Equivalence of DFA and NFA

- NFA's are usually easier to "program" in.
- Surprisingly, for any NFA N there is a DFA D, such that L(D) = L(N), and vice versa.
- This involves the *subset construction*, an important example how an automaton *B* can be generically constructed from another automaton *A*.
- Given an NFA

$$N = (Q_N, \Sigma, \delta_N, q_0, F_N)$$

we will construct a DFA

$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$

such that

$$L(D) = L(N)$$

The details of the subset construction:

•
$$Q_D = \{S : S \subseteq Q_N\}.$$

Note: $|Q_D| = 2^{|Q_N|}$, although most states in Q_D are likely to be garbage.

•
$$F_D = \{ S \subseteq Q_N : S \cap F_N \neq \emptyset \}$$

• For every $S \subseteq Q_N$ and $a \in \Sigma$,

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

Let's construct δ_D from the NFA on slide 27

	0	1
Ø	Ø	Ø
$\rightarrow \{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
$\{q_1\}$	Ø	$\{q_2\}$
$\star \{q_2\}$	Ø	Ø
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\star \{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
$\star \{q_1, q_2\}$	Ø	$\{q_2\}$
$\star \{q_0, q_1, q_2\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

Note: The states of D correspond to subsets of states of N, but we could have denoted the states of D by, say, A - F just as well.

	0	1
A	A	A
$\rightarrow B$	E	B
C	A	D
$\star D$	A	A
E	E	F
$\star F$	E	B
$\star G$	A	D
$\star H$	E	F

We can often avoid the exponential blow-up by constructing the transition table for D only for accessible states S as follows:

Basis: $S = \{q_0\}$ is accessible in D

Induction: If state *S* is accessible, so are the states in $\bigcup_{a \in \Sigma} \{\delta_D(S, a)\}$

Example: The "subset" DFA with accessible states only.

Theorem 2.11: Let D be the "subset" DFA of an NFA N. Then L(D) = L(N).

Proof: First we show by an induction on |w| that

$$\widehat{\delta}_D(\{q_0\}, w) = \widehat{\delta}_N(q_0, w)$$

Basis: $w = \epsilon$. The claim follows from def.

Induction:

$$\hat{\delta}_D(\{q_0\}, xa) \stackrel{\text{def}}{=} \delta_D(\hat{\delta}_D(\{q_0\}, x), a)$$
$$\stackrel{\text{i.h.}}{=} \delta_D(\hat{\delta}_N(q_0, x), a)$$
$$\stackrel{\text{cst}}{=} \bigcup_{p \in \hat{\delta}_N(q_0, x)} \delta_N(p, a)$$

$$\stackrel{\text{def}}{=} \hat{\delta}_N(q_0, xa)$$

Now (why?) it follows that L(D) = L(N).

Theorem 2.12: A language L is accepted by some DFA if and only if L is accepted by some NFA.

Proof: The "if" part is Theorem 2.11.

For the "only if" part we note that any DFA can be converted to an equivalent NFA by modifying the δ_D to δ_N by the rule

• If
$$\delta_D(q, a) = p$$
, then $\delta_N(q, a) = \{p\}$.

By induction on |w| it will be shown in the tutorial that if $\hat{\delta}_D(q_0, w) = p$, then $\hat{\delta}_N(q_0, w) = \{p\}$.

The claim of the theorem follows.

How do you convert an NFA to C/C++ code?

Exponential Blow-Up

There is an NFA N with n + 1 states that has no equivalent DFA with fewer than 2^n states

$$L(N) = \{x \cdot 1 c_2 c_3 \cdots c_n : x \in \{0, 1\}^*, c_i \in \{0, 1\}\}$$

Suppose an equivalent DFA D with fewer than 2^n states exists.

D must remember the last n symbols it has read.

There are 2^n bitsequences $a_1a_2\cdots a_n$

$$\exists q, a_1 a_2 \cdots a_n, b_1 b_2 \cdots b_n : q = \widehat{\delta}_{D}(q_0, a_1 a_2 \cdots a_n), q = \widehat{\delta}_{D}(q_0, b_1 b_2 \cdots b_n), a_1 a_2 \cdots a_n \neq b_1 b_2 \cdots b_n$$

Case 1:

 $1a_2 \cdots a_n \\ 0b_2 \cdots b_n$

Then q has to be both an accepting and a nonaccepting state.

