Pushdown Automata

A pushdown automaton (PDA) is essentially an ϵ-NFA with a stack.

On a transition the PDA:

1. Consumes an input symbol. or ε
2. Goes to a new state (or stays in the old).
3. Replaces the top of the stack by any string (does nothing, pops the stack, or pushes a string onto the stack)

Example: Let's consider

$$
L_{w w r}=\left\{w w^{R}: w \in\{0,1\}^{*}\right\}
$$

with "grammar" $P \rightarrow 0 P 0, P \rightarrow 1 P 1, P \rightarrow \epsilon$. A PDA for $L_{w w r}$ has three states, and operates as follows:

1. Guess that you are reading w. Stay in state 0 , and push the input symbol onto the stack.
2. Guess that you're in the middle of $w w^{R}$. Go spontanteously to state 1 .
3. You're now reading the head of w^{R}. Compare it to the top of the stack. If they match, pop the stack, and remain in state 1. If they don't match, go to sleep.
4. If the stack is empty, go to state 2 and accept.

The PDA for $L_{w w r}$ as a transition diagram:

$$
\begin{aligned}
& 0, Z_{0} / 0 Z_{0} \\
& 1, Z_{0} / 1 Z_{0} \\
& 0,0 / 00 \\
& 0,1 / 01 \\
& \text { 1, } 0 / 10 \\
& 0,0 / \varepsilon \\
& \text { 1, } 1 / 11 \\
& 1,1 / \varepsilon \\
& \text { Start } \\
& \varepsilon, 0 / 0 \\
& \text { ع, } 1 / 1
\end{aligned}
$$

Actions of the Example PDA

PDA formally

A PDA is a seven-tuple:

$$
P=\left(Q, \Sigma,\left\ulcorner, \delta, q_{0}, Z_{0}, F\right)\right.
$$

where

- Q is a finite set of states,
- Σ is a finite input alphabet,
- Γ is a finite stack alphabet,
- $\delta: Q \times(\Sigma \cup\{\epsilon\}) \times \Gamma \rightarrow 2^{Q \times \Gamma^{*}}$ is the transition function,
- q_{0} is the start state,
- $Z_{0} \in \Gamma$ is the start symbol for the stack, and
- $F \subseteq Q$ is the set of accepting states.

Example: The PDA

is actually the seven-tuple
$P=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\},\left\{0,1, Z_{0}\right\}, \delta, q_{0}, Z_{0},\left\{q_{2}\right\}\right)$,
where δ is given by the following table (set brackets missing):

	$0, Z_{0}$	$1, Z_{0}$	0,0	0,1	1,0	1,1	ϵ, Z_{0}	$\epsilon, 0$	$\epsilon, 1$
$\rightarrow q_{0}$	$q_{0}, 0 Z_{0}$	$q_{0}, 1 Z_{0}$	$q_{0}, 00$	$q_{0}, 01$	$q_{0}, 10$	$q_{0}, 11$	q_{1}, Z_{0}	$q_{1}, 0$	$q_{1}, 1$
q_{1}			q_{1}, ϵ			q_{1}, ϵ	q_{2}, Z_{0}		
$\star q_{2}$									

Instantaneous Descriptions

A PDA goes from configuration to configuration when consuming input.

To reason about PDA computation, we use instantaneous descriptions of the PDA. An ID is a triple

$$
(q, w, \gamma)
$$

where q is the state, w the remaining input, and γ the stack contents.

Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ be a PDA. Then $\forall w \in \Sigma^{*}, \beta \in \Gamma^{*}$:

$$
(p, \alpha) \in \delta(q, a, X) \Rightarrow \underset{\text { yield }}{(q, a w, X \beta) \vdash(p, w, \alpha \beta) .}
$$

We define \vdash^{*} to be the reflexive-transitive closure of \vdash.

Example: On input 1111 the PDA

has the following computation sequences:

The following properties hold:

1. If an ID sequence is a legal computation for a PDA, then so is the sequence obtained by adding an additional string at the end of component number two.
2. If an ID sequence is a legal computation for a PDA, then so is the sequence obtained by adding an additional string at the bottom of component number three.
3. If an ID sequence is a legal computation for a PDA, and some tail of the input is not consumed, then removing this tail from all ID's result in a legal computation sequence.

Theorem 6.5: $\forall w \in \Sigma^{*}, \gamma \in \Gamma^{*}$:

$$
(q, x, \alpha) \vdash^{*}(p, y, \beta) \Rightarrow(q, x w, \alpha \gamma) \vdash^{*}(p, y w, \beta \gamma) .
$$

Proof: Induction on the length of the sequence to the left.

