
Closure Properties of Regular Languages

Let L and M be regular languages. Then the
following languages are all regular:

• Union: L ∪M

• Intersection: L ∩M

• Complement: N

• Difference: L \M

• Reversal: LR = {wR : w ∈ L}

• Closure: L∗.

• Concatenation: L.M

• Homomorphism:
h(L) = {h(w) : w ∈ L, h is a homom. }

• Inverse homomorphism:
h−1(L) = {w ∈ Σ : h(w) ∈ L, h : Σ→∆ is a homom. }

97

jiang
Text Box
h(a1 a2 ... an) = h(a1)h(a2)...h(an)

jiang
Text Box
*

Theorem 4.4. For any regular L and M , L∪M
is regular.

Proof. Let L = L(E) and M = L(F). Then

L(E + F) = L ∪M by definition.

Theorem 4.5. If L is a regular language over

Σ, then so is L = Σ∗ \ L.

Proof. Let L be recognized by a DFA

A = (Q,Σ, δ, q0, F).

Let B = (Q,Σ, δ, q0, Q \ F). Now L(B) = L.

98

Example:

Let L be recognized by the DFA below

Start

{ {q q {q0 0 0, ,q q1 2}}
0 1

1 0

0

1

}

Then L is recognized by

1 0

Start

{ {q q {q0 0 0, ,q q1 2}}
0 1

}

1

0

Question: What are the regex’s for L and L

99

Theorem 4.8. If L and M are regular, then

so is L ∩M .

Proof. By DeMorgan’s law L ∩M = L ∪M .

We already that regular languages are closed

under complement and union.

We shall shall also give a nice direct proof, the

Cartesian construction from the e-commerce

example.

100

Theorem 4.8. If L and M are regular, then

so in L ∩M .

Proof. Let L be the language of

AL = (QL,Σ, δL, qL, FL)

and M be the language of

AM = (QM ,Σ, δM , qM , FM)

We assume w.l.o.g. that both automata are

deterministic.

We shall construct an automaton that simu-

lates AL and AM in parallel, and accepts if and

only if both AL and AM accept.

101

jiang
Text Box
s

If AL goes from state p to state s on reading a,

and AM goes from state q to state t on reading

a, then AL∩M will go from state (p, q) to state

(s, t) on reading a.

Start

Input

AcceptAND

a

L

M

A

A

102

Formally

AL∩M = (QL×QM ,Σ, δL∩M , (qL, qM), FL×FM),

where

δL∩M((p, q), a) = (δL(p, a), δM(q, a))

It will be shown in the tutorial by and induction

on |w| that

δ̂L∩M((qL, qM), w) =
(
δ̂L(qL, w), δ̂M(qM , w)

)

The claim then follows.

Question: Why?

103

Example: (c) = (a)× (b)

Start

Start

1

0 0,1

0,11

0

(a)

(b)

Start

0,1

p q

r s

pr ps

qr qs

0

1

1

0

0

1

(c)

104

jiang
Text Box
Another example?

Theorem 4.10. If L and M are regular lan-

guages, then so in L \M .

Proof. Observe that L \ M = L ∩ M . We

already know that regular languages are closed

under complement and intersection.

105

jiang
Text Box
S

Theorem 4.11. If L is a regular language,

then so is LR.

Proof 1: Let L be recognized by an FA A.

Turn A into an FA for LR, by

1. Reversing all arcs.

2. Make the old start state the new sole ac-

cepting state.

3. Create a new start state p0, with δ(p0, ε) = F

(the old accepting states).

106

Theorem 4.11. If L is a regular language,
then so is LR.

Proof 2: Let L be described by a regex E.
We shall construct a regex ER, such that
L(ER) = (L(E))R.

We proceed by a structural induction on E.

Basis: If E is ε, ∅, or a, then ER = E.

Induction:

1. E = F +G. Then ER = FR +GR

2. E = F.G. Then ER = GR.FR

3. E = F ∗. Then ER = (FR)∗

We will show by structural induction on E on
blackboard in class that

L(ER) = (L(E))R

107

Homomorphisms

A homomorphism on Σ is a function h : Σ∗ → Θ∗,
where Σ and Θ are alphabets.

