
Non-context-Free Languages

CS215, Lecture 5 c

�

2007 1

The Pumping Lemma

Theorem. (Pumping Lemma) Let

�

be context-free. There exists a

positive integer � such that for every � � �

of length at least �, � is

divided into five pieces, � � �� �� 	, such that

 for each

� �

, �� � �� � 	 � �

,

 � � � � �

, and

 � � �� � � �.
Proof Let

� � � �� �

for some CNF grammar

� � �� � � � � � � �

. Let� � � � �

and � � � �

. Let � � � � � � �, be in

�

and

�

be a derivation tree
for �.

For any subtree

�

of

�

, its non-leaf nodes are all variables and its leaves
are symbols with unique parents and form a substring of �.

CS215, Lecture 5 c

�

2007 2

Proof of Pumping Lemma (cont,d)

Claim. In every subtree

�

of

�

with

� � ��� � � �

leaves there are two
nodes � and

�

that are labeled by the same variable and are on the
same downward path from the root to a leaf.

Proof of Claim Let

�

be a subtree of

�

with
� � ��� � � �

leaves.
Since the complete binary tree of depth � � �

has

� ��� �

leaves,

�

has
 a downward path of length

� �. The path has

� � � �

nodes. Since
there are only � variables, by the pigeon hole principle, the path has
two nodes with the same label. Claim

CS215, Lecture 5 c

�

2007 3

jiang
Note
consisting of nodes labeled by variables

jiang
Text Box
consisting of nodes labeled by variables

Proof of Pumping Lemma (cont,d)

By Claim there is a node in

�

whose label coincides with that of a
descendant. Let � be one such node that is the farthest from the
root.

Here neither the left subtree nor the right subtree of � has more
than

� �� �

leaves; otherwise, by claim we would find, in one of the
two subtrees, a pair of nodes on a downward path labeled by the same
variable, which would contradict our assumption that � is the farthest.

CS215, Lecture 5 c

�

2007 4

Proof of Pumping Lemma (cont,d)

Let

�

be the descendant of � with the same label as �. Replacing � by�

as well as repeatedly

�

by � produces a valid derivation tree.

Let � be the substring of

�

, � � � �� the substring of �, with � and � to
the left and to the right of �, respectively, and � � � � 	 with � and 	 to
the left and to the right of �, respectively.

u z

S

α

v y

β

x

CS215, Lecture 5 c

�

2007 5

Proof of Pumping Lemma (cont,d)

Then replacing � by

�

corresponds to eliminating � and � and replacing�

by � corresponds to inserting a � before � and a � after �. So, for
every

� �

, �� � �� � 	 � �

.

u z

S

β

x

S

α

v yu z

v y

α

v y

α

β

x

CS215, Lecture 5 c

�

2007 6

Proof of Pumping Lemma (cont,d)

Since

�

does not have � rules either � or � is nonempty, so
� � � � �

.
Since both left and right subtrees of � have at most

� ��� �
leaves, �

has at most

� �

leaves, thus

� � �� � � �. This proves the lemma.

CS215, Lecture 5 c

�

2007 Mitsunori 7

Example 1

� � � � � � � � � � � �

is not context free.

Proof Assume, to the contrary, that

�

is context free. By Pumping
Lemma there exists a constant � such that every � � �

of length

� �

is divided into � � �� �� 	 such that

� � �� � � �, � � � � � �

, and for every� �

, �� � �� � 	 � �

.

Let � � � � � � �

. Since

� � �� � � �, � �� is either in

 � � �

or

� � � �

. So it is
not the case �� � �� � 	 has the same number of

s,

�

s, as

�

s.

CS215, Lecture 5 c

�

2007 8

Example 2

� � ��� �� ��� � � � � and � are binary numbers such that � � � � � �

is not
context free.

Proof Assume, to the contrary, that

�

is context free. Let � be the
constant from Pumping Lemma for

�

. Let � � � � � � � � � � � �

, where

� � � � � �

and � � � � � �

. Let �� �� 	 be the decomposition of � as in the
lemma.

For “pumping” to be possible, � has to be a nonempty part of � or that
of

�

and � a nonempty part of � . If � either is a part of � or contains the
‘1’ of

�

, since

� � �� � � �, � cannot contain a part of � . Thus, � is a part of�

and � � �

.

CS215, Lecture 5 c

�

2007 Mitsunori 9

Proof Continued

If � contains the first symbol of � , then � � 	 is not in

�

because now � is

while � � � �

.

If � � �

, then �� � �� � 	 �� �

because now the equation becomes

� � �

�� � ��

for some � � �.