Note: If $\gamma=\epsilon$ we have proerty 1 , and if $w=\epsilon$ we have property 2.

Note2: The reverse of the theorem is false.

For property 3 we have

Theorem 6.6:

$$
(q, x w, \alpha) \vdash^{*}(p, y w, \beta) \Rightarrow(q, x, \alpha) \vdash^{*}(p, y, \beta) .
$$

Acceptance by final state

Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ be a PDA. The language accepted by P by final state is

$$
L(P)=\left\{w:\left(q_{0}, w, Z_{0}\right) \vdash^{*}(q, \epsilon, \alpha), q \in F\right\} .
$$

Example: The PDA on slide 183 accepts exactly $L_{w w r}$.

Let P be the machine. We prove that $L(P)=$ $L_{w w r}$.
(〇-direction.) Let $x \in L_{w w r}$. Then $x=w w^{R}$, and the following is a legal computation sequence

$$
\begin{gathered}
\left(q_{0}, w w^{R}, Z_{0}\right) \vdash^{*}\left(q_{0}, w^{R}, w^{R} Z_{0}\right) \vdash\left(q_{1}, w^{R}, w^{R} Z_{0}\right) \vdash^{*} \\
\left(q_{1}, \epsilon, Z_{0}\right) \vdash\left(q_{2}, \epsilon, Z_{0}\right) .
\end{gathered}
$$

(\subseteq-direction.)

Observe that the only way the PDA can enter q_{2} is if it is in state q_{1} with $\mathbf{t o p}$ stack symbol $=\mathbf{z}_{0}$

Thus it is sufficient to show that if $\left(q_{0}, x, Z_{0}\right) \vdash^{*}$ (q_{1}, ϵ, Z_{0}) then $x=w w^{R}$, for some word w.

We'll show by induction on $|x|$ that

$$
\left(q_{0}, x, \alpha\right) \vdash^{*}\left(q_{1}, \epsilon, \alpha\right) \Rightarrow x=w w^{R} .
$$

Basis: If $x=\epsilon$ then x is a palindrome.

Induction: Suppose $x=a_{1} a_{2} \cdots a_{n}$, where $n>0$, and the IH holds for shorter strings.

Ther are two moves for the PDA from ID $\left(q_{0}, x, \alpha\right)$:

Move 1: The spontaneous $\left(q_{0}, x, \alpha\right) \vdash\left(q_{1}, x, \alpha\right)$. Now $\left(q_{1}, x, \alpha\right) \vdash^{*}\left(q_{1}, \epsilon, \beta\right)$ implies that $|\beta|<|\alpha|$, which implies $\beta \neq \alpha$.

Move 2: Loop and push $\left(q_{0}, a_{1} a_{2} \cdots a_{n}, \alpha\right) \vdash$ ($q_{0}, a_{2} \cdots a_{n}, a_{1} \alpha$).

In this case there is a sequence
$\left(q_{0}, a_{1} a_{2} \cdots a_{n}, \alpha\right) \vdash\left(q_{0}, a_{2} \cdots a_{n}, a_{1} \alpha\right) \vdash \cdots \vdash$ $\left(q_{1}, a_{n}, a_{1} \alpha\right) \vdash\left(q_{1}, \epsilon, \alpha\right)$.

Thus $a_{1}=a_{n}$ and

$$
\left(q_{0}, a_{2} \cdots a_{n}, a_{1} \alpha\right) \vdash^{*}\left(q_{1}, a_{n}, a_{1} \alpha\right) .
$$

By Theorem 6.6 we can remove a_{n}. Therefore

$$
\left(q_{0}, a_{2} \cdots a_{n-1}, a_{1} \alpha \vdash^{*}\left(q_{1}, \epsilon, a_{1} \alpha\right) .\right.
$$

Then, by the IH $a_{2} \cdots a_{n-1}=y y^{R}$. Then $x=$ $a_{1} y y^{R} a_{n}$ is a palindrome.

Give a final-state PDA for balanced brackets (or Dyck language): B -> $\mathrm{BB} \mid \mathrm{B}) \mid \varepsilon$ $\mathrm{L}_{2}=\left\{0^{\mathrm{m}} 1^{\mathrm{n}} 2^{\mathrm{p}} \mid \mathrm{m}, \mathrm{n}, \mathrm{p}>=0, \mathrm{~m}+\mathrm{n}=\mathrm{p}\right\}$

Acceptance by Empty Stack

Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ be a PDA. The language accepted by P by empty stack is

$$
N(P)=\left\{w:\left(q_{0}, w, Z_{0}\right) \vdash^{*}(q, \epsilon, \epsilon)\right\} .
$$

Note: q can be any state.

