Properties of CFL’s

• *Simplification* of CFG’s. This makes life easier, since we can claim that if a language is CF, then it has a grammar of a special form.

• *Pumping Lemma for CFL’s.* Similar to the regular case.

• *Closure properties.* Some, but not all, of the closure properties of regular languages carry over to CFL’s.

• *Decision properties.* We can test for membership and emptiness, but for instance, equivalence of CFL’s is undecidable.
We want to show that every CFL (without ϵ) is generated by a CFG where all productions are of the form

$$A \rightarrow BC, \text{ or } A \rightarrow a$$

where $A, B,$ and C are variables, and a is a terminal. This is called CNF, and to get there we have to

1. Eliminate useless symbols, those that do not appear in any derivation $S \Rightarrow^* w$, for start symbol S and terminal w.

2. Eliminate ϵ-productions, that is, productions of the form $A \rightarrow \epsilon$.

3. Eliminate unit productions, that is, productions of the form $A \rightarrow B$, where A and B are variables.
Eliminating Useless Symbols

- A symbol X is *useful* for a grammar $G = (V, T, P, S)$, if there is a derivation

 $S \xrightarrow{G}^{*} \alpha X \beta \xrightarrow{G}^{*} w$

 for a terminal string w. Symbols that are not useful are called *useless*.

- A symbol X is *generating* if $X \xrightarrow{G}^{*} w$, for some $w \in T^*$

- A symbol X is *reachable* if $S \xrightarrow{G}^{*} \alpha X \beta$, for some $\{\alpha, \beta\} \subseteq (V \cup T)^*$

It turns out that if we eliminate non-generating symbols first, and then non-reachable ones, we will be left with only useful symbols.
Example: Let G be

$$S \rightarrow AB|a, \; A \rightarrow b$$

S and A are generating, B is not. If we eliminate B we have to eliminate $S \rightarrow AB$, leaving the grammar

$$S \rightarrow a, \; A \rightarrow b$$

Now only S is reachable. Eliminating A and b leaves us with

$$S \rightarrow a$$

with language $\{a\}$.

OTH, if we eliminate non-reachable symbols first, we find that all symbols are reachable. From

$$S \rightarrow AB|a, \; A \rightarrow b$$

we then eliminate B as non-generating, and are left with

$$S \rightarrow a, \; A \rightarrow b$$

that still contains useless symbols.
Theorem 7.2: Let $G = (V, T, P, S)$ be a CFG such that $L(G) \neq \emptyset$. Let $G_1 = (V_1, T_1, P_1, S)$ be the grammar obtained by

1. Eliminating all nongenerating symbols and the productions they occur in. Let the new grammar be $G_2 = (V_2, T_2, P_2, S)$.

2. Eliminate from G_2 all nonreachable symbols and the productions they occur in.

Then G_1 has no useless symbols, and $L(G_1) = L(G)$.
Proof: We first prove that G_1 has no useless symbols:

Let X remain in $V_1 \cup T_1$. Thus $X \Rightarrow^* w$ in G, for some $w \in T^*$. Moreover, every symbol used in this derivation is also generating. Thus $X \Rightarrow^* w$ in G_2 also. But this is not enough!

Since X was not eliminated in step 2, there are α and β, such that $S \Rightarrow^* \alpha X \beta$ in G_2. Furthermore, every symbol used in this derivation is also reachable, so $S \Rightarrow^* \alpha X \beta$ in G_1.

Now every symbol in $\alpha X \beta$ is reachable and in $V_2 \cup T_2 \supseteq V_1 \cup T_1$, so each of them is generating in G_2.

The terminal derivation $\alpha X \beta \Rightarrow^* xwy$ in G_2 involves only symbols that are reachable from S, because they are reached from symbols in $\alpha X \beta$. Thus the terminal derivation is also a derivation in G_1, i.e.,

$$S \Rightarrow^* \alpha X \beta \Rightarrow^* xwy$$

in G_1.
We then show that $L(G_1) = L(G)$.

Since $P_1 \subseteq P$, we have $L(G_1) \subseteq L(G)$.

Then, let $w \in L(G)$. Thus $S \xrightarrow{G} w$. Each symbol in this derivation is evidently both reachable and generating, so this is also a derivation of G_1.

Thus $w \in L(G_1)$.
We have to give algorithms to compute the generating and reachable symbols of $G = (V, T, P, S)$.

The generating symbols $g(G)$ are computed by the following _closure_ algorithm:

Basis: $g(G) \equiv T$

Induction: If $\alpha \in g(G)^*$ and $X \rightarrow \alpha \in P$, then $g(G) \equiv g(G) \cup \{X\}$.

