Pushdown Automata

A pushdown automaton (PDA) is essentially an ϵ -NFA with a stack.

On a transition the PDA:

- 1. Consumes an input symbol. or ϵ
- 2. Goes to a new state (or stays in the old).
- Replaces the top of the stack by any string (does nothing, pops the stack, or pushes a string onto the stack)

Example: Let's consider

$$L_{wwr} = \{ww^R : w \in \{0, 1\}^*\},\$$

with "grammar" $P \rightarrow 0P0$, $P \rightarrow 1P1$, $P \rightarrow \epsilon$. A PDA for L_{wwr} has three states, and operates as follows:

- 1. Guess that you are reading w. Stay in state 0, and push the input symbol onto the stack.
- 2. Guess that you're in the middle of ww^R . Go spontanteously to state 1.
- 3. You're now reading the head of w^R . Compare it to the top of the stack. If they match, pop the stack, and remain in state 1. If they don't match, go to sleep.
- 4. If the stack is empty, go to state 2 and accept.

The PDA for L_{wwr} as a transition diagram:

PDA formally

A PDA is a seven-tuple:

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F),$$

where

- Q is a finite set of states,
- Σ is a finite *input alphabet*,
- Γ is a finite *stack alphabet*,
- $\delta : Q \times (\Sigma \cup {\epsilon}) \times \Gamma \to 2^{Q \times \Gamma^*}$ is the *transition* function,
- q_0 is the start state,
- $Z_0 \in \Gamma$ is the *start symbol* for the stack, and
- $F \subseteq Q$ is the set of *accepting states*.

Example: The PDA

is actually the seven-tuple

 $P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\}),$ where δ is given by the following table (set brackets missing):

185

Instantaneous Descriptions

A PDA goes from configuration to configuration when consuming input.

To reason about PDA computation, we use *instantaneous descriptions* of the PDA. An ID is a triple

 (q, w, γ)

where q is the state, w the remaining input, and γ the stack contents.

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA. Then $\forall w \in \Sigma^*, \beta \in \Gamma^*$:

$$(p, \alpha) \in \delta(q, a, X) \Rightarrow (q, aw, X\beta) \vdash (p, w, \alpha\beta).$$

yield

We define \vdash^* to be the reflexive-transitive closure of \vdash .

Example: On input 1111 the PDA

has the following computation sequences:

The following properties hold:

- If an ID sequence is a legal computation for a PDA, then so is the sequence obtained by adding an additional string at the end of component number two.
- If an ID sequence is a legal computation for a PDA, then so is the sequence obtained by adding an additional string at the bottom of component number three.
- 3. If an ID sequence is a legal computation for a PDA, and some tail of the input is not consumed, then removing this tail from all ID's result in a legal computation sequence.

Theorem 6.5: $\forall w \in \Sigma^*, \ \gamma \in \Gamma^*$:

 $(q, x, \alpha) \stackrel{*}{\vdash} (p, y, \beta) \Rightarrow (q, xw, \alpha\gamma) \stackrel{*}{\vdash} (p, yw, \beta\gamma).$

Proof: Induction on the length of the sequence to the left.

Note: If $\gamma = \epsilon$ we have property 1, and if $w = \epsilon$ we have property 2.

Note2: The reverse of the theorem is false.

For property 3 we have

Theorem 6.6:

 $(q, xw, \alpha) \stackrel{*}{\vdash} (p, yw, \beta) \Rightarrow (q, x, \alpha) \stackrel{*}{\vdash} (p, y, \beta).$

Acceptance by final state

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA. The language accepted by P by final state is

 $L(P) = \{ w : (q_0, w, Z_0) \vdash^* (q, \epsilon, \alpha), q \in F \}.$

Example: The PDA on slide 183 accepts exactly L_{wwr} .

Let P be the machine. We prove that $L(P) = L_{wwr}$.

 $(\supseteq$ -direction.) Let $x \in L_{wwr}$. Then $x = ww^R$, and the following is a legal computation sequence

 $(q_0, ww^R, Z_0) \stackrel{*}{\vdash} (q_0, w^R, w^R Z_0) \vdash (q_1, w^R, w^R Z_0) \stackrel{*}{\vdash} (q_1, \epsilon, Z_0) \vdash (q_2, \epsilon, Z_0).$

$$(\subseteq$$
-direction.)