Question: How to modify the palindrome-PDA to accept by empty stack? two ways to do it!

Give an empty-stack PDA for balanced brackets (or Dyck language): B -> BB | (B) | ε

From Empty Stack to Final State

Theorem 6.9: If $L=N\left(P_{N}\right)$ for some PDA $P_{N}=\left(Q, \Sigma, \Gamma, \delta_{N}, q_{0}, Z_{0}\right)$, then \exists PDA P_{F}, such that $L=L\left(P_{F}\right)$.

Proof: Let
$P_{F}=\left(Q \cup\left\{p_{0}, p_{f}\right\}, \Sigma, \Gamma \cup\left\{X_{0}\right\}, \delta_{F}, p_{0}, X_{0},\left\{p_{f}\right\}\right)$ where $\delta_{F}\left(p_{0}, \epsilon, X_{0}\right)=\left\{\left(q_{0}, Z_{0} X_{0}\right)\right\}$, and for all $q \in Q, a \in \Sigma \cup\{\epsilon\}, Y \in \Gamma: \delta_{F}(q, a, Y)=\delta_{N}(q, a, Y)$, and in addition $\left(p_{f}, \epsilon\right) \in \delta_{F}\left(q, \epsilon, X_{0}\right)$.

We have to show that $L\left(P_{F}\right)=N\left(P_{N}\right)$.
(\supseteq direction.) Let $w \in N\left(P_{N}\right)$. Then

$$
\left(q_{0}, w, Z_{0}\right) \stackrel{\rightharpoonup}{N}_{N}^{*}(q, \epsilon, \epsilon),
$$

for some q. From Theorem 6.5 we get

$$
\left(q_{0}, w, Z_{0} X_{0}\right) \stackrel{*}{N}\left(q, \epsilon, X_{0}\right) .
$$

Since $\delta_{N} \subset \delta_{F}$ we have

$$
\left(q_{0}, w, Z_{0} X_{0}\right) \stackrel{*}{F}\left(q, \epsilon, X_{0}\right)
$$

We conclude that
$\left(p_{0}, w, X_{0}\right) \stackrel{\rightharpoonup}{F}\left(q_{0}, w, Z_{0} X_{0}\right) \stackrel{\vdash_{F}^{*}}{F}\left(q, \epsilon, X_{0}\right) \stackrel{\rightharpoonup}{F}\left(p_{f}, \epsilon, \epsilon\right)$.
(\subseteq direction.) By inspecting the diagram.

Let's design P_{N} for for catching errors in strings meant to be in the if-else-grammar G

$$
S \rightarrow \epsilon|S S| i S \mid i S e
$$

Here e.g. $\{i e i e, i i e, i e i\} \subseteq \mathbf{L}(\mathbf{G})$ and e.g. $\{e i, i e e i i\} \cap \mathbf{L}(\mathbf{G})=\emptyset$. The diagram for P_{N} is

Note that this PDA does not really accept the complement of $\mathrm{L}(\mathrm{G})$; it gets "stuck" as soon it detects the first excess "e".

Formally,

$$
P_{N}=\left(\{q\},\{i, e\},\{Z\}, \delta_{N}, q, Z\right),
$$

where $\delta_{N}(q, i, Z)=\{(q, Z Z)\}$, and $\delta_{N}(q, e, Z)=\{(q, \epsilon)\}$.

From P_{N} we can construct

$$
P_{F}=\left(\{p, q, r\},\{i, e\},\left\{Z, X_{0}\right\}, \delta_{F}, p, X_{0},\{r\}\right),
$$

where

$$
\begin{aligned}
& \delta_{F}\left(p, \epsilon, X_{0}\right)=\left\{\left(q, Z X_{0}\right)\right\}, \\
& \delta_{F}(q, i, Z)=\delta_{N}(q, i, Z)=\{(q, Z Z)\}, \\
& \delta_{F}(q, e, Z)=\delta_{N}(q, e, Z)=\{(q, \epsilon)\}, \text { and } \\
& \delta_{F}\left(q, \epsilon, X_{0}\right)=\{(r, \epsilon)\}
\end{aligned}
$$

The diagram for P_{F} is

From Final State to Empty Stack

Theorem 6.11: Let $L=L\left(P_{F}\right)$, for some PD $P_{F}=\left(Q, \Sigma, \Gamma, \delta_{F}, q_{0}, Z_{0}, F\right)$. Then $\exists \mathrm{PDA}$ P_{n}, such that $L=N\left(P_{N}\right)$.