Case 2:

$$a_1 \cdots a_{i-1} \mathbf{1} a_{i+1} \cdots a_n$$

$$b_1 \cdots b_{i-1} \mathbf{0} b_{i+1} \cdots b_n$$

Now
$$\hat{\delta}_{D}(q_{0}, a_{1} \cdots a_{i-1} 1 a_{i+1} \cdots a_{n} 0^{i-1}) = \hat{\delta}_{D}(q_{0}, b_{1} \cdots b_{i-1} 0 b_{i+1} \cdots b_{n} 0^{i-1})$$

and $\hat{\delta}_{D}(q_{0}, a_{1} \cdots a_{i-1} 1 a_{i+1} \cdots a_{n} 0^{i-1}) \in F_{D}$

$$\widehat{\delta}_{\mathrm{D}}(q_0, b_1 \cdots b_{i-1} 0 b_{i+1} \cdots b_n 0^{i-1}) \notin F_D$$

FA's with Epsilon-Transitions

An ϵ -NFA accepting decimal numbers consisting of:

- 1. An optional + or sign
- 2. A string of digits
- 3. a decimal point
- 4. another string of digits
- One of the strings (2) are (4) are optional

E.g.	-12.5
	+10.00
	5.
	6

Example:

 ϵ -NFA accepting the set of keywords {ebay, web}

We can have an ε -moves for each keyword.

An ϵ -NFA is a quintuple $(Q, \Sigma, \delta, q_0, F)$ where δ is a function from $Q \times (\Sigma \cup {\epsilon})$ to the powerset of Q.

Example: The ϵ -NFA from the previous slide

 $E = (\{q_0, q_1, \dots, q_5\}, \{., +, -, 0, 1, \dots, 9\} \delta, q_0, \{q_5\})$

where the transition table for δ is

	ϵ	+,-	■	0, , 9
$\rightarrow q_0$	$\left\{q_{1}\right\}$	$\{q_1\}$	Ø	Ø
q_{1}	Ø	Ø	$\{q_2\}$	$\{q_1, q_4\}$
q_2	Ø	Ø	Ø	$\{q_{3}\}$
q_{3}	$\{q_{5}\}$	Ø	Ø	$\{q_{3}\}$
q_{4}	Ø	Ø	$\{q_{3}\}$	Ø
$\star q_5$	Ø	Ø	Ø	Ø

We close a state by adding all states reachable by a sequence $\epsilon \epsilon \cdots \epsilon$

Inductive definition of ECLOSE(q)

Basis:

 $q \in \mathsf{ECLOSE}(q)$

Induction:

 $p \in \mathsf{ECLOSE}(q) \text{ and } r \in \delta(p, \epsilon) \Rightarrow$ $r \in \mathsf{ECLOSE}(q)$

Example of ϵ -closure

For instance,

 $ECLOSE(1) = \{1, 2, 3, 4, 6\}$

• Inductive definition of $\widehat{\delta}$ for $\epsilon\text{-NFA's}$

Basis:

$$\hat{\delta}(q,\epsilon) = \mathsf{ECLOSE}(q)$$

Induction:

$$\widehat{\delta}(q, xa) = \bigcup_{p \in \delta(\widehat{\delta}(q, x), a)} \text{ECLOSE}(p)$$

where $\delta(\widehat{\delta}(q, x), a) = \bigcup_{\substack{r \in \widehat{\delta}(q, x)}} \delta(r, a)$

Let's compute on the blackboard in class $\hat{\delta}(q_0, 5.6)$ for the NFA on slide 43 $\hat{\delta}(q_0, \varepsilon) = \text{ECLOSE}(q_0) = \{q_0, q_1\}$ $\hat{\delta}(q_0, 5) = \text{ECLOSE}(\{q_1, q_4\}) = \{q_1, q_4\}, \text{ because } \delta(q_0, 5) \cup \delta(q_1, 5) = \{q_1, q_4\}$ $\hat{\delta}(q_0, 5.) = \text{ECLOSE}(\{q_2, q_3\}) = \{q_2, q_3, q_5\}$ $\hat{\delta}(q_0, 5.6) = \text{ECLOSE}(\{q_3\}) = \{q_3, q_5\}$ Given an ϵ -NFA

$$E = (Q_E, \Sigma, \delta_E, q_0, F_E)$$

we will construct a DFA

$$D = (Q_D, \Sigma, \delta_D, q_D, F_D)$$

such that

$$L(D) = L(E)$$

Details of the construction:

- $Q_D = \{S : S \subseteq Q_E \text{ and } S = \mathsf{ECLOSE}(S)\}$
- $q_D = \text{ECLOSE}(q_0)$
- $F_D = \{S : S \in Q_D \text{ and } S \cap F_E \neq \emptyset\}$

•
$$\delta_D(S, a) = \bigcup \{ \mathsf{ECLOSE}(p) : p \in \delta_{\mathsf{E}}(t, a) \text{ for some } t \in S \}$$

Example: ϵ -NFA E

DFA D corresponding to ${\cal E}$

Theorem 2.22: A language L is accepted by some ϵ -NFA E if and only if L is accepted by some DFA.

Proof: We use *D* constructed as above and show by induction that $\hat{\delta}_D(q_D, w) = \hat{\delta}_E(q_0, w)$

Basis:
$$\hat{\delta}_E(q_0, \epsilon) = \text{ECLOSE}(q_0) = q_D = \hat{\delta}(q_D, \epsilon)$$

Induction:

$$\hat{\delta}_{E}(q_{0}, xa) \stackrel{\text{DEF}}{=} \bigcup_{p \in \delta_{E}(\hat{\delta}_{E}(q_{0}, x), a)} \text{ECLOSE}(p)$$

$$\stackrel{\text{I.H.}}{=} \bigcup_{p \in \delta_{E}(\hat{\delta}_{D}(q_{D}, x), a)} \text{ECLOSE}(p)$$

$$\stackrel{\text{CST}}{=} \delta_{D}(\hat{\delta}_{D}(q_{D}, x), a)$$

$$\stackrel{\text{DEF}}{=} \widehat{\delta}_D(q_D, xa)$$

Regular expressions

An FA (NFA or DFA) is a "blueprint" for contructing a machine recognizing a regular language.

A *regular expression* is a "user-friendly," declarative way of describing a regular language.

Example: $01^* + 10^*$

Regular expressions are used in e.g.

1. UNIX grep command

grep PATTERN FILE

- UNIX Lex (Lexical analyzer generator) and Flex (Fast Lex) tools.
- 3. Text/email mining (e.g., for HomeUnion)

Operations on languages

Union:

 $L \cup M = \{ w : w \in L \text{ or } w \in M \}$

Concatenation:

 $L.M = \{w : w = xy, x \in L, y \in M\}$

Powers:

$$L^0 = \{\epsilon\}, \ L^1 = L, \ L^{k+1} = L.L^k$$

Kleene Closure:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Question: What are \emptyset^0 , \emptyset^i , and \emptyset^*

Question: What is $\{0^2, 0^3\}^*$?

Building regex's

Inductive definition of regex's:

Basis: ϵ is a regex and \emptyset is a regex. $L(\epsilon) = \{\epsilon\}$, and $L(\emptyset) = \emptyset$.

If $a \in \Sigma$, then a is a regex. $L(a) = \{a\}.$

Induction:

If E is a regex's, then (E) is a regex. L((E)) = L(E).

If E and F are regex's, then E + F is a regex. $L(E + F) = L(E) \cup L(F)$.

If E and F are regex's, then E.F is a regex. L(E.F) = L(E).L(F).

If E is a regex's, then E^* is a regex. $L(E^*) = (L(E))^*$. Example: Regex for

 $L = \{w \in \{0,1\}^* : 0 \text{ and } 1 \text{ alternate in } w\}$

$$(01)^* + (10)^* + 0(10)^* + 1(01)^*$$

or, equivalently,

$$(\epsilon+1)(01)^*(\epsilon+0)$$

Order of precedence for operators:

- 1. Star
- 2. Dot
- 3. Plus

Example: $01^* + 1$ is grouped $(0(1^*)) + 1$

56

Ex. Regex's for $L_1 = \{ w \mid w \in \{0,1\}^*, w \text{ contains no consecutive 0's} \}$ $L_2 = \{ w \mid w \in \{0,1\}^*, \text{ the number of 0's in } w \text{ is even} \}.$

Equivalence of FA's and regex's

We have already shown that DFA's, NFA's, and ϵ -NFA's all are equivalent.

