
Algebraic Laws for languages

• L ∪M = M ∪ L.

Union is commutative.

• (L ∪M) ∪N = L ∪ (M ∪N).

Union is associative.

• (LM)N = L(MN).

Concatenation is associative

Note: Concatenation is not commutative, i.e.,

there are L and M such that LM 6= ML.

76

jiang
Text Box
It would be very useful if we could simplify regular languages/expressions and determine their properties.



• ∅ ∪ L = L ∪ ∅ = L.

∅ is identity for union.

• {ε}L = L{ε} = L.

{ε} is left and right identity for concatenation.

• ∅L = L∅ = ∅.

∅ is left and right annihilator for concatenation.
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• L(M ∪N) = LM ∪ LN .

Concatenation is left distributive over union.

• (M ∪N)L = ML ∪NL.

Concatenation is right distributive over union.

• L ∪ L = L.

Union is idempotent.

• ∅∗ = {ε}, {ε}∗ = {ε}.

• L+ = LL∗ = L∗L, L∗ = L+ ∪ {ε}
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• (L∗)∗ = L∗. Closure is idempotent

Proof:

w ∈ (L∗)∗ ⇐⇒ w ∈
∞⋃
i=0

( ∞⋃
j=0

Lj
)i

⇐⇒ ∃k,m ∈ N : w ∈ (L

m

)

k

⇐⇒ ∃p ∈ N : w ∈ Lp

⇐⇒ w ∈
∞⋃
i=0

Li

⇐⇒ w ∈ L∗ �
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Claim. (L  U  M)* = (L*M*)*.

Proof. It is easy to see that L U M is contained in L*M*, since L is contained in L* which is contained in L*M*, and similarly M is contained in L*M*. Thus, the LHS is contained in the RHS.

To see that the RHS is also contained in the LHS, take any w in (L*M*)*. Then, w = w1 w2 ... wn, where each substring wi is an element of L*M* and can thus be written as xi1 ... xikyi1 ... yih, where each sub-substring xij is an element of L and each yij an element of M. Thus, w is the concatenation of a sequence of strings, each of which is an element of L U M. Therefore, it is a string in (L U M)*.
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w = w1 ... wk  with
w1  in Lm1, ..., wk in Lmk
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Algebraic Laws for regex’s

Evidently e.g. L((0 + 1)1) = L(01 + 11)

Also e.g. L((00 + 101)11) = L(0011 + 10111).

More generally

L((E + F )G) = L(EG+ FG)

for any regex’s E, F , and G.

• How do we verify that a general identity like

above is true?

1. Prove it by hand.

2. Let the computer prove it.
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The above language laws all concern regex operations and can also be written as, e.g,  L + M = M + L  and   L(M+N) = LM + LN. 
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In Chapter 4 we will learn how to test auto-

matically if E = F , for any concrete regex’s

E and F .

We want to test general identities, such as

E + F = F + E, for any regex’s E and F.

Method:

1. “Freeze” E to a1, and F to a2

2. Test automatically if the frozen identity is

true, e.g. if L(a1 + a2) = L(a2 + a1)

Question: Does this always work?
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Answer: Yes, as long as the identities use only

plus, dot, and star.

Let’s denote a generalized regex, such as (E + F)E
by

E(E,F)

Now we can for instance make the substitution

S = {E/0,F/11} to obtain

S (E(E,F)) = (0 + 11)0

82

jiang
Text Box
i.e. reg expr of language variables



Theorem 3.13: Fix a “freezing” substitution

♠ = {E1/a1, E2/a2, . . . , Em/am}.

Let E(E1, E2, . . . , Em) be a generalized regex.