Proof: Let

$$
P_{N}=\left(Q \cup\left\{p_{0}, p\right\}, \Sigma,\left\ulcorner\cup\left\{X_{0}\right\}, \delta_{N}, p_{0}, X_{0}\right)\right.
$$

where $\delta_{N}\left(p_{0}, \epsilon, X_{0}\right)=\left\{\left(q_{0}, Z_{0} X_{0}\right)\right\}, \delta_{N}(p, \epsilon, Y)$
$=\{(p, \epsilon)\}$, for $Y \in \Gamma \cup\left\{X_{0}\right\}$, and for all $q \in Q$, $a \in \Sigma \cup\{\epsilon\}, Y \in \Gamma: \delta_{N}(q, a, Y)=\delta_{F}(q, a, Y)$, and in addition $\forall q \in F$, and $Y \in \Gamma \cup\left\{X_{0}\right\}$: $(p, \epsilon) \in \delta_{N}(q, \epsilon, Y)$.

Start

We have to show that $N\left(P_{N}\right)=L\left(P_{F}\right)$.
(\subseteq-direction.) By inspecting the diagram.
(\supseteq-direction.) Let $w \in L\left(P_{F}\right)$. Then

$$
\left(q_{0}, w, Z_{0}\right) \stackrel{\vdash}{F}_{*}(q, \epsilon, \alpha),
$$

for some $q \in F, \alpha \in \Gamma^{*}$. Since $\delta_{F} \subseteq \delta_{N}$, and Theorem 6.5 says that X_{0} can be slid under the stack, we get

$$
\left(q_{0}, w, Z_{0} X_{0}\right) \stackrel{\vdash_{N}^{*}}{N}\left(q, \epsilon, \alpha X_{0}\right)
$$

The P_{N} can compute:
$\left(p_{0}, w, X_{0}\right) \stackrel{\rightharpoonup}{N}\left(q_{0}, w, Z_{0} X_{0}\right) \stackrel{\rightharpoonup}{N}_{*}^{*}\left(q, \epsilon, \alpha X_{0}\right) \stackrel{\leftarrow}{N}_{*}(p, \epsilon, \epsilon)$.

Ex. Construct an empty-stack PDA for $L_{3}=\left\{w \mid w \varepsilon\{0,1\}^{*}, w<w^{R}\right\}$.

Equivalence of PDA's and CFG's

A language is

generated by a CFG

if and only if it is
accepted by a PDA by empty stack
if and only if it is
accepted by a PDA by final state

We already know how to go between null stack and final state.

From CFG's to PDA's

Given G, we construct a PDA that simulates $\underset{l m}{\stackrel{*}{l}}$.
We write left-sentential forms as

$$
x A \alpha
$$

where A is the leftmost variable in the form. For instance,

$$
\underbrace{(a+}_{x} \underbrace{E}_{\text {tail }} \underbrace{)_{\alpha}}_{\alpha}
$$

Let $x A \alpha \underset{\text { lm }}{\Rightarrow} x \beta$. This corresponds to the PDA first having consumed x and having $A \alpha$ on the stack, and then on ϵ it pops A and pushes β.

More fomally, let y, s.t. $w=x y$. Then the PDA goes non-deterministically from configuration ($q, y, A \alpha$) to configuration ($q, y, \beta \alpha$).

At ($q, y, \beta \alpha$) the PDA behaves as before, unless there are terminals in the prefix of β. In that case, the PDA pops them, provided it can consume matching input.

If all guesses are right, the PDA ends up with empty stack and input.

Formally, let $G=(V, T, Q, S)$ be a CFG. Define P_{G} as

$$
(\{q\}, T, V \cup T, \delta, q, S),
$$

where

$$
\delta(q, \epsilon, A)=\{(q, \beta): A \rightarrow \beta \in Q\},
$$

for $A \in V$, and

$$
\delta(q, a, a)=\{(q, \epsilon)\},
$$

for $a \in T$.

Example: On blackboard in class.
S \rightarrow OSO|1S1|SS|E

[^0]203
$1,1 / \varepsilon$

Theorem 6.13: $N\left(P_{G}\right)=L(G)$.

Proof:

(〇-direction.) Let $w \in L(G)$. Then

$$
S=\gamma_{1} \underset{l m}{\Rightarrow} \gamma_{2} \underset{l m}{\Rightarrow} \cdots \underset{l m}{\Rightarrow} \gamma_{n}=w
$$

Let $\gamma_{i}=x_{i} \alpha_{i}$. We show by induction on i that where x_{i} is a string of terminals and α_{i} begins with a variable

$$
(q, w, S) \vdash^{*}\left(q, y_{i}, \alpha_{i}\right),
$$

where $w=x_{i} y_{i}$.

