
Parse Trees

• If w ∈ L(G), for some CFG, then w has a

parse tree, which tells us the (syntactic) struc-

ture of w

• w could be a program, a SQL-query, an XML-

document, etc.

• Parse trees are an alternative representation

to derivations and recursive inferences.

• There can be several parse trees for the same

string

• Ideally there should be only one parse tree

(the “true” structure) for each string, i.e. the

language should be unambiguous.

• Unfortunately, we cannot always remove the

ambiguity.

148

Constructing Parse Trees

Let G = (V, T, P, S) be a CFG. A tree is a parse

tree for G if:

1. Each interior node is labelled by a variable

in V .

2. Each leaf is labelled by a symbol in V ∪ T ∪ {ε}.
Any ε-labelled leaf is the only child of its

parent.

3. If an interior node is lablelled A, and its

children (from left to right) labelled

X1, X2, . . . , Xk,

then A→ X1X2 . . . Xk ∈ P .

149

Example: In the grammar

1. E → I

2. E → E + E

3. E → E ∗ E
4. E → (E)

···

the following is a parse tree:

E

E + E

I

This parse tree shows the derivation E
∗⇒ I+E

150

Example: In the grammar

1. P → ε

2. P → 0

3. P → 1

4. P → 0P0

5. P → 1P1

the following is a parse tree:

P

P

P

0 0

1 1

ε

It shows the derivation of P
∗⇒ 0110.

151

The Yield of a Parse Tree

The yield of a parse tree is the string of leaves

from left to right.

Important are those parse trees where:

1. The yield is a terminal string.

2. The root is labelled by the start symbol

We shall see the the set of yields of these

important parse trees is the language of the

grammar.

152

Example: Below is an important parse tree

E

E E*

I

a

E

E E

I

a

I

I

I

b

()

+

0

0

The yield is a ∗ (a+ b00).

Compare the parse tree with the derivation on

slide 141.
153

Let G = (V, T, P, S) be a CFG, and A ∈ V .
We are going to show that the following are
equivalent:

1. We can determine by recursive inference
that w is in the language of A

2. A
∗⇒ w

3. A
∗⇒
lm
w, and A

∗⇒
rm
w

4. There is a parse tree of G with root A and
yield w.

To prove the equivalences, we use the following
plan.

Recursive

tree
Parse

inference

Leftmost
derivation

Rightmost
derivationDerivation

154

From Inferences to Trees

Theorem 5.12: Let G = (V, T, P, S) be a

CFG, and suppose we can show w to be in

the language of a variable A. Then there is a

parse tree for G with root A and yield w.

Proof: We do an induction of the length of

the inference.

Basis: One step. Then we must have used a

production A → w. The desired parse tree is

then

A

w

155

jiang
Text Box
by inference

jiang
Underline

Induction: w is inferred in n + 1 steps. Sup-

pose the last step was based on a production

A→ X1X2 · · ·Xk,

where Xi ∈ V ∪ T . We break w up as

w1w2 · · ·wk,

where wi = Xi, when Xi ∈ T , and when Xi ∈ V,
then wi was previously inferred being in Xi, in

at most n steps.

By the IH there are parse trees i with root Xi
and yield wi. Then the following is a parse tree

for G with root A and yield w:

A

X X X

w w w

k

k

1 2

1 2 . . .

. . .

156

jiang
Text Box
L()

From trees to derivations

We’ll show how to construct a leftmost deriva-

tion from a parse tree.

Example: In the grammar of slide 6 there clearly

is a derivation

E ⇒ I ⇒ Ib⇒ ab.

Then, for any α and β there is a derivation

αEβ ⇒ αIβ ⇒ αIbβ ⇒ αabβ.

For example, suppose we have a derivation

E ⇒ E + E ⇒ E + (E).

The we can choose α = E + (and β =) and

continue the derivation as

E + (E)⇒ E + (I)⇒ E + (Ib)⇒ E + (ab).

This is why CFG’s are called context-free.

157

Theorem 5.14: Let G = (V, T, P, S) be a

CFG, and suppose there is a parse tree with

root labelled A and yield w. Then A
∗⇒
lm
w in G.

Proof: We do an induction on the height of

the parse tree.

Basis: Height is 1. The tree must look like

A

w

Consequently A→ w ∈ P , and A⇒
lm
w.

158

Induction: Height is n + 1. The tree must

look like

A

X X X

w w w

k

k

1 2

1 2 . . .

