts] Prove that it is undecidable whether a TM loops on an infinite number of distinct input strings.

QUESTION 4. [10 pts] Prove that the following variant of Vertex Cover (VC) is NP-complete: SQRT-VC = $\{ G | G = (V, E), G \text{ has a vertex cover of size at most } \sqrt{|V|} \}.$

QUESTION 5. [10 pts] Show that DISJOINT $_{DFA}$ is in P. Here,

DISJOINT_{DFA} = { $\langle M_1, M_2 \rangle | M_1$ and M_2 are DFAs and $L(M_1) \cap L(M_2) = \emptyset$ }. What is the time complexity of your TM algorithm?

QUESTION 6. [10 pts] We know that NP \subseteq NPSPACE = PSPACE. Prove that if any NP-complete language is also PSPACE-complete, then NP = PSPACE.

Optional QUESTION 7. [10 bonus pts] We claimed in class that optimization problems and decision problems are equivalent as far as polynomial-time solvability is concerned. Suppose that the language HAMPATH is in P. Show how to find a Hamilton path in graph G from vertex s to vertex t, for any given instance (G, s, t).