Basis: For $i=1, \gamma_{1}=S$. Thus $x_{1}=\epsilon$, and $y_{1}=w$. Clearly $(q, w, S) \vdash^{*}(q, w, S)$.

Induction: IH is $(q, w, S) \vdash^{*}\left(q, y_{i}, \alpha_{i}\right)$. We have to show that

$$
\left(q, y_{i}, \alpha_{i}\right) \vdash^{*}\left(q, y_{i+1}, \alpha_{i+1}\right)
$$

Now α_{i} begins with a variable A, and we have the form

$$
\underbrace{x_{i} A \chi}_{\gamma_{i}} \Rightarrow \underbrace{\Rightarrow}_{\gamma_{i+1}}
$$

By IH $A \chi$ is on the stack, and y_{i} is unconsumed. From the construction of P_{G} it follows that we can make the move

$$
\left(q, y_{i}, A \chi\right) \vdash\left(q, y_{i}, \beta \chi\right) . \quad \begin{aligned}
& \text { because } x_{i+1} \text { is } \\
& \text { aprefix of w }
\end{aligned}
$$

If β has a prefix of terminals, we can pop them with matching terminals in a prefix of y_{i}, ending up in configuration (q, y_{i+1}, α_{i+1}), where $\alpha_{i+1} \quad$ is the tail of the sentential form
$x_{i+1} \alpha_{i+1}=\gamma_{i+1}$.
Finally, since $\gamma_{n}=w$, we have $\alpha_{n}=\epsilon$, and $y_{n}=$ ϵ, and thus $(q, w, S) \vdash^{*}(q, \epsilon, \epsilon)$, i.e. $w \in N\left(P_{G}\right)$
(\subseteq-direction.) We shall show by an induction on the length of \vdash^{*}, that
(@) If $(q, x, A) \vdash^{*}(q, \epsilon, \epsilon)$, then $A \stackrel{*}{\Rightarrow} x$.

Basis: Length 1. Then it must be that $A \rightarrow \epsilon$ is in G, and we have $(q, \epsilon) \in \delta(q, \epsilon, A)$. Thus $A \stackrel{*}{\Rightarrow} \epsilon$.

Induction: Length is $n>1$, and the IH holds for lengths $<n$.

Since A is a variable, we must have

$$
(q, x, A) \vdash\left(q, x, Y_{1} Y_{2} \cdots Y_{k}\right) \vdash \cdots \vdash(q, \epsilon, \epsilon)
$$

where $A \rightarrow Y_{1} Y_{2} \cdots Y_{k}$ is in G.

We can now write x as $x_{1} x_{2} \cdots x_{\mathrm{k}}$, according to the figure below, where $Y_{1}=B, Y_{2}=a$, and $Y_{3}=C$.

Now we can conclude that

$$
\left(q, x_{i} x_{i+1} \cdots x_{k}, Y_{i}\right) \vdash^{*}\left(q, x_{i+1} \cdots x_{k}, \epsilon\right)
$$

in less than n steps, for all $i \in\{1, \ldots, k\}$. If Y_{i} is a variable we have by the IH and Theorem 6.6 that

$$
Y_{i} \stackrel{*}{\Rightarrow} x_{i}
$$

If Y_{i} is a terminal, we have $\left|x_{i}\right|=1$, and $Y_{i}=x_{i}$. Thus $Y_{i} \stackrel{*}{\Rightarrow} x_{i}$ by the reflexivity of $\stackrel{*}{\Rightarrow}$.

$$
\text { Hence, } \mathrm{A} \Longrightarrow \mathrm{Y}_{1} \mathrm{Y}_{2} \ldots \mathrm{Y}_{\mathrm{k}} \xlongequal{*} \mathrm{x}_{1} \mathrm{X}_{2} \ldots \mathrm{x}_{\mathrm{k}}=\mathrm{x}
$$

The claim of the theorem now follows by choosing $A=S$, and $x=w$. Suppose $w \in N(P)$. Then $(q, w, S) \vdash^{*}(q, \epsilon, \epsilon)$, and by (\&), we have $S \stackrel{*}{\Rightarrow} w$, meaning $w \in L(G)$.

From PDA's to CFG's

Let's look at how a PDA can consume $x=$ $x_{1} x_{2} \cdots x_{k}$ and empty the stack.