Thus,

�

is not context-free.

CS215, Lecture 5 c

�

2007 10

Example 3

� � � � � � � � � � � � � �

is not context free.

Proof Assume

�

is context free. Let � the constant from the pumping
lemma for

�

.

Let � � � � � � � �

, which is in

�

.

Let � � �� �� 	 be the decomposition of � such that

� � � � �

,

� � �� � � �,
and for every

� �

, �� � �� � 	 � �

.

If � contains a symbol from the first
 �

then � cannot contain one from
the second

 �

, so pumping doesn’t work. If � contains only symbols from
the first

� �

then � cannot contain one from the second

� �

, so pumping
doesn’t work. If � contains only symbols from the second

 � � �

then
pumping does not work.

CS215, Lecture 5 c

�

2007 11

Application

Corollary. The class of context-free languages is not closed under
intersection.

Proof Let

� � � � � � � � � � � � � �

and

�
� � � � � � � � � � � � �

. Then

� �

and

�
� are both context-free. If the class were closed under intersection

then

� � � �
� � � � � � � � � � � �

were context-free.

Corollary. The class of context-free languages is not closed under
complement.

CS215, Lecture 5 c

�

2007 12

Closure Properties of CFL’s

Consider a mapping

s : Σ→ 2∆∗

where Σ and ∆ are finite alphabets. Let w ∈
Σ∗, where w = a1a2 · · · an, and define

s(a1a2 · · · an) = s(a1).s(a2). · · · .s(an)

and, for L ⊆ Σ∗,

s(L) =
⋃
w∈L

s(w)

Such a mapping s is called a substitution.

252

jiang
Text Box
In other words, we map a letter of S to a language over D

Example: Σ = {0,1},∆ = {a, b},
s(0) = {anbn : n ≥ 1}, s(1) = {aa, bb}.

Let w = 01. Then s(w) = s(0).s(1) =

{anbnaa : n ≥ 1} ∪ {anbn+2 : n ≥ 1}

Let L = {0}∗. Then s(L) = (s(0))∗ =

{an1bn1an2bn2 · · · ankbnk : k ≥ 0, ni ≥ 1}

Theorem 7.23: Let L be a CFL over Σ, and s

a substitution, such that s(a) is a CFL, ∀a ∈ Σ.

Then s(L) is a CFL.

253

We start with grammars

G = (V,Σ, P, S)

for L, and

Ga = (Va, Ta, Pa, Sa)

for each s(a). We then construct

G′ = (V ′, T ′, P ′, S′)

where

V ′ = (
⋃
a∈Σ Va) ∪ V

T ′ =
⋃
a∈Σ Ta

P ′ =
⋃
a∈Σ Pa plus the productions of P

with each a in a body replaced with sym-

bol Sa.

254

Now we have to show that

• L(G′) = s(L).

Let w ∈ s(L). Then ∃x = a1a2 · · · an in L, and

∃xi ∈ s(ai), such that w = x1x2 · · ·xn.

A derivation tree in G′ will look like

S

S S

x x xn

Sa a a1 2 n

1 2

Thus we can generate Sa1Sa2 · · ·San in G′ and

form there we generate x1x2 · · ·xn = w. Thus

w ∈ L(G′).

255

jiang
Text Box
ro

Then let w ∈ L(G′). Then the parse tree for w

must again look like

S

S S

x x xn

Sa a a1 2 n

1 2

Now delete the dangling subtrees. Then you

have yield

Sa1Sa2 · · ·San
where a1a2 · · · an ∈ L(G). Now w is also equal

to s(a1a2 · · · an), which is in S(L).

256

jiang
Text Box
belongs

jiang
Text Box
contained in S(L).

Applications of the Substitution Theorem

Theorem 7.24: The CFL’s are closed under
(i) : union, (ii) : concatenation, (iii) : Kleene
closure and positive closure +, and (iv) : ho-
momorphism.

Proof: (i): Let L1 and L2 be CFL’s, let L =
{1,2}, and s(1) = L1, s(2) = L2.
Then L1 ∪ L2 = s(L).

(ii) : Here we choose L = {12} and s as before.
Then L1.L2 = s(L)

(iii) : Suppose L1 is CF. Let L = {1}∗, s(1) =
L1. Now L∗1 = s(L). Similar proof for +.

(iv) : Let L1 be a CFL over Σ, and h a homo-
morphism on Σ. Then define s by

a 7→ {h(a)}

Then h(L) = s(L).

257

jiang
Text Box
1

jiang
Text Box
1

Theorem: If L is CF, then so in LR.