Observe that the only way the PDA can enter q_2 is if it is in state q_1 with top stack symbol = z_0

Thus it is sufficient to show that if $(q_0, x, Z_0) \vdash^* (q_1, \epsilon, Z_0)$ then $x = ww^R$, for some word w.

We'll show by induction on |x| that

$$(q_0, x, \alpha) \stackrel{*}{\vdash} (q_1, \epsilon, \alpha) \Rightarrow x = w w^R.$$

Basis: If $x = \epsilon$ then x is a palindrome.

Induction: Suppose $x = a_1 a_2 \cdots a_n$, where n > 0, and the IH holds for shorter strings.

Ther are two moves for the PDA from ID (q_0, x, α) :

Move 1: The spontaneous $(q_0, x, \alpha) \vdash (q_1, x, \alpha)$. Now $(q_1, x, \alpha) \stackrel{*}{\vdash} (q_1, \epsilon, \beta)$ implies that $|\beta| < |\alpha|$, which implies $\beta \neq \alpha$.

Move 2: Loop and push $(q_0, a_1 a_2 \cdots a_n, \alpha) \vdash (q_0, a_2 \cdots a_n, a_1 \alpha)$.

In this case there is a sequence

 $(q_0, a_1 a_2 \cdots a_n, \alpha) \vdash (q_0, a_2 \cdots a_n, a_1 \alpha) \vdash \cdots \vdash (q_1, a_n, a_1 \alpha) \vdash (q_1, \epsilon, \alpha).$

Thus $a_1 = a_n$ and

$$(q_0, a_2 \cdots a_n, a_1 \alpha) \stackrel{*}{\vdash} (q_1, a_n, a_1 \alpha).$$

By Theorem 6.6 we can remove a_n . Therefore

$$(q_0, a_2 \cdots a_{n-1}, a_1 \alpha \vdash^* (q_1, \epsilon, a_1 \alpha).$$

Then, by the IH $a_2 \cdots a_{n-1} = yy^R$. Then $x = a_1yy^Ra_n$ is a palindrome.

Give a final-state PDA for balanced brackets (or Dyck language): B -> BB | (B) | ϵ L₂ = {0^m 1ⁿ 2^p | m,n, p >= 0, m+n = p}

Acceptance by Empty Stack

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA. The language accepted by P by empty stack is

$$N(P) = \{ w : (q_0, w, Z_0) \vdash^* (q, \epsilon, \epsilon) \}.$$

Note: q can be any state.

Question: How to modify the palindrome-PDA to accept by empty stack? two ways to do it!

Give an empty-stack PDA for balanced brackets (or Dyck language): B -> BB $|(B)|\epsilon$

From Empty Stack to Final State

Theorem 6.9: If $L = N(P_N)$ for some PDA $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$, then \exists PDA P_F , such that $L = L(P_F)$.

Proof: Let

 $P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$ where $\delta_F(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}$, and for all $q \in Q, a \in \Sigma \cup \{\epsilon\}, Y \in \Gamma : \delta_F(q, a, Y) = \delta_N(q, a, Y),$ and in addition $(p_f, \epsilon) \in \delta_F(q, \epsilon, X_0).$

195

We have to show that $L(P_F) = N(P_N)$. $(\supseteq direction.)$ Let $w \in N(P_N)$. Then $(q_0, w, Z_0) \models_N^* (q, \epsilon, \epsilon),$ for some q. From Theorem 6.5 we get $(q_0, w, Z_0 X_0) \models_N^* (q, \epsilon, X_0).$ Since $\delta_N \subset \delta_F$ we have $(q_0, w, Z_0 X_0) \models_F^* (q, \epsilon, X_0).$ We conclude that $(p_0, w, X_0) \models_F (q_0, w, Z_0 X_0) \models_F^* (q, \epsilon, X_0) \models_F (p_f, \epsilon, \epsilon).$

 $(\subseteq direction.)$ By inspecting the diagram.

