
Parse Trees

• If w ∈ L(G), for some CFG, then w has a

parse tree, which tells us the (syntactic) struc-

ture of w

• w could be a program, a SQL-query, an XML-

document, etc.

• Parse trees are an alternative representation

to derivations and recursive inferences.

• There can be several parse trees for the same

string

• Ideally there should be only one parse tree

(the “true” structure) for each string, i.e. the

language should be unambiguous.

• Unfortunately, we cannot always remove the

ambiguity.
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Constructing Parse Trees

Let G = (V, T, P, S) be a CFG. A tree is a parse

tree for G if:

1. Each interior node is labelled by a variable

in V .

2. Each leaf is labelled by a symbol in V ∪ T ∪ {ε}.
Any ε-labelled leaf is the only child of its

parent.

3. If an interior node is lablelled A, and its

children (from left to right) labelled

X1, X2, . . . , Xk,

then A→ X1X2 . . . Xk ∈ P .
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Example: In the grammar

1. E → I

2. E → E + E

3. E → E ∗ E
4. E → (E)

···

the following is a parse tree:

E

E + E

I

This parse tree shows the derivation E
∗⇒ I+E
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Example: In the grammar

1. P → ε

2. P → 0

3. P → 1

4. P → 0P0

5. P → 1P1

the following is a parse tree:

P

P

P

0 0

1 1

ε

It shows the derivation of P
∗⇒ 0110.
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The Yield of a Parse Tree

The yield of a parse tree is the string of leaves

from left to right.

Important are those parse trees where:

1. The yield is a terminal string.

2. The root is labelled by the start symbol

We shall see the the set of yields of these

important parse trees is the language of the

grammar.
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Example: Below is an important parse tree

E

E E*

I

a

E

E E

I

a

I

I

I

b

( )

+

0

0

The yield is a ∗ (a+ b00).

Compare the parse tree with the derivation on

slide 141.
153



Let G = (V, T, P, S) be a CFG, and A ∈ V .
We are going to show that the following are
equivalent:

1. We can determine by recursive inference
that w is in the language of A

2. A
∗⇒ w

3. A
∗⇒
lm
w, and A

∗⇒
rm
w

4. There is a parse tree of G with root A and
yield w.

To prove the equivalences, we use the following
plan.

Recursive

tree
Parse

inference

Leftmost
derivation

Rightmost
derivationDerivation
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From Inferences to Trees

Theorem 5.12: Let G = (V, T, P, S) be a

CFG, and suppose we can show w to be in

the language of a variable A. Then there is a

parse tree for G with root A and yield w.

Proof: We do an induction of the length of

the inference.

Basis: One step. Then we must have used a

production A → w. The desired parse tree is

then

A

w
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Induction: w is inferred in n + 1 steps. Sup-

pose the last step was based on a production

A→ X1X2 · · ·Xk,

where Xi ∈ V ∪ T . We break w up as

w1w2 · · ·wk,

where wi = Xi, when Xi ∈ T , and when Xi ∈ V,
then wi was previously inferred being in Xi, in

at most n steps.

By the IH there are parse trees i with root Xi
and yield wi. Then the following is a parse tree

for G with root A and yield w:

A

X X X

w w w

k

k

1 2

1 2 . . .

. . .
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From trees to derivations

We’ll show how to construct a leftmost deriva-

tion from a parse tree.

Example: In the grammar of slide 6 there clearly

is a derivation

E ⇒ I ⇒ Ib⇒ ab.

Then, for any α and β there is a derivation

αEβ ⇒ αIβ ⇒ αIbβ ⇒ αabβ.

For example, suppose we have a derivation

E ⇒ E + E ⇒ E + (E).

The we can choose α = E + ( and β =) and

continue the derivation as

E + (E)⇒ E + (I)⇒ E + (Ib)⇒ E + (ab).

This is why CFG’s are called context-free.
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Theorem 5.14: Let G = (V, T, P, S) be a

CFG, and suppose there is a parse tree with

root labelled A and yield w. Then A
∗⇒
lm
w in G.

Proof: We do an induction on the height of

the parse tree.

Basis: Height is 1. The tree must look like

A

w

Consequently A→ w ∈ P , and A⇒
lm
w.
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Induction: Height is n + 1. The tree must

look like

A

X X X

w w w

k

k

1 2

1 2 . . .