. . .

Then w = w1w2 · · ·wk, where

1. If Xi ∈ T , then wi = Xi.

2. If Xi ∈ V , then Xi
∗⇒
lm
wi in G by the IH.

159

Now we construct A
∗⇒
lm
w by an (inner) induc-

tion by showing that

∀i : A
∗⇒
lm
w1w2 · · ·wiXi+1Xi+2 · · ·Xk.

Basis: Let i = 0. We already know that

A⇒
lm
X1Xi+2 · · ·Xk.

Induction: Make the IH that

A
∗⇒
lm
w1w2 · · ·wi−1XiXi+1 · · ·Xk.

(Case 1:) Xi ∈ T . Do nothing, since Xi = wi
gives us

A
∗⇒
lm
w1w2 · · ·wiXi+1 · · ·Xk.

160

(Case 2:) Xi ∈ V . By the IH there is a deriva-

tion Xi ⇒
lm
α1 ⇒

lm
α2 ⇒

lm
· · · ⇒

lm
wi. By the contex-

free property of derivations we can proceed

with

A
∗⇒
lm

w1w2 · · ·wi−1XiXi+1 · · ·Xk ⇒
lm

w1w2 · · ·wi−1α1Xi+1 · · ·Xk ⇒
lm

w1w2 · · ·wi−1α2Xi+1 · · ·Xk ⇒
lm

· · ·

w1w2 · · ·wi−1wiXi+1 · · ·Xk

161

Example: Let’s construct the leftmost deriva-
tion for the tree

E

E E*

I

a

E

E E

I

a

I

I

I

b

()

+

0

0

Suppose we have inductively constructed the
leftmost derivation

E ⇒
lm
I ⇒

lm
a

corresponding to the leftmost subtree, and the
leftmost derivation

E ⇒
lm

(E)⇒
lm

(E + E)⇒
lm

(I + E)⇒
lm

(a+ E)⇒
lm

(a+ I)⇒
lm

(a+ I0)⇒
lm

(a+ I00)⇒
lm

(a+ b00)

corresponding to the righmost subtree.

162

For the derivation corresponding to the whole

tree we start with E ⇒
lm
E ∗ E and expand the

first E with the first derivation and the second

E with the second derivation:

E ⇒
lm

E ∗ E ⇒
lm

I ∗ E ⇒
lm

a ∗ E ⇒
lm

a ∗ (E)⇒
lm

a ∗ (E + E)⇒
lm

a ∗ (I + E)⇒
lm

a ∗ (a+ E)⇒
lm

a ∗ (a+ I)⇒
lm

a ∗ (a+ I0)⇒
lm

a ∗ (a+ I00)⇒
lm

a ∗ (a+ b00)

163

From Derivations to Recursive Inferences

Observation: Suppose that A⇒ X1X2 · · ·Xk
∗⇒ w.

Then w = w1w2 · · ·wk, where Xi
∗⇒ wi

The factor wi can be extracted from A
∗⇒ w by

looking at the expansion of Xi only.

Example: E ⇒ a ∗ b+ a, and

E ⇒ E︸︷︷︸
X1

∗︸︷︷︸
X2

E︸︷︷︸
X3

+︸︷︷︸
X4

E︸︷︷︸
X5

We have

E ⇒ E ∗ E ⇒ E ∗ E + E ⇒ I ∗ E + E ⇒ I ∗ I + E ⇒

I ∗ I + I ⇒ a ∗ I + I ⇒ a ∗ b+ I ⇒ a ∗ b+ a

By looking at the expansion of X3 = E only,
we can extract

E ⇒ I ⇒ b.

164

jiang
Text Box
*

Theorem 5.18: Let G = (V, T, P, S) be a

CFG. Suppose A
∗⇒
G
w, and that w is a string

of terminals. Then we can infer that w is in

the language of variable A.

Proof: We do an induction on the length of

the derivation A
∗⇒
G
w.

Basis: One step. If A ⇒
G
w there must be a

production A→ w in P . The we can infer that

w is in the language of A.

165

Induction: Suppose A
∗⇒
G

w in n + 1 steps.

Write the derivation as

A⇒
G
X1X2 · · ·Xk

∗⇒
G
w

The as noted on the previous slide we can

break w as w1w2 · · ·wk where Xi
∗⇒
G
wi. Fur-

thermore, Xi
∗⇒
G
wi can use at most n steps.