Example: Let G be $S \rightarrow AB|a, A \rightarrow b$

Then first $g(G) \equiv \{a, b\}$.

Since $S \rightarrow a$ we put S in $g(G)$, and because $A \rightarrow b$ we add A also, and that’s it.
Theorem 7.4: At saturation, $g(G)$ contains all and only the generating symbols of G.

Proof:

We’ll show in class by an induction on the stage in which a symbol X is added to $g(G)$ that X is indeed generating.

Then, suppose that X is generating. Thus $X \xrightarrow{G}^* w$, for some $w \in T^*$. We prove by induction on this derivation that $X \in g(G)$.

Basis: Zero Steps. Then X is added in the basis of the closure algo.

Induction: The derivation takes $n > 0$ steps. Let the first production used be $X \rightarrow \alpha$. Then

$$X \Rightarrow \alpha \xrightarrow{\ast} w$$

and $\alpha \xrightarrow{\ast} w$ in less than n steps and by the IH $\alpha \in g(G)^\ast$. From the inductive part of the algo it follows that $X \in g(G)$.
The set of reachable symbols $r(G)$ of $G = (V, T, P, S)$ is computed by the following closure algorithm:

Basis: $r(G) == \{S\}$.

Induction: If variable $A \in r(G)$ and $A \rightarrow \alpha \in P$ then add all symbols in α to $r(G)$.

Example: Let G be $S \rightarrow AB|a$, $A \rightarrow b$

Then first $r(G) == \{S\}$.

Based on the first production we add $\{A, B, a\}$ to $r(G)$.

Based on the second production we add $\{b\}$ to $r(G)$ and that’s it.

Theorem 7.6: At saturation, $r(G)$ contains all and only the reachable symbols of G.

Proof: Homework.
We shall prove that if L is CF, then $L \setminus \{\epsilon\}$ has a grammar without ϵ-productions.

Variable A is said to be *nullable* if $A \Rightarrow^* \epsilon$.

Let A be nullable. We’ll then replace a rule like

$$A \rightarrow BAD$$

with

$$A \rightarrow BAD, \ A \rightarrow BD$$

and delete any rules with body ϵ.

We’ll compute $n(G)$, the set of nullable symbols of a grammar $G = (V,T,P,S)$ as follows:

Basis: $n(G) \equiv \{A : A \rightarrow \epsilon \in P\}$

Induction: If $\{C_1C_2\cdots C_k\} \subseteq n(G)$ and $A \rightarrow C_1C_2\cdots C_k \in P$, then $n(G) \equiv n(G) \cup \{A\}.$
Theorem 7.7: At saturation, \(n(G) \) contains all and only the nullable symbols of \(G \).

Proof: Easy induction in both directions.

Once we know the nullable symbols, we can transform \(G \) into \(G_1 \) as follows:

- For each \(A \to X_1X_2\cdots X_k \in P \) with \(m \leq k \) nullable symbols, replace it by \(2^m \) rules, one with each sublist of the nullable symbols absent.

 Exception: If \(m = k \) we don’t delete all \(m \) nullable symbols.

- Delete all rules of the form \(A \to \epsilon \).
Example: Let G be

$$S \rightarrow AB, \ A \rightarrow aAA|\epsilon, \ B \rightarrow bBB|\epsilon$$

Now $n(G) = \{A, B, S\}$. The first rule will become

$$S \rightarrow AB|A|B$$

the second

$$A \rightarrow aAA|aA|aA|a$$

the third

$$B \rightarrow bBB|bB|bB|b$$

We then delete rules with ϵ-bodies, and end up with grammar G_1:

$$S \rightarrow AB|A|B, \ A \rightarrow aAA|aA|a, \ B \rightarrow bBB|bB|b$$
Theorem 7.9: \(L(G_1) = L(G) \setminus \{\epsilon\} \).

Proof: We’ll prove the stronger statement:

(\#) \(A \Rightarrow^* w \) in \(G_1 \) if and only if \(w \neq \epsilon \) and \(A \Rightarrow^* w \) in \(G \).

\(-direction:\) Suppose \(A \Rightarrow^* w \) in \(G_1 \). Then clearly \(w \neq \epsilon \) (Why?). We’ll show by an induction on the length of the derivation that \(A \Rightarrow^* w \) in \(G \) also.