. . .

Then w = w1w2 · · ·wk, where

1. If Xi ∈ T , then wi = Xi.

2. If Xi ∈ V , then Xi
∗⇒
lm
wi in G by the IH.
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Now we construct A
∗⇒
lm
w by an (inner) induc-

tion by showing that

∀i : A
∗⇒
lm
w1w2 · · ·wiXi+1Xi+2 · · ·Xk.

Basis: Let i = 0. We already know that

A⇒
lm
X1Xi+2 · · ·Xk.

Induction: Make the IH that

A
∗⇒
lm
w1w2 · · ·wi−1XiXi+1 · · ·Xk.

(Case 1:) Xi ∈ T . Do nothing, since Xi = wi
gives us

A
∗⇒
lm
w1w2 · · ·wiXi+1 · · ·Xk.
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(Case 2:) Xi ∈ V . By the IH there is a deriva-

tion Xi ⇒
lm
α1 ⇒

lm
α2 ⇒

lm
· · · ⇒

lm
wi. By the contex-

free property of derivations we can proceed

with

A
∗⇒
lm

w1w2 · · ·wi−1XiXi+1 · · ·Xk ⇒
lm

w1w2 · · ·wi−1α1Xi+1 · · ·Xk ⇒
lm

w1w2 · · ·wi−1α2Xi+1 · · ·Xk ⇒
lm

· · ·

w1w2 · · ·wi−1wiXi+1 · · ·Xk

161



Example: Let’s construct the leftmost deriva-
tion for the tree

E

E E*

I

a

E

E E

I

a

I

I

I

b

( )

+

0

0

Suppose we have inductively constructed the
leftmost derivation

E ⇒
lm
I ⇒

lm
a

corresponding to the leftmost subtree, and the
leftmost derivation

E ⇒
lm

(E)⇒
lm

(E + E)⇒
lm

(I + E)⇒
lm

(a+ E)⇒
lm

(a+ I)⇒
lm

(a+ I0)⇒
lm

(a+ I00)⇒
lm

(a+ b00)

corresponding to the righmost subtree.
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For the derivation corresponding to the whole

tree we start with E ⇒
lm
E ∗ E and expand the

first E with the first derivation and the second

E with the second derivation:

E ⇒
lm

E ∗ E ⇒
lm

I ∗ E ⇒
lm

a ∗ E ⇒
lm

a ∗ (E)⇒
lm

a ∗ (E + E)⇒
lm

a ∗ (I + E)⇒
lm

a ∗ (a+ E)⇒
lm

a ∗ (a+ I)⇒
lm

a ∗ (a+ I0)⇒
lm

a ∗ (a+ I00)⇒
lm

a ∗ (a+ b00)

163



From Derivations to Recursive Inferences

Observation: Suppose that A⇒ X1X2 · · ·Xk
∗⇒ w.

Then w = w1w2 · · ·wk, where Xi
∗⇒ wi

The factor wi can be extracted from A
∗⇒ w by

looking at the expansion of Xi only.

Example: E ⇒ a ∗ b+ a, and

E ⇒ E︸︷︷︸
X1

∗︸︷︷︸
X2

E︸︷︷︸
X3

+︸︷︷︸
X4

E︸︷︷︸
X5

We have

E ⇒ E ∗ E ⇒ E ∗ E + E ⇒ I ∗ E + E ⇒ I ∗ I + E ⇒

I ∗ I + I ⇒ a ∗ I + I ⇒ a ∗ b+ I ⇒ a ∗ b+ a

By looking at the expansion of X3 = E only,
we can extract

E ⇒ I ⇒ b.
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Theorem 5.18: Let G = (V, T, P, S) be a

CFG. Suppose A
∗⇒
G
w, and that w is a string

of terminals. Then we can infer that w is in

the language of variable A.

Proof: We do an induction on the length of

the derivation A
∗⇒
G
w.

Basis: One step. If A ⇒
G
w there must be a

production A→ w in P . The we can infer that

w is in the language of A.
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Induction: Suppose A
∗⇒
G

w in n + 1 steps.