Then for any regex’s E1, E2, . . . , Em,

w ∈ L(E(E1, E2, . . . , Em))

if and only if there are strings wi ∈ L(Ei), s.t.

w = w
j1
w

j2
· · ·w

jk

and

aj1aj2 · · · ajk ∈ L(E(a1,a2, . . . ,am))
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Informally, to obtain w, we can first pick aj1 aj2 ... ajk in L(E(a1,a2,...,am)) and then substitute for each aji any string from L(Eji).
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For example, suppose E(E1,E2) = (E1 + E2)*. Then string w is in L((E1+E2)*) iff w = w1 w2 ... wk such that aj1 aj2 ... ajk is in L((a1 + a2)*) and 
wi is in L(Eji).
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For example: Suppose the alphabet is {1,2}.
Let E(E1, E2) be (E1 + E2)E1, and let E1 be 1,

and E2 be 2. Then

w ∈ L(E(E1, E2)) = L((E1 + E2)E1) =

({1} ∪ {2}){1} = {11, 21}

if and only if

∃w1 ∈ L(E1) = {1}, ∃w2 ∈ L(E2) = {2} : w = w
j1
w

j2

and

aj1aj2 ∈ L(E(a1,a2))) = L((a1+a2)a1) = {a1a1, a2a1}

if and only if

j1 = j2 = 1, or j1 = 1, and j2 = 2
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Another example, suppose E1 = 1* and E2 = 2*. Then
L0 = L((E1 + E2)E1) = L((1* + 2*)1*) = L(1* + 2*1*). 
L((a1 + a2)a1) = {a1 a1 + a2 a1}.

String w is in L0 iff there exist w1 in L(Ej1) and w2 in L(Ej2) such that w = w1 w2 and aj1 aj2 is in {a1 a1 + a2 a1}.
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In other words, w1 is in 
L(E1) U L(E2) = {1,2} and w2 is in L(E1) = {2}.
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Proof of Theorem 3.13: We do a structural

induction of E.

Basis: If E = ε, the frozen expression is also ε.

If E = ∅, the frozen expression is also ∅.

If E = a, the frozen expression is also a. Now

w ∈ L(E) if and only if there is u ∈ L(a), s.t.

w = u and u is in the language of the frozen

expression, i.e. u ∈ {a}.
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Induction:

Case 1: E = F + G.

Then ♠(E) = ♠(F) +♠(G), and
L(♠(E)) = L(♠(F)) ∪ L(♠(G))

Let E and and F be regex’s. Then w ∈ L(E + F )
if and only if w ∈ L(E) or w ∈ L(F ), if and only
if a1 ∈ L(♠(F)) or a2 ∈ L(♠(G)), if and only if
a1 ∈ ♠(E), or a2 ∈ ♠(E).

Case 2: E = F.G.

Then ♠(E) = ♠(F).♠(G), and
L(♠(E)) = L(♠(F)).L(♠(G))

Let E and and F be regex’s. Then w ∈ L(E.F )
if and only if w = w1w2, w1 ∈ L(E) and w2 ∈ L(F ),
and a1a2 ∈ L(♠(F)).L(♠(G)) = ♠(E)

Case 3: E = F∗.

Prove this case at home.
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Also, a string u is in E(a1, ..., am) iff it is in F(a1, ..., am) or in  G(a1, ..., am). See the book for the rest of the proof using the I.H.
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Also, a string u is in E(a1, ..., am) iff u = u1u2 where u1 is in F(a1, ..., am) and u2 is in G(a1, ..., am). The rest is similar to the above case.



Examples:

To prove (L+M)∗ = (L∗M∗)∗ it is enough to

determine if (a1+a2)∗ is equivalent to (a∗1a
∗
2)∗

To verify L∗ = L∗L∗ test if a∗1 is equivalent to

a∗1a
∗
1.

Question: Does L+ML = (L+M)L hold?
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To prove (a1 + a2)* == (a1* a2*)*, we first notice that, L((a1* a2*)*) is a subset of L((a1 + a2)*).

Since L(a1 + a2) is a subset of L(a1* a2*), L((a1 + a2)*) is a subset of L((a1* a2*)*).
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Theorem 3.14: E(E1, . . . , Em) = F(E1, . . . , Em)⇔
L(♠(E)) = L(♠(F))

Proof:

(Only if direction) E(E1, . . . , Em) = F(E1, . . . , Em)

means that L(E(E1, . . . , Em)) = L(F(E1, . . . , Em))

for any concrete regex’s E1, . . . , Em. In partic-

ular then L(♠(E)) = L(♠(F))

(If direction) Let E1, . . . , Em be concrete regex’s.