Basis: One step. Then there exists \(A \rightarrow w \) in \(G_1 \). From the construction of \(G_1 \) it follows that there exists \(A \rightarrow \alpha \) in \(G \), where \(\alpha \) is \(w \) plus some nullable variables interspersed. Then

\[A \Rightarrow \alpha \Rightarrow^* w \]

in \(G \).
Induction: Derivation takes $n > 1$ steps. Then

$$A \Rightarrow X_1 X_2 \cdots X_k \Rightarrow^* w \text{ in } G_1$$

and the first derivation is based on a production

$$A \rightarrow Y_1 Y_2 \cdots Y_m \text{ in } G$$

where $m \geq k$, some Y_i's are X_j's and the other are nullable symbols of G.

Furthermore, $w = w_1 w_2 \cdots w_k$, and $X_i \Rightarrow^* w_i$ in G_1 in less than n steps. By the IH we have $X_i \Rightarrow w_i$ in G. Now we get

$$A \Rightarrow^G Y_1 Y_2 \cdots Y_m \Rightarrow^G X_1 X_2 \cdots X_k \Rightarrow^G w_1 w_2 \cdots w_k = w$$
?-direction: Let $A \xrightarrow{G}^* w$, and $w \neq \epsilon$. We’ll show by induction of the length of the derivation that $A \xrightarrow{G}^* w$ in G_1.

Basis: Length is one. Then $A \rightarrow w$ is in G, and since $w \neq \epsilon$ the rule is in G_1 also.

Induction: Derivation takes $n > 1$ steps. Then it looks like

$$A \xrightarrow{G} Y_1 Y_2 \cdots Y_m \xrightarrow{G}^* w$$

Now $w = w_1 w_2 \cdots w_m$, and $Y_i \xrightarrow{G}^* w_i$ in less than n steps.

Let $X_1 X_2 \cdots X_k$ be those Y_j’s in order, such that $w_j \neq \epsilon$. Then $A \rightarrow X_1 X_2 \cdots X_k$ is a rule in G_1.

Now $X_1 X_2 \cdots X_k \xrightarrow{G}^* w$ (Why?)
Each $X_j/Y_j \xrightarrow{\ast}_G w_j$ in less than n steps, so by IH we have that if $w_j \neq \epsilon$ then $Y_j \xrightarrow{\ast} w_j$ in G_1. Thus

$$A \Rightarrow X_1X_2 \cdots X_k \xrightarrow{\ast} w \text{ in } G_1$$

The claim of the theorem now follows from statement (♯) on slide 238 by choosing $A = S$.
A → B

is a unit production, whenever A and B are variables.

Unit productions can be eliminated.

Let’s look at grammar

\[I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \]
\[F \rightarrow I \mid (E) \]
\[T \rightarrow F \mid T * F \]
\[E \rightarrow T \mid E + T \]

It has unit productions \(E \rightarrow T \), \(T \rightarrow F \), and \(F \rightarrow I \)
We’ll expand rule $E \rightarrow T$ and get rules

$$E \rightarrow F, \ E \rightarrow T \ast F$$

We then expand $E \rightarrow F$ and get

$$E \rightarrow I | (E) | T \ast F$$

Finally we expand $E \rightarrow I$ and get

$$E \rightarrow a | b | Ia | Ib | I0 | I1 | (E) | T \ast F$$

The expansion method works as long as there are no cycles in the rules, as e.g. in

$$A \rightarrow B, \ B \rightarrow C, \ C \rightarrow A$$

The following method based on unit pairs will work for all grammars.
(A, B) is a **unit pair** if A *⇒ B using unit productions only.

Note: In A → BC, C → ε we have A *⇒ B, but not using unit productions only.

To compute u(G), the set of all unit pairs of G = (V,T,P,S) we use the following closure algorithm

Basis: u(G) == {(A, A) : A ∈ V}

Induction: If (A, B) ∈ u(G) and B → C ∈ P then add (A, C) to u(G).

Theorem: At saturation, u(G) contains all and only the unit pair of G.

Proof: Easy.
Given \(G = (V, T, P, S) \) we can construct \(G_1 = (V, T, P_1, S) \) that doesn’t have unit productions, and such that \(L(G_1) = L(G) \) by setting

\[
P_1 = \{ A \to \alpha : \alpha \notin V, B \to \alpha \in P, (A, B) \in u(G) \}
\]