Write the derivation as

A⇒
G
X1X2 · · ·Xk

∗⇒
G
w

The as noted on the previous slide we can

break w as w1w2 · · ·wk where Xi
∗⇒
G
wi. Fur-

thermore, Xi
∗⇒
G
wi can use at most n steps.

Now we have a production A → X1X2 · · ·Xk,

and we know by the IH that we can infer wi to

be in the language of Xi.

Therefore we can infer w1w2 · · ·wk to be in the

language of A.
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Ambiguity in Grammars and Languages

In the grammar

1. E → I

2. E → E + E

3. E → E ∗ E
4. E → (E)

· · ·
the sentential form E + E ∗ E has two deriva-
tions:

E ⇒ E + E ⇒ E + E ∗ E

and
E ⇒ E ∗ E ⇒ E + E ∗ E

This gives us two parse trees:

+

*

*

+

E

E E

E E

E

E E

EE

(a) (b)
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The mere existence of several derivations is not

dangerous, it is the existence of several parse

trees that ruins a grammar.

Example: In the same grammar

5. I → a

6. I → b

7. I → Ia

8. I → Ib

9. I → I0

10. I → I1

the string a+ b has several derivations, e.g.

E ⇒ E + E ⇒ I + E ⇒ a+ E ⇒ a+ I ⇒ a+ b

and

E ⇒ E + E ⇒ E + I ⇒ I + I ⇒ I + b⇒ a+ b

However, their parse trees are the same, and

the structure of a+ b is unambiguous.
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Definition: Let G = (V, T, P, S) be a CFG. We

say that G is ambiguous is there is a string in

T ∗ that has more than one parse tree.

If every string in L(G) has at most one parse

tree, G is said to be unambiguous.

Example: The terminal string a+a∗a has two

parse trees:

I

a I

a

I

a

I

a

I

a

I

a

+

*

*

+

E

E E

E E

E

E E

EE

(a) (b)
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Example: Unambiguous Grammar

B -> (RB | ε R -> ) | (RR

Construct a unique leftmost derivation for 
a given balanced string of parentheses by 
scanning the string from left to right.
 If we need to expand B, then use B -> (RB if 

the next symbol is “(” and ε if at the end.

 If we need to expand R, use R -> ) if the next 
symbol is “)” and (RR if it is “(”.



The Parsing Process

Remaining Input:
(())()

Steps of leftmost 
derivation:

B

Next
symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input:
())()

Steps of leftmost 
derivation:

B
(RBNext

symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input:
))()

Steps of leftmost 
derivation:

B
(RB
((RRB

Next
symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input:
)()

Steps of leftmost 
derivation:

B
(RB
((RRB
(()RB

Next
symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input:
()

Steps of leftmost 
derivation:

B
(RB
((RRB
(()RB
(())B

Next
symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input:
)

Steps of leftmost 
derivation:

B (())(RB
(RB
((RRB
(()RB
(())B

Next
symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input: Steps of leftmost 
derivation:

B (())(RB
(RB (())()B
((RRB
(()RB
(())B

Next
symbol

B -> (RB | ε      R -> ) | (RR



The Parsing Process

Remaining Input: Steps of leftmost 
derivation:

B (())(RB
(RB (())()B
((RRB (())()
(()RB
(())B

Next
symbol

B -> (RB | ε      R -> ) | (RR



LL(1) Grammars

As an aside, a grammar such B -> (RB | ε      
R -> ) | (RR, where you can always figure 
out the production to use in a leftmost 
derivation by scanning the given string 
left-to-right and looking only at the next 
one symbol is called LL(1).
 “Leftmost derivation, left-to-right scan, one 

symbol of lookahead.”



LL(1) Grammars – (2)

Most programming languages have 
LL(1) grammars.
LL(1) grammars are never ambiguous.



Removing Ambiguity From Grammars

Good news: Sometimes we can remove ambi-
guity “by hand”

Bad news: There is no algorithm to do it

More bad news: Some CFL’s have only am-
biguous CFG’s

We are studying the grammar

E → I | E + E | E ∗ E | (E)

I → a | b | Ia | Ib | I0 | I1

There are two problems:

1. There is no precedence between * and +

2. There is no grouping of sequences of op-
erators, e.g. is E + E + E meant to be
E + (E + E) or (E + E) + E.
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Solution: We introduce more variables, each

representing expressions of same “binding strength.”

