Closure Properties of Regular Languages

Let L and M be regular languages. Then the following languages are all regular:

- Union: $L \cup M$
- Intersection: $L \cap M$
- Complement: \overline{N}
- Difference: $L \setminus M$
- Reversal: $L^R = \{w^R : w \in L\}$
- Closure: L^* .
- Concatenation: L.M
- Homomorphism: $h(a_1 a_2 \dots a_n) = h(a_1)h(a_2)\dots h(a_n)$ $h(L) = \{h(w) : w \in L, h \text{ is a homom. } \}$
- Inverse homomorphism: $h^{-1}(L) = \{ w \in \Sigma : h(w) \in L, h : \Sigma \to \Delta^* \text{ is a homom.} \}$

Theorem 4.4. For any regular *L* and *M*, $L \cup M$ is regular.

Proof. Let L = L(E) and M = L(F). Then $L(E + F) = L \cup M$ by definition.

Theorem 4.5. If *L* is a regular language over Σ , then so is $\overline{L} = \Sigma^* \setminus L$.

Proof. Let L be recognized by a DFA

$$A = (Q, \Sigma, \delta, q_0, F).$$

Let $B = (Q, \Sigma, \delta, q_0, Q \setminus F)$. Now $L(B) = \overline{L}$.

Example:

Let \boldsymbol{L} be recognized by the DFA below

Then \overline{L} is recognized by

Question: What are the regex's for L and \overline{L}

Theorem 4.8. If *L* and *M* are regular, then so is $L \cap M$.

Proof. By DeMorgan's law $L \cap M = \overline{L} \cup \overline{M}$. We already that regular languages are closed under complement and union.

We shall shall also give a nice direct proof, the *Cartesian* construction from the e-commerce example.

Theorem 4.8. If L and M are regular, then so is $L \cap M$.

Proof. Let L be the language of

$$A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$$

and M be the language of

$$A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$$

We assume w.l.o.g. that both automata are deterministic.

We shall construct an automaton that simulates A_L and A_M in parallel, and accepts if and only if both A_L and A_M accept.

If A_L goes from state p to state s on reading a, and A_M goes from state q to state t on reading a, then $A_{L\cap M}$ will go from state (p,q) to state (s,t) on reading a.

Formally

 $A_{L\cap M} = (Q_L \times Q_M, \Sigma, \delta_{L\cap M}, (q_L, q_M), F_L \times F_M),$ where

$$\delta_{L\cap M}((p,q),a) = (\delta_L(p,a),\delta_M(q,a))$$

It will be shown in the tutorial by an induction on $\left|w\right|$ that

$$\widehat{\delta}_{L\cap M}((q_L, q_M), w) = \left(\widehat{\delta}_L(q_L, w), \widehat{\delta}_M(q_M, w)\right)$$

The claim then follows.

Question: Why?

Example: $(c) = (a) \times (b)$

(c)

Another example?

Theorem 4.10. If L and M are regular languages, then so is $L \setminus M$.

Proof. Observe that $L \setminus M = L \cap \overline{M}$. We already know that regular languages are closed under complement and intersection.

Theorem 4.11. If L is a regular language, then so is L^R .

Proof 1: Let *L* be recognized by an FA *A*. Turn *A* into an FA for L^R , by

- 1. Reversing all arcs.
- 2. Make the old start state the new sole accepting state.
- 3. Create a new start state p_0 , with $\delta(p_0, \epsilon) = F$ (the old accepting states).

Theorem 4.11. If *L* is a regular language, then so is L^R .

Proof 2: Let *L* be described by a regex *E*. We shall construct a regex E^R , such that $L(E^R) = (L(E))^R$.

We proceed by a structural induction on E.

Basis: If E is ϵ , \emptyset , or a, then $E^R = E$.

Induction:

1.
$$E = F + G$$
. Then $E^R = F^R + G^R$

- 2. E = F.G. Then $E^R = G^R.F^R$
- 3. $E = F^*$. Then $E^R = (F^R)^*$

We will show by structural induction on E on blackboard in class that

$$L(E^R) = (L(E))^R$$

Homomorphisms

A homomorphism on Σ is a function $h : \Sigma \to \Theta^*$, where Σ and Θ are alphabets.