We shall define a grammar with variables of the form $\left[p_{i-1} Y_{i} p_{i}\right.$] representing going from p_{i-1} to p_{i} with net effect of popping Y_{i}.

empty-stack

Formally, let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}\right)$ be a PDA. Define $G=(V, \Sigma, R, S)$, where

$$
\begin{aligned}
V= & \{[p X q]:\{p, q\} \subseteq Q, X \in \Gamma\} \cup\{S\} \\
R= & \left\{S \rightarrow\left[q_{0} Z_{0} p\right]: p \in Q\right\} \cup \\
& \left\{\left[\mathbf{q} X r_{k}\right] \rightarrow a\left[\mathbf{r} Y_{1} r_{1}\right] \cdots\left[r_{k-1} Y_{k} r_{k}\right]:\right. \\
& a \in \Sigma \cup\{\epsilon\}, \\
& \left\{r_{1}, \ldots, r_{k}\right\} \subseteq Q, \\
& \left.\quad\left(\mathbf{r}, Y_{1} Y_{2} \cdots Y_{k}\right) \in \delta(\mathbf{q}, a, X)\right\}
\end{aligned}
$$

If $k=0$, i.e. $Y_{1} Y_{2} \ldots Y_{k}=\varepsilon$, then $[\boldsymbol{q} X \boldsymbol{r}]->\mathrm{a}$

Example: Let's convert

$$
P_{N}=\left(\{q\},\{i, e\},\{Z\}, \delta_{N}, q, Z\right),
$$

where $\delta_{N}(q, i, Z)=\{(q, Z Z)\}$,
and $\delta_{N}(q, e, Z)=\{(q, \epsilon)\}$ to a grammar

$$
G=(V,\{i, e\}, R, S)
$$

where $V=\{[q Z q], S\}$, and
$R=\{[q Z q] \rightarrow i[q Z q][q Z q],[q Z q] \rightarrow e, \mathrm{~S}->[q Z q]\}$

If we replace $[q Z q]$ by A we get the productions $S \rightarrow A$ and $A \rightarrow i A A \mid e$.

Example: Let $P=\left(\{p, q\},\{0,1\},\left\{X, Z_{0}\right\}, \delta, q, Z_{0}\right)$, where δ is given by

1. $\delta\left(q, 1, Z_{0}\right)=\left\{\left(q, X Z_{0}\right)\right\}$
2. $\delta(q, 1, X)=\{(q, X X)\}$
3. $\delta(q, 0, X)=\{(p, X)\}$
4. $\delta(q, \epsilon, X)=\{(q, \epsilon)\}$
5. $\delta(p, 1, X)=\{(p, \epsilon)\}$
6. $\delta\left(p, 0, Z_{0}\right)=\left\{\left(q, Z_{0}\right)\right\}$

What language does this PDA accept?

to a CFG.

We get $G=(V,\{0,1\}, R, S)$, where

$$
V=\left\{[p X p],[p X q],\left[p Z_{0} p\right],\left[p Z_{0 q}\right], S\right\}
$$

[qXq], [pXq], [qZop], [qZoq]
and the productions in R are
$S \rightarrow\left[q Z_{0} q\right] \mid\left[q Z_{0} p\right]$

From rule (1):
$\left[q Z_{0} q\right] \rightarrow 1[q X q]\left[q Z_{0} q\right]$
$\left[q Z_{0} q\right] \rightarrow 1[q X p]\left[p Z_{0} q\right]$
$\left[q Z_{0} p\right] \rightarrow 1[q X q]\left[q Z_{0} p\right]$
$\left[q Z_{0} p\right] \rightarrow 1[q X p]\left[p Z_{0} p\right]$

From rule (2):
$[q X q] \rightarrow 1[q X q][q X q]$
$[q X q] \rightarrow 1[q X p][p X q]$
$[q X p] \rightarrow 1[q X q][q X p]$
$[q X p] \rightarrow 1[q X p][p X p]$

From rule (3):
$[q X q] \rightarrow 0[p X q]$
$[q X p] \rightarrow 0[p X p]$

From rule (4):
$[q X q] \rightarrow \epsilon$

From rule (5):

$$
[p X p] \rightarrow 1
$$

From rule (6):
$\left[p Z_{0} q\right] \rightarrow 0\left[q Z_{0} q\right]$
$\left[p Z_{0} p\right] \rightarrow 0\left[q Z_{0} p\right]$

Theorem 6.14: Let G be constructed from a PDA P as above. Then $L(G)=N(P)$

Proof:

(〇-direction.) We shall show by an induction on the length of the sequence \vdash^{*} that
(内) If $(q, w, X) \vdash^{*}(p, \epsilon, \epsilon)$ then $[q X p] \stackrel{*}{\Rightarrow} w$.