Let's design P_N for for catching errors in strings meant to be in the *if-else*-grammar G

 $S \rightarrow \epsilon |SS| iS| iSe.$

Here e.g. $\{ieie, iie, iei\} \subseteq L(G)$ and e.g. $\{ei, ieeii\} \cap L(G) = \emptyset$. The diagram for P_N is

Note that this PDA does not really accept the complement of L(G); it gets "stuck" as soon it detects the first excess "e".

Formally,

 $P_N = (\{q\}, \{i, e\}, \{Z\}, \delta_N, q, Z),$ where $\delta_N(q, i, Z) = \{(q, ZZ)\},$ and $\delta_N(q, e, Z) = \{(q, \epsilon)\}.$

Question: Does one state suffice for empy-stack PDAs?

From ${\cal P}_{\! N}$ we can construct

$$P_{F} = (\{p, q, r\}, \{i, e\}, \{Z, X_{0}\}, \delta_{F}, p, X_{0}, \{r\}),$$

where
$$\delta_{F}(p, \epsilon, X_{0}) = \{(q, ZX_{0})\},$$

$$\delta_{F}(q, i, Z) = \delta_{N}(q, i, Z) = \{(q, ZZ)\},$$

$$\delta_{F}(q, e, Z) = \delta_{N}(q, e, Z) = \{(q, \epsilon)\}, \text{ and }$$

$$\delta_{F}(q, \epsilon, X_{0}) = \{(r, \epsilon)\}$$

The diagram for P_F is

198

From Final State to Empty Stack

Theorem 6.11: Let $L = L(P_F)$, for some PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$. Then \exists PDA P_n , such that $L = N(P_N)$.

Proof: Let

 $P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$ where $\delta_N(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}, \delta_N(p, \epsilon, Y)$ $= \{(p, \epsilon)\}, \text{ for } Y \in \Gamma \cup \{X_0\}, \text{ and for all } q \in Q,$ $a \in \Sigma \cup \{\epsilon\}, Y \in \Gamma : \delta_N(q, a, Y) = \delta_F(q, a, Y),$ and in addition $\forall q \in F, \text{ and } Y \in \Gamma \cup \{X_0\} :$ $(p, \epsilon) \in \delta_N(q, \epsilon, Y).$

We have to show that $N(P_N) = L(P_F)$.

 $(\subseteq$ -direction.) By inspecting the diagram.

$$(\supseteq$$
-direction.) Let $w \in L(P_F)$. Then
 $(q_0, w, Z_0) \models_F^* (q, \epsilon, \alpha),$

for some $q \in F, \alpha \in \Gamma^*$. Since $\delta_F \subseteq \delta_N$, and Theorem 6.5 says that X_0 can be slid under the stack, we get

$$(q_0, w, Z_0X_0) \vdash_N^* (q, \epsilon, \alpha X_0).$$

The P_N can compute:

$$(p_0, w, X_0) \vdash_N (q_0, w, Z_0 X_0) \vdash_N^* (q, \epsilon, \alpha X_0) \vdash_N^* (p, \epsilon, \epsilon).$$

Ex. Construct an empty-stack PDA for $L_3 = \{w \mid w \in \{0,1\}^*, w \ll w^R\}$.

Equivalence of PDA's and CFG's

A language is

generated by a CFG

if and only if it is

accepted by a PDA by empty stack

if and only if it is

accepted by a PDA by final state

We already know how to go between null stack and final state.

201

From CFG's to PDA's

Given G, we construct a PDA that simulates $\stackrel{*}{\Rightarrow}_{lm}$.

We write left-sentential forms as

 $xA\alpha$

where A is the leftmost variable in the form. For instance,

Let $xA\alpha \Rightarrow x\beta\alpha$. This corresponds to the PDA first having consumed x and having $A\alpha$ on the stack, and then on ϵ it pops A and pushes β .

More fomally, let y, s.t. w = xy. Then the PDA goes non-deterministically from configuration $(q, y, A\alpha)$ to configuration $(q, y, \beta\alpha)$.

At $(q, y, \beta \alpha)$ the PDA behaves as before, unless there are terminals in the prefix of β . In that case, the PDA pops them, provided it can consume matching input.