Suppose L(♠(E)) = L(♠(F)). Then by Theo-

rem 3.13,

w ∈ L(E(E1, . . . Em))⇔

∃wi ∈ L(Ei), w = wj1 · · ·wjm, aj1 · · · ajm ∈ L(♠(E))⇔

∃wi ∈ L(Ei), w = wj1 · · ·wjm, aj1 · · · ajm ∈ L(♠(F))⇔

w ∈ L(F(E1, . . . Em))
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Properties of Regular Languages

• Pumping Lemma. Every regular language

satisfies the pumping lemma. If somebody

presents you with fake regular language, use

the pumping lemma to show a contradiction.

• Closure properties. Building automata from

components through operations, e.g. given L

and M we can build an automaton for L ∩M .

• Decision properties. Computational analysis

of automata, e.g. are two automata equiva-

lent.

• Minimization techniques. We can save money

since we can build smaller machines.
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The Pumping Lemma Informally

Suppose L01 = {0n1n : n ≥ 1} were regular.

Then it would be recognized by some DFA A,

with, say, k states.

Let A read 0k. On the way it will travel as

follows:

ε p0

0 p1

00 p2

. . . . . .

0k pk

⇒ ∃i < j : pi = pj Call this state q.
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Now you can fool A:

If δ̂(q,1i) ∈ F the machine will foolishly ac-

cept 0j1i.

If δ̂(q,1i) /∈ F the machine will foolishly re-

ject 0i1i.

Therefore L01 cannot be regular.

• Let’s generalize the above reasoning.
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Theorem 4.1.

The Pumping Lemma for Regular Languages.

Let L be regular.

Then ∃n,∀w ∈ L : |w| ≥ n⇒ w = xyz such that

1. y 6= ε

2. |xy| ≤ n

3. ∀k ≥ 0, xykz ∈ L
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Proof: Suppose L is regular

The L is recognized by some DFA A with, say,

n states.

Let w = a1a2 . . . am ∈ L, m >= n.

Let pi = δ̂(q0, a1a2 · · · ai).

⇒ ∃i < j : pi = pj,    j <= n
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Now w = xyz, where

1. x = a1a2 · · · ai

2. y = ai+1ai+2 · · · aj

3. z = aj+1aj+2 . . . am

Start
pip0

a1 . . . ai

ai+1 . . . aj

aj+1 . . . am
x = z =

y =

Evidently xykz ∈ L, for any k ≥ 0. Q.E.D.
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Example: Let Leq be the language of strings

with equal number of zero’s and one’s.

Suppose Leq is regular. Then w = 0n1n ∈ L.

By the pumping lemma w = xyz, |xy| ≤ n,

y 6= ε and xykz ∈ Leq

w = 000 · · ·︸ ︷︷ ︸
x

· · ·0︸ ︷︷ ︸
y

0111 · · ·11︸ ︷︷ ︸
z

In particular, xz ∈ Leq, but xz has fewer 0’s

than 1’s.
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L = {0i 1j | i > j}
Consider string w = 0n+1 1n.
By the pumping lemma, we can partition w as w = xyz such that |xy| <= n, y <> e, and xykz in L.
But xz = 0n+1 - |y| 1n is not in L.
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Suppose Lpr = {1p : p is prime } were regular.

Let n be given by the pumping lemma.

Choose a prime p ≥ n+ 2.

w =

p︷ ︸︸ ︷
111 · · ·︸ ︷︷ ︸

x

· · ·1︸ ︷︷ ︸
y

|y|=m

1111 · · ·11︸ ︷︷ ︸
z

Now xyp−mz ∈ Lpr

|xyp−mz| = |xz|+ (p−m)|y| =
p−m+ (p−m)m = (1 +m)(p−m)
which is not prime unless one of the factors
is 1.

• y 6= ε⇒ 1 +m > 1

• m = |y| ≤ |xy| ≤ n, p ≥ n+ 2
⇒ p−m ≥ n+ 2− n = 2.
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