Now we have a production A → X1X2 · · ·Xk,

and we know by the IH that we can infer wi to

be in the language of Xi.

Therefore we can infer w1w2 · · ·wk to be in the

language of A.

166

Ambiguity in Grammars and Languages

In the grammar

1. E → I

2. E → E + E

3. E → E ∗ E
4. E → (E)

· · ·
the sentential form E + E ∗ E has two deriva-
tions:

E ⇒ E + E ⇒ E + E ∗ E

and
E ⇒ E ∗ E ⇒ E + E ∗ E

This gives us two parse trees:

+

*

*

+

E

E E

E E

E

E E

EE

(a) (b)

167

Tao
Typewritten Text
Gram Matic (Paul Cernea):
https://itunes.apple.com/ca/app/gram-matic/id914302373?mt=8

The mere existence of several derivations is not

dangerous, it is the existence of several parse

trees that ruins a grammar.

Example: In the same grammar

5. I → a

6. I → b

7. I → Ia

8. I → Ib

9. I → I0

10. I → I1

the string a+ b has several derivations, e.g.

E ⇒ E + E ⇒ I + E ⇒ a+ E ⇒ a+ I ⇒ a+ b

and

E ⇒ E + E ⇒ E + I ⇒ I + I ⇒ I + b⇒ a+ b

However, their parse trees are the same, and

the structure of a+ b is unambiguous.

168

jiang
Text Box
But, multiple left-most (or right-most) derivations do cause ambiguity.

Definition: Let G = (V, T, P, S) be a CFG. We

say that G is ambiguous is there is a string in

T ∗ that has more than one parse tree.

If every string in L(G) has at most one parse

tree, G is said to be unambiguous.

Example: The terminal string a+a∗a has two

parse trees:

I

a I

a

I

a

I

a

I

a

I

a

+

*

*

+

E

E E

E E

E

E E

EE

(a) (b)

169

Example: Unambiguous Grammar

B -> (RB | ε R ->) | (RR

Construct a unique leftmost derivation for
a given balanced string of parentheses by
scanning the string from left to right.
 If we need to expand B, then use B -> (RB if

the next symbol is “(” and ε if at the end.

 If we need to expand R, use R ->) if the next
symbol is “)” and (RR if it is “(”.

The Parsing Process

Remaining Input:
(())()

Steps of leftmost
derivation:

B

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input:
())()

Steps of leftmost
derivation:

B
(RBNext

symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input:
))()

Steps of leftmost
derivation:

B
(RB
((RRB

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input:
)()

Steps of leftmost
derivation:

B
(RB
((RRB
(()RB

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input:
()

Steps of leftmost
derivation:

B
(RB
((RRB
(()RB
(())B

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input:
)

Steps of leftmost
derivation:

B (())(RB
(RB
((RRB
(()RB
(())B

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input: Steps of leftmost
derivation:

B (())(RB
(RB (())()B
((RRB
(()RB
(())B

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input: Steps of leftmost
derivation:

B (())(RB
(RB (())()B
((RRB (())()
(()RB
(())B

Next
symbol

B -> (RB | ε R ->) | (RR

LL(1) Grammars

As an aside, a grammar such B -> (RB | ε
R ->) | (RR, where you can always figure
out the production to use in a leftmost
derivation by scanning the given string
left-to-right and looking only at the next
one symbol is called LL(1).
 “Leftmost derivation, left-to-right scan, one

symbol of lookahead.”

LL(1) Grammars – (2)

Most programming languages have
LL(1) grammars.
LL(1) grammars are never ambiguous.

Removing Ambiguity From Grammars

Good news: Sometimes we can remove ambi-
guity “by hand”

Bad news: There is no algorithm to do it

More bad news: Some CFL’s have only am-
biguous CFG’s

We are studying the grammar

E → I | E + E | E ∗ E | (E)

I → a | b | Ia | Ib | I0 | I1

There are two problems:

1. There is no precedence between * and +

2. There is no grouping of sequences of op-
erators, e.g. is E + E + E meant to be
E + (E + E) or (E + E) + E.

170

jiang
Text Box
(without changing the language)

Solution: We introduce more variables, each

representing expressions of same “binding strength.”

1. A factor is an expresson that cannot be

broken apart by an adjacent * or +. Our

factors are

(a) Identifiers

(b) A parenthesized expression.