If all guesses are right, the PDA ends up with empty stack and input.

Formally, let G = (V, T, Q, S) be a CFG. Define P_G as

$$(\{q\}, T, V \cup T, \delta, q, S),$$

where

$$\delta(q,\epsilon,A) = \{(q,\beta) : A \to \beta \in Q\},\$$

for $A \in V$, and

$$\delta(q, a, a) = \{(q, \epsilon)\},\$$

for $a \in T$.

Example: On blackboard in class.

Theorem 6.13: $N(P_G) = L(G)$.

Proof:

$$(\supseteq$$
-direction.) Let $w \in L(G)$. Then
 $S = \gamma_1 \underset{lm}{\Rightarrow} \gamma_2 \underset{lm}{\Rightarrow} \cdots \underset{lm}{\Rightarrow} \gamma_n = w$
Let $\gamma_i = x_i \alpha_i$. We show by induction on *i* that
where x_i is a string of terminals
and α_i begins with a variable

$$(q, w, S) \stackrel{*}{\vdash} (q, y_i, \alpha_i),$$

where $w = x_i y_i$.

Basis: For $i = 1, \gamma_1 = S$. Thus $x_1 = \epsilon$, and $y_1 = w$. Clearly $(q, w, S) \stackrel{*}{\vdash} (q, w, S)$.

Induction: IH is $(q, w, S) \stackrel{*}{\vdash} (q, y_i, \alpha_i)$. We have to show that

$$(q, y_i, \alpha_i) \stackrel{*}{\vdash} (q, y_{i+1}, \alpha_{i+1})$$

Now α_i begins with a variable A, and we have the form

$$\underbrace{x_i A \chi}_{\gamma_i} \xrightarrow[]{lm} \underbrace{x_i \ \beta \chi}_{\gamma_{i+1}}$$

By IH $A\chi$ is on the stack, and y_i is unconsumed. From the construction of P_G it follows that we can make the move

$$(q, y_i, A\chi) \vdash (q, y_i, \beta\chi).$$

because x_{i+1} is a prefix of w

If β has a prefix of terminals, we can pop them with matching terminals in a prefix of y_i , ending up in configuration $(q, y_{i+1}, \alpha_{i+1})$, where α_{i+1} is the tail of the sentential form

 $x_{i+1}\alpha_{i+1} = \gamma_{i+1}.$

Finally, since $\gamma_n = w$, we have $\alpha_n = \epsilon$, and $y_n = \epsilon$, and thus $(q, w, S) \stackrel{*}{\vdash} (q, \epsilon, \epsilon)$, i.e. $w \in N(P_G)$

 $(\subseteq$ -direction.) We shall show by an induction on the length of \vdash^* , that

(
$$\clubsuit$$
) If $(q, x, A) \vdash^* (q, \epsilon, \epsilon)$, then $A \stackrel{*}{\Rightarrow} x$.

Basis: Length 1. Then it must be that $A \to \epsilon$ is in G, and we have $(q, \epsilon) \in \delta(q, \epsilon, A)$. Thus $A \stackrel{*}{\Rightarrow} \epsilon$.

Induction: Length is n > 1, and the IH holds for lengths < n.

Since A is a variable, we must have

 $(q, x, A) \vdash (q, x, Y_1 Y_2 \cdots Y_k) \vdash \cdots \vdash (q, \epsilon, \epsilon)$ where $A \rightarrow Y_1 Y_2 \cdots Y_k$ is in G. We can now write x as $x_1x_2 \cdots x_k$, according to the figure below, where $Y_1 = B, Y_2 = a$, and $Y_3 = C$.

207

Now we can conclude that

$$(q, x_i x_{i+1} \cdots x_k, Y_i) \vdash^* (q, x_{i+1} \cdots x_k, \epsilon)$$

in less than n steps, for all $i \in \{1, ..., k\}$. If Y_i is a variable we have by the IH and Theorem 6.6 that

$$Y_i \stackrel{*}{\Rightarrow} x_i$$

If Y_i is a terminal, we have $|x_i| = 1$, and $Y_i = x_i$. Thus $Y_i \stackrel{*}{\Rightarrow} x_i$ by the reflexivity of $\stackrel{*}{\Rightarrow}$.