Example: For the grammar of slide 242 we get

<table>
<thead>
<tr>
<th>Pair</th>
<th>Productions</th>
</tr>
</thead>
<tbody>
<tr>
<td>((E, E))</td>
<td>(E \to E + T)</td>
</tr>
<tr>
<td>((E, T))</td>
<td>(E \to T \ast F)</td>
</tr>
<tr>
<td>((E, F))</td>
<td>(E \to (E))</td>
</tr>
<tr>
<td>((E, I))</td>
<td>(E \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1)</td>
</tr>
<tr>
<td>((T, T))</td>
<td>(T \to T \ast F)</td>
</tr>
<tr>
<td>((T, F))</td>
<td>(T \to (E))</td>
</tr>
<tr>
<td>((T, I))</td>
<td>(T \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1)</td>
</tr>
<tr>
<td>((F, F))</td>
<td>(F \to (E))</td>
</tr>
<tr>
<td>((F, I))</td>
<td>(F \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1)</td>
</tr>
<tr>
<td>((I, I))</td>
<td>(I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1)</td>
</tr>
</tbody>
</table>

The resulting grammar is equivalent to the original one (proof omitted).
To “clean up” a grammar we can

1. Eliminate ϵ-productions

2. Eliminate unit productions

3. Eliminate useless symbols

in this order.
We shall show that every nonempty CFL without ϵ has a grammar G without useless symbols, and such that every production is of the form

- $A \rightarrow BC$, where $\{A, B, C\} \subseteq V$, or

- $A \rightarrow \alpha$, where $A \in V$, and $\alpha \in T$.

To achieve this, start with any grammar for the CFL, and

1. “Clean up” the grammar.

2. Arrange that all bodies of length 2 or more consists of only variables.

3. Break bodies of length 3 or more into a cascade of two-variable-bodied productions.
• For step 2, for every terminal a that appears in a body of length ≥ 2, create a new variable, say A, and replace a by A in all bodies. Then add a new rule $A \rightarrow a$.

• For step 3, for each rule of the form

$$A \rightarrow B_1 B_2 \cdots B_k,$$

$k \geq 3$, introduce new variables $C_1, C_2, \ldots C_{k-2}$, and replace the rule with

$$A \rightarrow B_1 C_1$$

$$C_1 \rightarrow B_2 C_2$$

$$\ldots$$

$$C_{k-3} \rightarrow B_{k-2} C_{k-2}$$

$$C_{k-2} \rightarrow B_{k-1} B_k$$
Illustration of the effect of step 3
Example of CNF conversion

Let’s start with the grammar (step 1 already done)

\[E \rightarrow E + T \mid T * F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \]
\[T \rightarrow T * F \mid (E) a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \]
\[F \rightarrow (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \]
\[I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \]

For step 2, we need the rules
\[A \rightarrow a, B \rightarrow b, Z \rightarrow 0, O \rightarrow 1 \]
\[P \rightarrow +, M \rightarrow *, L \rightarrow (, R \rightarrow) \]
and by replacing we get the grammar

\[E \rightarrow EPT \mid TMF \mid LER \mid a \mid b \mid IA \mid IB \mid IZ \mid IO \]
\[T \rightarrow TMF \mid LER \mid a \mid b \mid IA \mid IB \mid IZ \mid IO \]
\[F \rightarrow LER \mid a \mid b \mid IA \mid IB \mid IZ \mid IO \]
\[I \rightarrow a \mid b \mid IA \mid IB \mid IZ \mid IO \]
\[A \rightarrow a, B \rightarrow b, Z \rightarrow 0, O \rightarrow 1 \]
\[P \rightarrow +, M \rightarrow *, L \rightarrow (, R \rightarrow) \]
For step 3, we replace

\[
E \rightarrow EPT \text{ by } E \rightarrow EC_1, C_1 \rightarrow PT
\]

\[
E \rightarrow TMF, T \rightarrow TMF \text{ by } E \rightarrow TC_2, T \rightarrow TC_2, C_2 \rightarrow MF
\]

\[
E \rightarrow LER, T \rightarrow LER, F \rightarrow LER \text{ by } E \rightarrow LC_3, T \rightarrow LC_3, F \rightarrow LC_3, C_3 \rightarrow ER
\]

The final CNF grammar is

\[
E \rightarrow EC_1 | TC_2 | LC_3 | a | b | IA | IB | IZ | IO \\
T \rightarrow TC_2 | LC_3 | a | b | IA | IB | IZ | IO \\
F \rightarrow LC_3 | a | b | IA | IB | IZ | IO \\
I \rightarrow a | b | IA | IB | IZ | IO \\
C_1 \rightarrow PT, C_2 \rightarrow MF, C_3 \rightarrow ER \\
A \rightarrow a, B \rightarrow b, Z \rightarrow 0, O \rightarrow 1 \\
P \rightarrow +, M \rightarrow *, L \rightarrow (, R \rightarrow)
\]