1. A factor is an expresson that cannot be

broken apart by an adjacent * or +. Our

factors are

(a) Identifiers

(b) A parenthesized expression.

2. A term is an expresson that cannot be bro-

ken by +. For instance a ∗ b can be broken

by a1∗ or ∗a1. It cannot be broken by +,

since e.g. a1 +a∗ b is (by precedence rules)

same as a1 + (a ∗ b), and a ∗ b+ a1 is same

as (a ∗ b) + a1.

3. The rest are expressions, i.e. they can be

broken apart with * or +.
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We’ll let F stand for factors, T for terms, and E
for expressions. Consider the following gram-
mar:

1. I → a | b | Ia | Ib | I0 | I1

2. F → I | (E)

3. T → F | T ∗ F
4. E → T | E + T

Now the only parse tree for a+ a ∗ a will be

F

I

a

F

I

a

T

F

I

a

T

+

*

E

E T
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Why is the new grammar unambiguous?

Intuitive explanation:

• A factor is either an identifier or (E), for

some expression E.

• The only parse tree for a sequence

f1 ∗ f2 ∗ · · · ∗ fn−1 ∗ fn

of factors is the one that gives f1∗f2∗· · ·∗fn−1

as a term and fn as a factor, as in the parse

tree on the next slide.

• An expression is a sequence

t1 + t2 + · · ·+ tn−1 + tn

of terms ti. It can only be parsed with

t1 + t2 + · · ·+ tn−1 as an expression and tn as

a term.
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*

*

*

T

T F

T F

T

T F

F

.
. .
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Leftmost derivations and Ambiguity

The two parse trees for a+ a ∗ a

I

a I

a

I

a

I

a

I

a

I

a

+

*

*

+

E

E E

E E

E

E E

EE

(a) (b)

give rise to two derivations:

E ⇒
lm
E + E ⇒

lm
I + E ⇒

lm
a+ E ⇒

lm
a+ E ∗ E

⇒
lm
a+ I ∗ E ⇒

lm
a+ a ∗ E ⇒

lm
a+ a ∗ I ⇒

lm
a+ a ∗ a

and

E ⇒
lm
E ∗E ⇒

lm
E+E ∗E ⇒

lm
I +E ∗E ⇒

lm
a+E ∗E

⇒
lm
a+ I ∗ E ⇒

lm
a+ a ∗ E ⇒

lm
a+ a ∗ I ⇒

lm
a+ a ∗ a
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In General:

• One parse tree, but many derivations

• Many leftmost derivation implies many parse

trees.

• Many rightmost derivation implies many parse

trees.

Theorem 5.29: For any CFG G, a terminal

string w has two distinct parse trees if and only

if w has two distinct leftmost derivations from

the start symbol.
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Sketch of Proof: (Only If.) If the two parse

trees differ, they have a node a which dif-

ferent productions, say A → X1X2 · · ·Xk and

B → Y1Y2 · · ·Ym. The corresponding leftmost

derivations will use derivations based on these

two different productions and will thus be dis-

tinct.

(If.) Let’s look at how we construct a parse

tree from a leftmost derivation. It should now

be clear that two distinct derivations gives rise

to two different parse trees.
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Inherent Ambiguity

A CFL L is inherently ambiguous if all gram-

mars for L are ambiguous.

Example: Consider L =

{anbncmdm : n ≥ 1,m ≥ 1}∪{anbmcmdn : n ≥ 1,m ≥ 1}.

A grammar for L is

S → AB | C
A→ aAb | ab
B → cBd | cd
C → aCd | aDd
D → bDc | bc
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Let’s look at parsing the string aabbccdd.

S

A B

a A b

a b

c B d

c d

(a)

S

C

a C d

a D d

b D c

b c

(b)
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From this we see that there are two leftmost

derivations:

S ⇒
lm
AB ⇒

lm
aAbB ⇒

lm
aabbB ⇒

lm
aabbcBd⇒

lm
aabbccdd

and

S ⇒
lm
C ⇒

lm
aCd⇒

lm
aaDdd⇒

lm
aabDcdd⇒

lm
aabbccdd

It can be shown that every grammar for L be-

haves like the one above. The language L is

inherently ambiguous.
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