Let w = a1a2 · · · an ∈ Σ∗. Then

h(w) = h(a1)h(a2) · · ·h(an)

and

h(L) = {h(w) : w ∈ L}

Example: Let h : {0,1}∗ → {a, b}∗ be defined by

h(0) = ab, and h(1) = ε. Now h(0011) = abab.

Example: h(L(10∗1)) = L((ab)∗).

108

Theorem 4.14: h(L) is regular, whenever L
is.

Proof:

Let L = L(E) for a regex E. We claim that
L(h(E)) = h(L).

Basis: If E is ε or ∅. Then h(E) = E, and
L(h(E)) = L(E) = h(L(E)).

If E is a, then L(E) = {a}, L(h(E)) = L(h(a)) =
{h(a)} = h(L(E)).

Induction:

Case 1: L = E + F . Now L(h(E + F)) =
L(h(E)+h(F)) = L(h(E))∪L(h(F)) = h(L(E))∪
h(L(F)) = h(L(E) ∪ L(F)) = h(L(E + F)).

Case 2: L = E.F . Now L(h(E.F)) = L(h(E)).L(h(F))
= h(L(E)).h(L(F)) = h(L(E).L(F))

Case 3: L = E∗. Now L(h(E∗)) = L(h(E)∗) =
L(h(E))∗ = h(L(E))∗ = h(L(E

∗
)).

109

jiang
Text Box
G

jiang
Text Box
G

jiang
Text Box
G

jiang
Text Box
E.g., h(0*1+(0+1)*0) = h(0)*h(1)+(h(0)+h(1))*h(0)

jiang
Text Box
= h(L(E.F))

jiang
Text Box
h(L(E)*) = h(L(E*))

Inverse Homomorphism

Let h : Σ∗ → Θ∗ be a homom. Let L ⊆ Θ∗,
and define

h−1(L) = {w ∈ Σ∗ : h(w) ∈ L}

L h(L)

Lh-1 (L)

(a)

(b)

h

h

110

Example: Let h : {a, b} → {0,1}∗ be defined by
h(a) = 01, and h(b) = 10. If L = L((00 + 1)∗),
then h−1(L) = L((ba)∗).

Claim: h(w) ∈ L if and only if w = (ba)n

Proof: Let w = (ba)n. Then h(w) = (1001)n ∈
L.

Let h(w) ∈ L, and suppose w /∈ L((ba)∗). There
are four cases to consider.

1. w begins with a. Then h(w) begins with
01 and /∈ L((00 + 1)∗).

2. w ends in b. Then h(w) ends in 10 and
/∈ L((00 + 1)∗).

3. w = xaay. Then h(w) = z0101v and /∈
L((00 + 1)∗).

4. w = xbby. Then h(w) = z1010v and /∈
L((00 + 1)∗).

111

Theorem 4.16: Let h : Σ∗ → Θ∗ be a ho-

mom., and L ⊆ Θ∗ regular. Then h−1(L) is

regular.

Proof: Let L be the language of A = (Q,Θ, δ, q0, F).

We define B = (Q,Σ, γ, q0, F), where

γ(q, a) = δ̂(q, h(a))

It will be shown by induction on |w| in the tu-

torial that γ̂(q0, w) = δ̂(q0, h(w))

h(a) AtoStart

Accept/reject

Input a

h

A

Input

112

Decision Properties

We consider the following:

1. Converting among representations for reg-

ular languages.

2. Is L = ∅?

3. Is w ∈ L?

4. Do two descriptions define the same lan-

guage?

113

From NFA’s to DFA’s

Suppose the ε-NFA has n states.

To compute ECLOSE(p) we follow at most n2

arcs.

The DFA has 2n states, for each state S and

each a ∈ Σ we compute δD(S, a) in n3 steps.

Grand total is O(n32n) steps.

If we compute δ for reachable states only, we

need to compute δD(S, a) only s times, where s

is the number of reachable states. Grand total

is O(n3s) steps.

114

From DFA to NFA

All we need to do is to put set brackets around
the states. Total O(n) steps.