Basis: Length 1. Then w is an a or ϵ, and $(p, \epsilon) \in \delta(q, w, X)$. By the construction of G we have $[q X p] \rightarrow w$ and thus $[q X p] \stackrel{*}{\Rightarrow} w$.

Induction: Length is $n>1$, and holds for lengths $<n$. We must have

$$
(q, w, X) \vdash\left(r_{0}, x, Y_{1} Y_{2} \cdots Y_{k}\right) \vdash \cdots \vdash(p, \epsilon, \epsilon)
$$

where $w=a x$ or $w=\epsilon x$. It follows that $\left(r_{0}, Y_{1} Y_{2} \cdots Y_{k}\right) \in \delta(q, a, X)$. Then we have a production

$$
\left[q X r_{k}\right] \rightarrow a\left[r_{0} Y_{1} r_{1}\right] \cdots\left[r_{k-1} Y_{k} r_{k}\right]
$$

for all $\left\{r_{1}, \ldots, r_{k}\right\} \subset Q$.

We may now choose r_{i} to be the state in the sequence \vdash^{*} when Y_{i} is popped. Let $x=$ $w_{1} w_{2} \cdots w_{k}$, where w_{i} is consumed while Y_{i} is popped. Then

$$
\left(r_{i-1}, w_{i}, Y_{i}\right) \vdash^{*}\left(r_{i}, \epsilon, \epsilon\right)
$$

Note that $r_{k}=p$
By the IH we get

$$
\left[r_{i-1}, Y, r_{i}\right] \stackrel{*}{\Rightarrow} w_{i}
$$

We then get the following derivation sequence:
$r_{k}=p$

$$
\begin{gathered}
{\left[q X r_{k}\right] \Rightarrow a\left[r_{0} Y_{1} r_{1}\right] \cdots\left[r_{k-1} Y_{k} r_{k}\right] \stackrel{*}{\Rightarrow}} \\
a w_{1}\left[r_{1} Y_{2} r_{2}\right]\left[r_{2} Y_{3} r_{3}\right] \cdots\left[r_{k-1} Y_{k} r_{k}\right] \stackrel{*}{\Rightarrow} a w_{1} w_{2}\left[r_{2} Y_{3} r_{3}\right] \cdots\left[r_{k-1} Y_{k} r_{k}\right] \stackrel{*}{\Rightarrow} \\
\cdots \\
a w_{1} w_{2} \cdots w_{k}=w=a x
\end{gathered}
$$

(〇-direction.) We shall show by an induction on the length of the derivation $\stackrel{*}{\Rightarrow}$ that
(\bigcirc) If $[q X p] \stackrel{*}{\Rightarrow} w$ then $(q, w, X) \vdash^{*}(p, \epsilon, \epsilon)$

Basis: One step. Then we have a production $[q X p] \rightarrow w$. From the construction of G it follows that $(p, \epsilon) \in \delta(q, a, X)$, where $w=a$. But then $(q, w, X) \vdash^{*}(p, \epsilon, \epsilon)$.

Induction: Length of $\stackrel{*}{\Rightarrow}$ is $n>1$, and \odot holds for lengths $<n$. Then we must have

$$
\left[q X r_{k}\right] \Rightarrow a\left[r_{0} Y_{1} r_{1}\right]\left[r_{1} Y_{2} r_{2}\right] \cdots\left[r_{k-1} Y_{k} r_{k}\right] \stackrel{*}{\Rightarrow} w \stackrel{r_{k}=p}{ }
$$

We can break w into $a w_{1} \cdots w_{k}$ such that $\left[r_{i-1} Y_{i} r_{i}\right] \stackrel{*}{\Rightarrow}$ w_{i}. From the IH we get

$$
\left(r_{i-1}, w_{i}, Y_{i}\right) \vdash^{*}\left(r_{i}, \epsilon, \epsilon\right)
$$