Proof: Suppose L is generated b G = (V, T, P, S).

Construct GR = (V, T, PR, S), where

PR = {A→ αR : A→ α ∈ P}

Show at home by inductions on the lengths of

the derivations in G (for one direction) and in

GR (for the other direction) that (L(G))R =

L(GR).

258

jiang
Text Box
S

Let L1 = {0n1n2i : n ≥ 1, i ≥ 1}. The L1 is CF

with grammar

S → AB

A→ 0A1|01

B → 2B|2

Also, L2 = {0i1n2n : n ≥ 1, i ≥ 1} is CF with

grammar

S → AB

A→ 0A|0
B → 1B2|12

However, L1 ∩ L2 = {0n1n2n : n ≥ 1} which is

not CF (see the handout on course-page).

259

Theorem 7.27: If L is CR, and R regular,

then L ∩R is CF.

Proof: Let L be accepted by PDA

P = (QP ,Σ,Γ, δP , qP , Z0, FP)

by final state, and let R be accepted by DFA

A = (QA,Σ, δA, qA, FA)

We’ll construct a PDA for L ∩ R according to

the picture

Accept/
reject

Stack

AND

PDA

state
FA

state

Input

260

jiang
Text Box
F

Formally, define

P ′ = (QP ×QA, ,Σ,Γ, δ, (qP , qA), Z0, FP × FA)

where

δ((q, p), a,X) = {((r, δ̂A(p, a)), γ) : (r, γ) ∈ δP (q, a,X)}

Prove at home by an induction
∗`, both for P

and for P ′ that

(qP , w, Z0)
∗` (q, ε, γ) in P

if and only if

((qP , qA), w, Z0)
∗`
(
(q, δ̂(pA, w)), ε, γ

)
in P ′

The claim the follows (Why?)

261

jiang
Text Box
n

jiang
Text Box
where a is in G U {e}

jiang
Text Box
A

jiang
Text Box
q

Theorem 7.29: Let L,L1, L2 be CFL’s and R

regular. Then

1. L \R is CF

2. L̄ is not necessarily CF

3. L1 \ L2 is not necessarily CF

Proof:

1. R̄ is regular, L ∩ R̄ is regular, and L ∩ R̄ =

L \R.

2. If L̄ always was CF, it would follow that

L1 ∩ L2 = L1 ∪ L2

always would be CF.

3. Note that Σ∗ is CF, so if L1\L2 was always

CF, then so would Σ∗ \ L = L̄.

262

jiang
Text Box
an example?non-squares!

jiang
Text Box
CF

Inverse homomorphism

Let h : Σ→ Θ∗ be a homom. Let L ⊆ Θ∗, and
define

h−1(L) = {w ∈ Σ∗ : h(w) ∈ L}
Now we have

Theorem 7.30: Let L be a CFL, and h a
homomorphism. Then h−1(L) is a CFL.

Proof: The plan of the proof is

Accept/
reject

Stack

state
PDA

Buffer

Input h
h(a)a

263

Let L be accepted by PDA

P = (Q,Θ,Γ, δ, q0, Z0, F)

We construct a new PDA

P ′ = (Q′,Σ,Γ, δ′, (q0, ε), Z0, F × {ε})

where

Q′ = {(q, x) : q ∈ Q, x ∈ suffix(h(a)), a ∈ Σ}

δ′((q, ε), a,X) = {((q, h(a)), X) : ε 6= a ∈
Σ, q ∈ Q,X ∈ Γ}

δ′((q, bx), ε,X) = {((p, x), γ) : (p, γ) ∈ δ(q, b,X), b ∈
T ∪ {ε}, q ∈ Q,X ∈ Γ}

Show at home by suitable inductions that

• (q0, h(w), Z0)
∗` (p, ε, γ) in P if and only if

((q0, ε), w, Z0)
∗` ((p, ε), ε, γ) in P ′.

264

jiang
Text Box
S

jiang
Text Box
Note that h(e) = e.

Decision Properties of CFL’s

We’ll look at the following:

• Complexity of converting among CFA’s and

PDAQ’s

• Converting a CFG to CNF

• Testing L(G) 6= ∅, for a given G

• Testing w ∈ L(G), for a given w and fixed G.

• Preview of undecidable CFL problems

265

jiang
Text Box
G

Converting between CFA ’s and PDA’s

• Input size is n.

• n is the total size of the input CFG or PDA.