Let $w = a_1 a_2 \cdots a_n \in \Sigma^*$. Then

$$h(w) = h(a_1)h(a_2)\cdots h(a_n)$$

and

$$h(L) = \{h(w) : w \in L\}$$

Example: Let $h : \{0, 1\}^* \to \{a, b\}^*$ be defined by h(0) = ab, and $h(1) = \epsilon$. Now h(0011) = abab.

Example: $h(L(10^*1)) = L((ab)^*)$.

Theorem 4.14: h(L) is regular, whenever L is.

Proof: E.g., $h(0^*1+(0+1)^*0) = h(0)^*h(1)+(h(0)+h(1))^*h(0)$

Let L = L(E) for a regex E. We claim that L(h(E)) = h(L).

Basis: If *E* is ϵ or \emptyset . Then h(E) = E, and L(h(E)) = L(E) = h(L(E)).

If E is a, then $L(E) = \{a\}, L(h(E)) = L(h(a)) = \{h(a)\} = h(L(E)).$

Induction:

Case 1: G = E + F. Now $L(h(E + F)) = L(h(E) + h(F)) = L(h(E)) \cup L(h(F)) = h(L(E)) \cup L(h(F)) = h(L(E)) \cup L(F)) = h(L(E + F)).$

Case 2: G = E.F. Now L(h(E.F)) = L(h(E)).L(h(F))= h(L(E)).h(L(F)) = h(L(E).L(F)) = h(L(E.F))

Case 3: $G = E^*$. Now $L(h(E^*)) = L(h(E)^*) = L(h(E))^* = h(L(E))^* = h(L(E))^* = h(L(E^*))$

Inverse Homomorphism

Let $h : \Sigma \to \Theta^*$ be a homom. Let $L \subseteq \Theta^*$, and define

$$h^{-1}(L) = \{ w \in \Sigma^* : h(w) \in L \}$$

Example: Let $h : \{a, b\} \to \{0, 1\}^*$ be defined by h(a) = 01, and h(b) = 10. If $L = L((00+1)^*)$, then $h^{-1}(L) = L((ba)^*)$.

Claim: $h(w) \in L$ if and only if $w = (ba)^n$

Proof: Let $w = (ba)^n$. Then $h(w) = (1001)^n \in L$.

Let $h(w) \in L$, and suppose $w \notin L((ba)^*)$. There are four cases to consider.

- 1. w begins with a. Then h(w) begins with 01 and $\notin L((00+1)^*)$.
- 2. w ends in b. Then h(w) ends in 10 and $\notin L((00+1)^*)$.
- 3. w = xaay. Then h(w) = z0101v and ∉ $L((00+1)^*)$.
- 4. w = xbby. Then h(w) = z1010v and ∉ $L((00+1)^*)$.

Theorem 4.16: Let $h : \Sigma \to \Theta^*$ be a homory mom., and $L \subseteq \Theta^*$ regular. Then $h^{-1}(L)$ is regular.

Proof: Let *L* be the language of $A = (Q, \Theta, \delta, q_0, F)$. We define $B = (Q, \Sigma, \gamma, q_0, F)$, where

$$\gamma(q,a) = \widehat{\delta}(q,h(a))$$

It will be shown by induction on |w| in the tutorial that $\hat{\gamma}(q_0, w) = \hat{\delta}(q_0, h(w))$

Decision Properties

We consider the following:

- 1. Converting among representations for regular languages.
- 2. Is $L = \emptyset$?
- 3. Is $w \in L$?
- 4. Do two descriptions define the same language?

From NFA's to DFA's

Suppose the ϵ -NFA has n states.

To compute ECLOSE(p) we follow at most n^2 arcs.

The DFA has 2^n states, for each state S and each $a \in \Sigma$ we compute $\delta_D(S, a)$ in n^3 steps. Grand total is $O(n^3 2^n)$ steps.

If we compute δ for reachable states only, we need to compute $\delta_D(S, a)$ only *s* times, where *s* is the number of reachable states. Grand total is $O(n^3s)$ steps.

From DFA to NFA

All we need to do is to put set brackets around the states. Total O(n) steps.