From FA to regex

We need to compute n3 entries of size up to
4n. Total is O(n34n).

The FA is allowed to be a NFA. If we first
wanted to convert the NFA to a DFA, the total
time would be doubly exponential

From regex to FA’s We can build an expres-
sion tree for the regex in n steps.

We can construct the automaton in n steps.

Eliminating ε-transitions takes O(n3) steps.

If you want a DFA, you might need an expo-
nential number of steps.

115

Testing emptiness

L(A) 6= ∅ for FA A if and only if a final state
is reachable from the start state in A. Total
O(n2) steps.

Alternatively, we can inspect a regex E and tell
if L(E) = ∅. We use the following method:

E = F + G. Now L(E) is empty if and only if
both L(F) and L(G) are empty.

E = F.G. Now L(E) is empty if and only if
either L(F) or L(G) is empty.

E = F ∗. Now L(E) is never empty, since ε ∈
L(E).

E = ε. Now L(E) is not empty.

E = a. Now L(E) is not empty.

E = ∅. Now L(E) is empty.

116

Testing membership

To test w ∈ L(A) for DFA A, simulate A on w.

If |w| = n, this takes O(n) steps.

If A is an NFA and has s states, simulating A

on w takes O(ns2) steps.

If A is an ε-NFA and has s states, simulating

A on w takes O(ns3) steps.

If L = L(E), for regex E of length s, we first

convert E to an ε-NFA with 2s states. Then we

simulate w on this machine, in O(ns3) steps.

117

jiang
Text Box
Finiteness: How to decide if L(A) is finite for DFA A?

jiang
Text Box
Does L((0+1)*0(0+1)31*) contain 10101011 or 101011101?

Equivalence and Minimization of Automata

Let A = (Q,Σ, δ, q0, F) be a DFA, and {p, q} ⊆ Q.

We define

p ≡ q ⇔ ∀w ∈ Σ∗ : δ̂(p, w) ∈ F iff δ̂(q, w) ∈ F

• If p ≡ q we say that p and q are equivalent

• If p 6≡ q we say that p and q are distinguish-

able

IOW (in other words) p and q are distinguish-

able iff

∃w : δ̂(p, w) ∈ F and δ̂(q, w) /∈ F, or vice versa

118

Example:

Start

0

0

1

1

0

1

0

1

1
0

01

0
11

0

A B C D

E K G H

δ̂(C, ε) ∈ F, δ̂(G, ε) /∈ F ⇒ C 6≡ G

δ̂(A,01) = C ∈ F, δ̂(G,01) = E /∈ F ⇒ A 6≡ G

119

What about A and E?

Start

0

0

1

1

0

1

0

1

1
0

01

0
11

0

A B C D

E K G H

δ̂(A, ε) = A /∈ F, δ̂(E, ε) = E /∈ F

δ̂(A,1) = F = δ̂(E,1)

Therefore δ̂(A,1x) = δ̂(E,1x) = δ̂(F, x)

δ̂(A,00) = G = δ̂(E,00)

δ̂(A,01) = C = δ̂(E,01)

Conclusion: A ≡ E.
120

Tao
Text Box

Tao
Text Box

Tao
Typewritten Text
K

Tao
Typewritten Text
K

We can compute distinguishable pairs with the

following inductive table filling algorithm:

Basis: If p ∈ F and q 6∈ F , then p 6≡ q.

Induction: If ∃a ∈ Σ : δ(p, a) 6≡ δ(q, a),

then p 6≡ q.

Example: Applying the table filling algo to A:

B

C

D

E

K

G

H

A B C D E F G

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

121

Tao
Text Box

Tao
Typewritten Text
K

Theorem 4.20: If p and q are not distin-

guished by the TF-algo, then p ≡ q.

Proof: Suppose to the contrary that that there

is a bad pair {p, q}, s.t.

1. ∃w : δ̂(p, w) ∈ F, δ̂(q, w) /∈ F , or vice versa.

2. The TF-algo does not distinguish between

p and q.

Let w = a1a2 · · · an be the shortest string that

identifies a bad pair {p, q}.

Now w 6= ε since otherwise the TF-algo would

in the basis distinguish p from q. Thus n ≥ 1.