Hence, $A \longrightarrow Y_1 Y_2 \dots Y_k \xrightarrow{*} x_1 x_2 \dots x_k = x$

The claim of the theorem now follows by choosing A = S, and x = w. Suppose $w \in N(P)$. Then $(q, w, S) \stackrel{*}{\vdash} (q, \epsilon, \epsilon)$, and by (\clubsuit), we have $S \stackrel{*}{\Rightarrow} w$, meaning $w \in L(G)$.

From PDA's to CFG's

Let's look at how a PDA can consume $x = x_1x_2\cdots x_k$ and empty the stack.

We shall define a grammar with variables of the form $[p_{i-1}Y_ip_i]$ representing going from p_{i-1} to p_i with net effect of popping Y_i .

Formally, let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$ be a PDA. Define $G = (V, \Sigma, R, S)$, where

$$V = \{ [pXq] : \{p,q\} \subseteq Q, X \in \Gamma \} \cup \{S\}$$

$$R = \{ S \rightarrow [q_0Z_0p] : p \in Q \} \cup$$

$$\{ [qXr_k] \rightarrow a[rY_1r_1] \cdots [r_{k-1}Y_kr_k] :$$

$$a \in \Sigma \cup \{\epsilon\},$$

$$\{r_1, \dots, r_k\} \subseteq Q,$$

$$(r, Y_1Y_2 \cdots Y_k) \in \delta(q, a, X) \}$$

If k = 0, i.e. $Y_1 Y_2 \dots Y_k = \varepsilon$, then $[\boldsymbol{q} X \boldsymbol{r}] \rightarrow a$

Example: Let's convert

$$P_N = (\{q\}, \{i, e\}, \{Z\}, \delta_N, q, Z),$$

where $\delta_N(q, i, Z) = \{(q, ZZ)\},$
and $\delta_N(q, e, Z) = \{(q, \epsilon)\}$ to a grammar
 $G = (V, \{i, e\}, R, S),$
where $V = \{[qZq], S\},$ and
 $R = \{[qZq] \to i[qZq][qZq], [qZq] \to e, S \to [qZq]\}$

If we replace [qZq] by A we get the productions $S \rightarrow A$ and $A \rightarrow iAA|e$.

Example: Let $P = (\{p,q\}, \{0,1\}, \{X,Z_0\}, \delta, q, Z_0)$, where δ is given by

1.
$$\delta(q, 1, Z_0) = \{(q, XZ_0)\}$$

2. $\delta(q, 1, X) = \{(q, XX)\}$
3. $\delta(q, 0, X) = \{(p, X)\}$
4. $\delta(q, \epsilon, X) = \{(q, \epsilon)\}$
5. $\delta(p, 1, X) = \{(p, \epsilon)\}$

6.
$$\delta(p, 0, Z_0) = \{(q, Z_0)\}$$

What language does this PDA accept?

to a CFG.

We get $G = (V, \{0, 1\}, R, S)$, where

 $V = \{[pXp], [pXq], [pZ_0p], [pZ_0q], S\}$ $[qXq], [pXq], [qZ_0p], [qZ_0q]$ and the productions in R are

 $S \rightarrow [qZ_0q] | [qZ_0p]$

From rule (1):

$$\begin{split} & [qZ_0q] \rightarrow \mathbf{1}[qXq][qZ_0q] \\ & [qZ_0q] \rightarrow \mathbf{1}[qXp][pZ_0q] \\ & [qZ_0p] \rightarrow \mathbf{1}[qXq][qZ_0p] \\ & [qZ_0p] \rightarrow \mathbf{1}[qXp][pZ_0p] \end{split}$$

From rule (2):

 $[qXq] \rightarrow \mathbf{1}[qXq][qXq]$ $[qXq] \rightarrow \mathbf{1}[qXp][pXq]$ $[qXp] \rightarrow \mathbf{1}[qXq][qXp]$ $[qXp] \rightarrow \mathbf{1}[qXq][qXp]$ $[qXp] \rightarrow \mathbf{1}[qXp][pXp]$