From FA to regex

We need to compute n^3 entries of size up to 4^n . Total is $O(n^3 4^n)$.

The FA is allowed to be a NFA. If we first wanted to convert the NFA to a DFA, the total time would be doubly exponential

From regex to FA's We can build an expression tree for the regex in *n* steps.

We can construct the automaton in n steps.

Eliminating ϵ -transitions takes $O(n^3)$ steps.

If you want a DFA, you might need an exponential number of steps.

Testing emptiness

 $L(A) \neq \emptyset$ for FA A if and only if a final state is reachable from the start state in A. Total $O(n^2)$ steps.

Alternatively, we can inspect a regex E and tell if $L(E) = \emptyset$. We use the following method:

E = F + G. Now L(E) is empty if and only if both L(F) and L(G) are empty.

E = F.G. Now L(E) is empty if and only if either L(F) or L(G) is empty.

 $E = F^*$. Now L(E) is never empty, since $\epsilon \in L(E)$.

 $E = \epsilon$. Now L(E) is not empty.

E = a. Now L(E) is not empty.

 $E = \emptyset$. Now L(E) is empty.

Testing membership

To test $w \in L(A)$ for DFA A, simulate A on w. If |w| = n, this takes O(n) steps.

If A is an NFA and has s states, simulating A on w takes $O(ns^2)$ steps.

If A is an ϵ -NFA and has s states, simulating A on w takes $O(ns^3)$ steps.

If L = L(E), for regex E of length s, we first convert E to an ϵ -NFA with 2s states. Then we simulate w on this machine, in $O(ns^3)$ steps.

Does $L((0+1)*0(0+1)^31*)$ contain 10101011 or 101011101?

Finiteness: How to decide if L(A) is finite for DFA A?

Equivalence and Minimization of Automata

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA, and $\{p, q\} \subseteq Q$. We define

$$p \equiv q \iff \forall w \in \Sigma^* : \widehat{\delta}(p, w) \in F \text{ iff } \widehat{\delta}(q, w) \in F$$

- If $p \equiv q$ we say that p and q are equivalent
- If $p \not\equiv q$ we say that p and q are distinguishable

IOW (in other words) p and q are distinguishable iff

 $\exists w : \hat{\delta}(p,w) \in F$ and $\hat{\delta}(q,w) \notin F$, or vice versa

Example:

 $\widehat{\delta}(C,\epsilon) \in F, \widehat{\delta}(G,\epsilon) \notin F \Rightarrow C \not\equiv G$

 $\hat{\delta}(A,01) = C \in F, \hat{\delta}(G,01) = E \notin F \Rightarrow A \not\equiv G$

What about A and E?

$$\hat{\delta}(A,\epsilon) = A \notin F, \hat{\delta}(E,\epsilon) = E \notin F$$
$$\hat{\delta}(A,1) = K = \hat{\delta}(E,1)$$
Therefore $\hat{\delta}(A,1x) = \hat{\delta}(E,1x) = \hat{\delta}(K,x)$
$$\hat{\delta}(A,00) = G = \hat{\delta}(E,00)$$
$$\hat{\delta}(A,01) = C = \hat{\delta}(E,01)$$
Conclusion: $A \equiv E$.

We can compute distinguishable pairs with the following inductive *table filling algorithm*:

Basis: If $p \in F$ and $q \notin F$, then $p \not\equiv q$.

Induction: If $\exists a \in \Sigma : \delta(p, a) \not\equiv \delta(q, a)$, then $p \not\equiv q$.

Example: Applying the table filling algo to A:

Theorem 4.20: If p and q are not distinguished by the TF-algo, then $p \equiv q$.

Proof: Suppose to the contrary that there is a *bad pair* $\{p,q\}$, s.t.

- 1. $\exists w : \hat{\delta}(p, w) \in F, \hat{\delta}(q, w) \notin F$, or vice versa.
- 2. The TF-algo does not distinguish between p and q.

Let $w = a_1 a_2 \cdots a_n$ be the shortest string that identifies a bad pair $\{p, q\}$.