The following work in time O(n)

1. Converting a CFG to a PDA (slide 203)

2. Converting a “final state” PDA

to a “null stack” PDA (slide 199)

3. Converting a “null stack” PDA

to a “final state” PDA (slide 195)

266

jiang
Text Box
G

Avoidable exponential blow-up

For converting a PDA to a CFG we have

(slide 210)

At most n3 variables of the form [pXq]

If (r, Y1Y2 · · ·Yk) ∈ δ(q, a,X)}, we’ll have O(nn)

rules of the form

[qXrk]→ a[rY1r1] · · · [rk−1Ykrk]

• By introducing k−2 new states we can mod-

ify the PDA to push at most one symbol per

transition. Illustration on blackboard in class.

267

jiang
Text Box
(rY2...Yk,Y1) is in d(q,a,X)(rY3...Yk,Y2Y1) is in d(rY2...Yk,e,Y1)...

• Now, k will be ≤ 2 for all rules.

• Total length of all transitions is still O(n).

• Now, each transition generates at most n2

productions

• Total size (and time to calculate) the gram-

mar is therefore O(n3).

268

Converting into CNF

Good news:

1. Computing r(G) and g(G) and eliminating
useless symbols takes time O(n). This will
be shown shortly

(slides 229,232,234)

2. Size of u(G) and the resulting grammar
with productions P1 is O(n2)

(slides 244,245)

3. Arranging that bodies consist of only vari-
ables is O(n)

(slide 248)

4. Breaking of bodies is O(n) (slide 248)

269

Bad news:

• Eliminating the nullable symbols can make

the new grammar have size O(2n)

(slide 236)

The bad news are avoidable:

Break bodies first before eliminating nullable

symbols

• Conversion into CNF is O(n2)

270

Testing emptiness of CFL’s

L(G) is non-empty if the start symbol S is gen-

erating.

A naive implementation on g(G) takes time

O(n2).

g(G) can be computed in time O(n) as follows:

Count

Generating?

3

2

BA

C

c D B

B A

A

B

?

yes

271

Creation and initialzation of the array is O(n)

Creation and initialzation of the links and counts

is O(n)

When a count goes to zero, we have to

1. Finding the head variable A, checkin if it

already is “yes” in the array, and if not,

queueing it is O(1) per production. Total

O(n)

2. Following links for A, and decreasing the

counters. Takes time O(n).

Total time is O(n).

272

jiang
Text Box
g

jiang
Text Box
What if L is given as a PDA?

w ∈ L(G)?

Inefficient way:

Suppose G is CNF, test string is w, with |w| =
n. Since the parse tree is binary, there are

2n− 1 internal nodes.

Generate all binary parse trees of G with 2n−1

internal nodes.

Check if any parse tree generates w

273

jiang
Text Box
The membership question

CYK-algo for membership testing

The grammar G is fixed

Input is w = a1a2 · · · an

We construct a triangular table, where Xij con-

tains all variables A, such that

A
∗⇒
G
aiai+1 · · · aj

a a a a a1 2 3 4 5

X X X X X

X X X X

X X X

X X

X

11 22 33 44 55

45342312

13 24 35

14 25

15

274

To fill the table we work row-by-row, upwards

The first row is computed in the basis, the

subsequent ones in the induction.

Basis: Xii == {A : A→ ai is in G}

Induction:

We wish to compute Xij, which is in row j − i+ 1.

A ∈ Xij, if

A
∗⇒ aiai + 1 · · · aj, if

for some k < j, and A→ BC, we have

B
∗⇒ aiai+1 · · · ak, and C

∗⇒ ak+1ak+2 · · · aj, if

B ∈ Xik, and C ∈ Xkj

275

jiang
Text Box
(k+1)j

Example:

G has productions

S → AB|BC
A → BA|a
B → CC|b
C → AB|a

S,A,C

-

-

B

S,A B

BB

A,C

S,C

A,C

S,A

B A,C

{ }

{

{

S,A,C{

{

{

{

{

{

{

{

{ {

}

}

}

}

}

}

}

}

}

}

} }

b a a b a

276

To compute Xij we need to compare at most

n pairs of previously computed sets:

(Xii, Xi=1,j), (Xi,i+1, Xi+2,j), . . . , (Xi,j−1, Xjj)

as suggested below

For w = a1 · · · an, there are O(n2) entries Xij
to compute.

For each Xij we need to compare at most n

pairs (Xik, Xk+1,j).

Total work is O(n3).

277

jiang
Text Box
+

Preview of undecidable CFL problems

The following are undecidable:

1. Is a given CFG G ambiguous?

2. Is a given CFL inherently ambiguous?

3. Is the intersection of two CFL’s empty?

4. Are two CFL’s the same?

5. Is a given CFL universal (equal to Σ∗)?

278

∞

279