2. A term is an expresson that cannot be bro-

ken by +. For instance a ∗ b can be broken

by a1∗ or ∗a1. It cannot be broken by +,

since e.g. a1 +a∗ b is (by precedence rules)

same as a1 + (a ∗ b), and a ∗ b+ a1 is same

as (a ∗ b) + a1.

3. The rest are expressions, i.e. they can be

broken apart with * or +.

171

We’ll let F stand for factors, T for terms, and E
for expressions. Consider the following gram-
mar:

1. I → a | b | Ia | Ib | I0 | I1

2. F → I | (E)

3. T → F | T ∗ F
4. E → T | E + T

Now the only parse tree for a+ a ∗ a will be

F

I

a

F

I

a

T

F

I

a

T

+

*

E

E T

172

Why is the new grammar unambiguous?

Intuitive explanation:

• A factor is either an identifier or (E), for

some expression E.

• The only parse tree for a sequence

f1 ∗ f2 ∗ · · · ∗ fn−1 ∗ fn

of factors is the one that gives f1∗f2∗· · ·∗fn−1

as a term and fn as a factor, as in the parse

tree on the next slide.

• An expression is a sequence

t1 + t2 + · · ·+ tn−1 + tn

of terms ti. It can only be parsed with

t1 + t2 + · · ·+ tn−1 as an expression and tn as

a term.

173

jiang
Text Box
IOW, consecutive multiplications are calculated from left to right.

*

*

*

T

T F

T F

T

T F

F

.
. .

174

Leftmost derivations and Ambiguity

The two parse trees for a+ a ∗ a

I

a I

a

I

a

I

a

I

a

I

a

+

*

*

+

E

E E

E E

E

E E

EE

(a) (b)

give rise to two derivations:

E ⇒
lm
E + E ⇒

lm
I + E ⇒

lm
a+ E ⇒

lm
a+ E ∗ E

⇒
lm
a+ I ∗ E ⇒

lm
a+ a ∗ E ⇒

lm
a+ a ∗ I ⇒

lm
a+ a ∗ a

and

E ⇒
lm
E ∗E ⇒

lm
E+E ∗E ⇒

lm
I +E ∗E ⇒

lm
a+E ∗E

⇒
lm
a+ I ∗ E ⇒

lm
a+ a ∗ E ⇒

lm
a+ a ∗ I ⇒

lm
a+ a ∗ a

175

In General:

• One parse tree, but many derivations

• Many leftmost derivation implies many parse

trees.

• Many rightmost derivation implies many parse

trees.

Theorem 5.29: For any CFG G, a terminal

string w has two distinct parse trees if and only

if w has two distinct leftmost derivations from

the start symbol.

176

Sketch of Proof: (Only If.) If the two parse

trees differ, they have a node a which dif-

ferent productions, say A → X1X2 · · ·Xk and

B → Y1Y2 · · ·Ym. The corresponding leftmost

derivations will use derivations based on these

two different productions and will thus be dis-

tinct.

(If.) Let’s look at how we construct a parse

tree from a leftmost derivation. It should now

be clear that two distinct derivations gives rise

to two different parse trees.

177

jiang
Text Box
with

jiang
Text Box
A

Inherent Ambiguity

A CFL L is inherently ambiguous if all gram-

mars for L are ambiguous.

Example: Consider L =

{anbncmdm : n ≥ 1,m ≥ 1}∪{anbmcmdn : n ≥ 1,m ≥ 1}.

A grammar for L is

S → AB | C
A→ aAb | ab
B → cBd | cd
C → aCd | aDd
D → bDc | bc

178

Let’s look at parsing the string aabbccdd.

S

A B

a A b

a b

c B d

c d

(a)

S

C

a C d

a D d

b D c

b c

(b)

179

From this we see that there are two leftmost

derivations:

S ⇒
lm
AB ⇒

lm
aAbB ⇒

lm
aabbB ⇒

lm
aabbcBd⇒

lm
aabbccdd

and

S ⇒
lm
C ⇒

lm
aCd⇒

lm
aaDdd⇒

lm
aabDcdd⇒

lm
aabbccdd

It can be shown that every grammar for L be-

haves like the one above. The language L is

inherently ambiguous.

180

jiang
Text Box
There is no algorithm to determine if a CFL is inherently ambiguous. There is no algorithm to determine if a CFG is ambiguous.