Now $w \neq \epsilon$ since otherwise the TF-algo would in the basis distinguish p from q. Thus $n \geq 1$. Consider states $r = \delta(p, a_1)$ and $s = \delta(q, a_1)$. Now $\{r, s\}$ cannot be a bad pair since $\{r, s\}$ would be indentified by a string shorter than w. Therefore, the TF-algo must have discovered that r and s are distinguishable.

But then the TF-algo would distinguish p from q in the inductive part.

Thus there are no bad pairs and the theorem is true.

Testing Equivalence of Regular Languages

Let L and M be reg langs (each given in some form).

To test if L = M

- 1. Convert both L and M to DFA's.
- Imagine a DFA that is the union of the two DFA's (never mind there are two start states)
- 3. If TF-algo says that the two start states are distinguishable, then $L \neq M$, otherwise L = M.

Example:

We can "see" that both DFA accept $L(\epsilon + (0+1)^*0)$. The result of the TF-algo is

Therefore the two automata are equivalent.

Minimization of DFA's

We can use the TF-algo to minimize a DFA by merging all equivalent states. IOW, replace each state p by $p/_{\equiv}$.

Example: The DFA on slide 119 has equivalence classes $\{\{A, E\}, \{B, H\}, \{C\}, \{D, K\}, \{G\}\}$.

The "union" DFA on slide 125 has equivalence classes $\{\{A, C, D\}, \{B, E\}\}$.

Note: In order for $p/_{\equiv}$ to be an *equivalence* class, the relation \equiv has to be an *equivalence* relation (reflexive, symmetric, and transitive).

Theorem 4.23: If $p \equiv q$ and $q \equiv r$, then $p \equiv r$.

Proof: Suppose to the contrary that $p \not\equiv r$. Then $\exists w$ such that $\hat{\delta}(p, w) \in F$ and $\hat{\delta}(r, w) \notin F$, or vice versa.

OTH, $\hat{\delta}(q, w)$ is either accpeting or not.

Case 1: $\hat{\delta}(q, w)$ is accepting. Then $q \not\equiv r$.

Case 2: $\hat{\delta}(q, w)$ is not accepting. Then $p \neq q$.

The vice versa case is proved symmetrically

Therefore it must be that $p \equiv r$.

Assume A has no inaccessible states.

To minimize a DFA $A = (Q, \Sigma, \delta, q_0, F)$ construct a DFA $B = (Q/_{\equiv}, \Sigma, \gamma, q_0/_{\equiv}, F/_{\equiv})$, where

$$\gamma(p/_{\equiv},a) = \delta(p,a)/_{\equiv}$$

In order for ${\cal B}$ to be well defined we have to show that

If
$$p \equiv q$$
 then $\delta(p, a) \equiv \delta(q, a)$

If $\delta(p, a) \not\equiv \delta(q, a)$, then the TF-algo would conclude $p \not\equiv q$, so B is indeed well defined. Note also that $F/_{\equiv}$ contains all and only the accepting states of A.

Example: We can minimize

to obtain

NOTE: We cannot apply the TF-algo to NFA's.

For example, to minimize

we simply remove state C.

However, $A \not\equiv C$.

Why the Minimized DFA Can't Be Beaten

Let B be the minimized DFA obtained by applying the TF-algo to DFA A.

We already know that L(A) = L(B).

What if there existed a DFA C, with L(C) = L(B) and fewer states than B?

Then run the TF-algo on B "union" C.

Since L(B) = L(C) we have $q_0^B \equiv q_0^C$.

Also, $\delta(q_0^B, a) \equiv \delta(q_0^C, a)$, for any a.

Claim: For each state p in B there is at least one state q in C, s.t. $p \equiv q$.

Proof of claim: There are no inaccessible states, so $p = \hat{\delta}(q_0^B, a_1 a_2 \cdots a_k)$, for some string $a_1 a_2 \cdots a_k$. Now $q = \hat{\delta}(q_0^C, a_1 a_2 \cdots a_k)$, and $p \equiv q$.

Since *C* has fewer states than *B*, there must be two states *r* and *s* of *B* such that $r \equiv t \equiv s$, for some state *t* of *C*. But then $r \equiv s$ (why?) which is a contradiction, since *B* was constructed by the TF-algo.