From rule (3): $[qXq] \rightarrow 0[pXq]$ $[qXp] \rightarrow 0[pXp]$ From rule (4): $[qXq] \to \epsilon$ From rule (5): $[pXp] \rightarrow 1$ From rule (6): $[pZ_0q] \rightarrow 0[qZ_0q]$ $[pZ_0p] \rightarrow 0[qZ_0p]$ **Theorem 6.14:** Let G be constructed from a PDA P as above. Then L(G) = N(P)

Proof:

 $(\supseteq$ -direction.) We shall show by an induction on the length of the sequence $\stackrel{*}{\vdash}$ that

(
$$\bigstar$$
) If $(q, w, X) \stackrel{*}{\vdash} (p, \epsilon, \epsilon)$ then $[qXp] \stackrel{*}{\Rightarrow} w$.

Basis: Length 1. Then w is an a or ϵ , and $(p,\epsilon) \in \delta(q,w,X)$. By the construction of G we have $[qXp] \to w$ and thus $[qXp] \stackrel{*}{\Rightarrow} w$.

Induction: Length is n > 1, and \blacklozenge holds for lengths < n. We must have

$$(q, w, X) \vdash (r_0, x, Y_1 Y_2 \cdots Y_k) \vdash \cdots \vdash (p, \epsilon, \epsilon),$$

where w = ax or $w = \epsilon x$. It follows that $(r_0, Y_1Y_2 \cdots Y_k) \in \delta(q, a, X)$. Then we have a production

$$[qXr_k] \to a[r_0Y_1r_1] \cdots [r_{k-1}Y_kr_k],$$

for all $\{r_1, \ldots, r_k\} \subset Q$.

We may now choose r_i to be the state in the sequence $\stackrel{*}{\vdash}$ when Y_i is popped. Let $x = w_1 w_2 \cdots w_k$, where w_i is consumed while Y_i is popped. Then

$$(r_{i-1}, w_i, Y_i) \stackrel{*}{\vdash} (r_i, \epsilon, \epsilon).$$
 Note that $r_k = p$

By the IH we get

$$[r_{i-1}, Y, r_i] \stackrel{*}{\Rightarrow} w_i$$

We then get the following derivation sequence:

$$[qXr_k] \Rightarrow a[r_0Y_1r_1] \cdots [r_{k-1}Y_kr_k] \stackrel{*}{\Rightarrow}$$
$$aw_1[r_1Y_2r_2][r_2Y_3r_3] \cdots [r_{k-1}Y_kr_k] \stackrel{*}{\Rightarrow}$$
$$aw_1w_2[r_2Y_3r_3] \cdots [r_{k-1}Y_kr_k] \stackrel{*}{\Rightarrow}$$

 $aw_1w_2\cdots w_k = w = ax$

• • •

217

 $(\supseteq$ -direction.) We shall show by an induction on the length of the derivation $\stackrel{*}{\Rightarrow}$ that

$$(\heartsuit)$$
 If $[qXp] \stackrel{*}{\Rightarrow} w$ then $(q, w, X) \stackrel{*}{\vdash} (p, \epsilon, \epsilon)$

Basis: One step. Then we have a production $[qXp] \rightarrow w$. From the construction of G it follows that $(p,\epsilon) \in \delta(q,a,X)$, where w = a. But then $(q,w,X) \stackrel{*}{\vdash} (p,\epsilon,\epsilon)$.

Induction: Length of $\stackrel{*}{\Rightarrow}$ is n > 1, and \heartsuit holds for lengths < n. Then we must have

 $[qXr_k] \Rightarrow a[r_0Y_1r_1][r_1Y_2r_2]\cdots[r_{k-1}Y_kr_k] \stackrel{*}{\Rightarrow} w$

We can break w into $aw_1 \cdots w_k$ such that $[r_{i-1}Y_ir_i] \stackrel{*}{\Rightarrow} w_i$. From the IH we get

$$(r_{i-1}, w_i, Y_i) \vdash^* (r_i, \epsilon, \epsilon)$$

218

 $r_k = p$

From Theorem 6.5 we get

$$(r_{i-1}, w_i w_{i+1} \cdots w_k, Y_i Y_{i+1} \cdots Y_k) \vdash^* (r_i, w_{i+1} \cdots w_k, Y_{i+1} \cdots Y_k)$$