From Theorem 6.5 we get
$\left(r_{i-1}, w_{i} w_{i+1} \cdots w_{k}, Y_{i} Y_{i+1} \cdots Y_{k}\right) \vdash^{*}$
$\left(r_{i}, w_{i+1} \cdots w_{k}, Y_{i+1} \cdots Y_{k}\right)$
Since this holds for all $i \in\{1, \ldots, k\}$, we get $\left(q, a w_{1} w_{2} \cdots w_{k}, X\right) \vdash$ since $\left(r_{0}, Y_{1} Y_{2} \ldots Y_{k}\right)$ is in $\delta(q, a, X)$
$\left(r_{0}, w_{1} w_{2} \cdots w_{k}, Y_{1} Y_{2} \cdots Y_{k}\right) \vdash^{*}$
$\left(r_{1}, w_{2} \cdots w_{k}, Y_{2} \cdots Y_{k}\right) \vdash^{*}$
$\left(r_{2}, w_{3} \cdots w_{k}, Y_{3} \cdots Y_{k}\right) \vdash^{*}$
(p, ϵ, ϵ).
$p=r_{k}$
Q1. Can you give a 1-state empty stack PDA for $L_{1}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n}>=0\right\} ?$
Q2: How to decide if a PDA M accepts a string w ?

Deterministic PDA's

A PDA $P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ is deterministic iff

1. $\delta(q, \stackrel{\varepsilon}{a}, X)$ is always empty or a singleton.
2. If $\delta(q, a, X)$ is nonempty, then $\delta(q, \epsilon, X)$ must be empty.

Example: Let us define

$$
L_{w c w r}=\left\{w c w^{R}: w \in\{0,1\}^{*}\right\}
$$

Then $L_{w c w r}$ is recognized by the following DPDA

We'll show that Regular $\subset L($ DPDA $) \subset C F L$
Theorem 6.17: If L is regular, then $L=L(P)$ for some DPDA P.

Proof: Since L is regular there is a DFA A s.t. $L=L(A)$. Let

$$
A=\left(Q, \Sigma, \delta_{A}, q_{0}, F\right)
$$

We define the DPDA

$$
P=\left(Q, \Sigma,\left\{Z_{0}\right\}, \delta_{P}, q_{0}, Z_{0}, F\right)
$$

where

$$
\delta_{P}\left(q, a, Z_{0}\right)=\left\{\left(\delta_{A}(q, a), Z_{0}\right)\right\}
$$

for all $p, q \in Q$, and $a \in \Sigma$.
An easy induction (do it!) on $|w|$ gives

$$
\left(q_{0}, w, Z_{0}\right) \vdash^{*}\left(p, \epsilon, Z_{0}\right) \Leftrightarrow \hat{\delta_{A}}\left(q_{0}, w\right)=p
$$

The theorem then follows (why?)

What about DPDA's that accept by null stack?

They can recognize only CFL's with the prefix property.

A language L has the prefix property if there are no two distinct strings in L, such that one is a prefix of the other.

Example: $L_{w c w r}$ has the prefix property.

Example: $\{0\}^{*}$ does not have the prefix property.

Theorem 6.19: L is $N(P)$ for some DPDA P if and only if L has the prefix property and L is $L\left(P^{\prime}\right)$ for some DPDA P^{\prime}.

Proof: Homework

- We have seen that Regular $\subseteq L$ (DPDA).
- $L_{w c w r} \in L(D P D A) \backslash$ Regular
- Are there languages in CFL $\backslash L$ (DPDA).

Yes, for example $L_{w w r}$.

- What about DPDA's and Ambiguous Grammars?
> $L_{w w r}$ has unamb. grammar $S \rightarrow 0 S 0|1 S 1| \epsilon$ but is not L (DPDA).

For the converse we have
Theorem 6.20: If $L=N(P)$ for some DPDA P, then L has an unambiguous CFG.

Proof: By inspecting the proof of Theorem 6.14 we see that if the construction is applied to a DPDA the result is a CFG with unique leftmost derivations.

Theorem 6.20 can actually be strengthen as follows

Theorem 6.21: If $L=L(P)$ for some DPDA P, then L has an unambiguous CFG.

Proof: Let $\$$ be a symbol outside the alphabet of L, and let $L^{\prime}=L \$$.
It is easy to see that L^{\prime} has the prefix property. By Theorem 6.20 we have $L^{\prime}=N\left(P^{\prime}\right)$ for some DPDA P^{\prime}.
By Theorem 6.20 $N\left(P^{\prime}\right)$ can be generated by an unambiguous CFG G^{\prime}
Modify G^{\prime} into G, s.t. $L(G)=L$, by adding the production

$$
\$ \rightarrow \epsilon
$$

Since G^{\prime} has unique leftmost derivations, G also has unique Im's, since the only new thing we're doing is adding derivations

$$
w \$ \underset{l m}{\Rightarrow} w
$$

to the end.

[^0]: ε, S/OSO
 ε, ,S/LS 1
 $\varepsilon, S / S S$
 $\varepsilon, S / \varepsilon$
 $0,0 / \varepsilon$