122

Consider states r = δ(p, a1) and s = δ(q, a1).

Now {r, s} cannot be a bad pair since {r, s}
would be indentified by a string shorter than w.

Therefore, the TF-algo must have discovered

that r and s are distinguishable.

But then the TF-algo would distinguish p from

q in the inductive part.

Thus there are no bad pairs and the theorem

is true.

123

Testing Equivalence of Regular Languages

Let L and M be reg langs (each given in some

form).

To test if L = M

1. Convert both L and M to DFA’s.

2. Imagine the DFA that is the union of the

two DFA’s (never mind there are two start

states)

3. If TF-algo says that the two start states

are distinguishable, then L 6= M , otherwise

L = M .

124

jiang
Text Box
a

Example:

Start

Start

0

0

1

1

0

1 0

1

1

0

A B

C D

E

We can “see” that both DFA accept

L(ε+ (0 + 1)∗0). The result of the TF-algo is

B

C

D

E

A B C D

x

x

x

x

x x

Therefore the two automata are equivalent.

125

Minimization of DFA’s

We can use the TF-algo to minimize a DFA

by merging all equivalent states. IOW, replace

each state p by p/≡.

Example: The DFA on slide 119 has equiva-

lence classes {{A, E}, {B, H}, {C}, {D, K}, {G}}.

The “union” DFA on slide 125 has equivalence

classes {{A,C,D}, {B,E}}.

Note: In order for p/≡ to be an equivalence

class, the relation ≡ has to be an equivalence

relation (reflexive, symmetric, and transitive).

126

Theorem 4.23: If p ≡ q and q ≡ r, then p ≡ r.

Proof: Suppose to the contrary that p 6≡ r.

Then ∃w such that δ̂(p, w) ∈ F and δ̂(r, w) 6∈ F ,

or vice versa.

OTH, δ̂(q, w) is either accpeting or not.

Case 1: δ̂(q, w) is accepting. Then q 6≡ r.

Case 1: δ̂(q, w) is not accepting. Then p 6≡ q.

The vice versa case is proved symmetrically

Therefore it must be that p ≡ r.

127

jiang
Text Box
2

To minimize a DFA A = (Q,Σ, δ, q0, F) con-

struct a DFA B = (Q/≡,Σ, γ, q0/≡, F/≡), where

γ(p/≡, a) = δ(p, a)/≡

In order for B to be well defined we have to

show that

If p ≡ q then δ(p, a) ≡ δ(q, a)

If δ(p, a) 6≡ δ(q, a), then the TF-algo would con-

clude p 6≡ q, so B is indeed well defined. Note

also that F/≡ contains all and only the accept-

ing states of A.

128

jiang
Text Box
Assume A has no inaccessible states.

Example: We can minimize

Start

0

0

1

1

0

1

0

1

1
0

01

0
11

0

A B C D

E K G H

to obtain

Start

1

0

0

1

1

0

1
0

1

0A,E

G D,K

B,H C

129

NOTE: We cannot apply the TF-algo to NFA’s.

For example, to minimize

Start

0,1

0

1 0

A B

C

we simply remove state C.

However, A 6≡ C.

130

Why the Minimized DFA Can’t Be Beaten

Let B be the minimized DFA obtained by ap-

plying the TF-algo to DFA A.

We already know that L(A) = L(B).

What if there existed a DFA C, with

L(C) = L(B) and fewer states than B?

Then run the TF-algo on B “union” C.

Since L(B) = L(C) we have qB0 ≡ q
C
0 .

Also, δ(qB0 , a) ≡ δ(qC0 , a), for any a.

131

Claim: For each state p in B there is at least

one state q in C, s.t. p ≡ q.

Proof of claim: There are no inaccessible states,

so p = δ̂(qB0 , a1a2 · · · ak), for some string a1a2 · · · ak.

Now q = δ̂(qC0 , a1a2 · · · ak), and p ≡ q.

Since C has fewer states than B, there must be

two states r and s of B such that r ≡ t ≡ s, for

some state t of C. But then r ≡ s (why?)

which is a contradiction, since B was con-

structed by the TF-algo.

132