Since this holds for all
$$i \in \{1, \ldots, k\}$$
, we get
 $(q, aw_1w_2 \cdots w_k, X) \vdash$
 $(r_0, w_1w_2 \cdots w_k, Y_1Y_2 \cdots Y_k) \stackrel{*}{\vdash}$
 $(r_1, w_2 \cdots w_k, Y_2 \cdots Y_k) \stackrel{*}{\vdash}$
 $(r_2, w_3 \cdots w_k, Y_3 \cdots Y_k) \stackrel{*}{\vdash}$
 $(p, \epsilon, \epsilon).$

$$p = r_k$$

Q1. Can you give a 1-state empty stack PDA for $L_I = \{ 0^n 1^n | n \ge 0 \}$? Q2: How to decide if a PDA *M* accepts a string *w*?

219

Deterministic PDA's

A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is deterministic iff

- 1. $\delta(q, \tilde{a}, X)$ is always empty or a singleton.
- 2. If $\delta(q, a, X)$ is nonempty, then $\delta(q, \epsilon, X)$ must be empty.

Example: Let us define

$$L_{wcwr} = \{wcw^R : w \in \{0, 1\}^*\}$$

Then L_{wcwr} is recognized by the following DPDA

We'll show that Regular $\subset L(DPDA) \subset CFL$

Theorem 6.17: If L is regular, then L = L(P) for some DPDA P.

Proof: Since *L* is regular there is a DFA *A* s.t. L = L(A). Let

$$A = (Q, \Sigma, \delta_A, q_0, F)$$

We define the DPDA

$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F),$$

where

$$\delta_P(q, a, Z_0) = \{ (\delta_A(q, a), Z_0) \},\$$

for all $p, q \in Q$, and $a \in \Sigma$.

An easy induction (do it!) on |w| gives $(q_0, w, Z_0) \stackrel{*}{\vdash} (p, \epsilon, Z_0) \Leftrightarrow \widehat{\delta_A}(q_0, w) = p$

The theorem then follows (why?)

What about DPDA's that accept by null stack?

They can recognize only CFL's with the prefix property.

A language L has the *prefix property* if there are no two distinct strings in L, such that one is a prefix of the other.

Example: L_{wcwr} has the prefix property.

Example: $\{0\}^*$ does not have the prefix property.

Theorem 6.19: *L* is N(P) for some DPDA *P* if and only if *L* has the prefix property and *L* is L(P') for some DPDA *P'*.

Proof: Homework

- We have seen that Regular $\subseteq L(DPDA)$.
- $L_{wcwr} \in L(\mathsf{DPDA}) \setminus \mathsf{Regular}$
- Are there languages in $CFL \setminus L(DPDA)$.

Yes, for example L_{wwr} .

• What about DPDA's and Ambiguous Grammars?

 L_{wwr} has unamb. grammar $S \rightarrow 0S0|1S1|\epsilon$ but is not L(DPDA).

For the converse we have

Theorem 6.20: If L = N(P) for some DPDA P, then L has an unambiguous CFG.

Proof: By inspecting the proof of Theorem 6.14 we see that if the construction is applied to a DPDA the result is a CFG with unique leftmost derivations.

Theorem 6.20 can actually be strengthen as follows

Theorem 6.21: If L = L(P) for some DPDA P, then L has an unambiguous CFG.

Proof: Let \$ be a symbol outside the alphabet of *L*, and let L' = L\$.

It is easy to see that L' has the prefix property. By Theorem 6.20 we have L' = N(P') for some DPDA P'.

By Theorem 6.20 N(P') can be generated by an unambiguous CFG G'

Modify G' into G, s.t. L(G) = L, by adding the production

 $\$ \rightarrow \epsilon$

Since G' has unique leftmost derivations, G also has unique lm's, since the only new thing we're doing is adding derivations

$$w\$ \Rightarrow w$$

to the end.