To show FA's equivalent to regex's we need to establish that

- 1. For every DFA A we can find (construct, in this case) a regex R, s.t. L(R) = L(A).
- 2. For every regex R there is an ϵ -NFA A, s.t. L(A) = L(R).

Theorem 3.4: For every DFA $A = (Q, \Sigma, \delta, q_0, F)$ there is a regex R, s.t. L(R) = L(A).

Proof: Let the states of A be $\{1, 2, ..., n\}$, with 1 being the start state.

• Let $R_{ij}^{(k)}$ be a regex describing the set of labels of all paths in A from state i to state j going through intermediate states $\{1, \ldots, k\}$ only. Note that, i and j don't have to be in $\{1, \ldots, k\}$.

 $R_{ij}^{(k)}$ will be defined inductively. Note that $L\left(\bigoplus_{j\in F}R_{1j}{}^{(n)}\right)=L(A)$

Basis: k = 0, i.e. no intermediate states.

• Case 1: $i \neq j$ i.e., arc i -> j

$$R_{ij}^{(0)} = \bigoplus_{\{a \in \Sigma : \delta(i,a) = j\}} a$$

• Case 2: i = j i.e., $\operatorname{arc} i \rightarrow i \text{ or } \varepsilon$

$$R_{ii}^{(0)} = \left(\bigoplus_{\{a \in \Sigma : \delta(i,a) = i\}} a\right) + \epsilon$$

Induction:

Example: Let's find R for A, where $L(A) = \{x 0 y : x \in \{1\}^* \text{ and } y \in \{0, 1\}^*\}$

$R_{11}^{(0)}$	$\epsilon + 1$
$R_{12}^{(0)}$	0
$R_{21}^{(0)}$	Ø
$R_{22}^{(0)}$	$\epsilon + 0 + 1$

We will need the following *simplification rules:*

- $(\epsilon + R)^* = R^*$ $(\epsilon + R)R^* = R^*$
- $R + RS^* = RS^*$ $\epsilon + R + R^* = R^*$
- $\emptyset + R = R + \emptyset = R$ (Identity)

$R_{11}^{(0)}$	$\epsilon + 1$
$R_{12}^{(0)}$	0
$R_{21}^{(0)}$	Ø
$R_{22}^{(0)}$	$\epsilon + 0 + 1$

$$R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)} \left(R_{11}^{(0)} \right)^* R_{1j}^{(0)}$$

	By direct substitution	Simplified
$R_{11}^{(1)}$	$\epsilon + 1 + (\epsilon + 1)(\epsilon + 1)^*(\epsilon + 1)$	1*
$R_{12}^{(1)}$	$0+(\epsilon+1)(\epsilon+1)^*0$	1*0
$R_{21}^{(1)}$	$\emptyset + \emptyset(\epsilon+1)^*(\epsilon+1)$	Ø
$R_{22}^{(1)}$	$\epsilon + 0 + 1 + \emptyset(\epsilon + 1)^* 0$	$\epsilon + 0 + 1$

	Simplified
$R_{11}^{(1)}$	1*
$R_{12}^{(1)}$	1*0
$R_{21}^{(1)}$	Ø
$R_{22}^{(1)}$	$\epsilon + 0 + 1$

$$R_{ij}^{(2)} = R_{ij}^{(1)} + R_{i2}^{(1)} \left(R_{22}^{(1)} \right)^* R_{2j}^{(1)}$$

	By direct substitution		
$R_{11}^{(2)}$	$1^* + 1^*0(\epsilon + 0 + 1)^* \emptyset$		
$R_{12}^{(2)}$	$1^*0 + 1^*0(\epsilon + 0 + 1)^*(\epsilon + 0 + 1)$		
$R_{21}^{(2)}$	$\emptyset + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^* \emptyset$		
$R_{22}^{(2)}$	$\epsilon + 0 + 1 + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*(\epsilon + 0 + 1)$		
	Simplified $R_{11}^{(2)}$ 1* $R_{12}^{(2)}$ 1*0(0+1)* (0)		
	$R_{21}^{(2)} \mid \emptyset$		
	$R_{22}^{(2)} \mid (0+1)^*$		

The final regex for A is

$$R_{12}^{(2)} = 1^* 0(0+1)^*$$

Observations

There are n^3 expressions $R_{ij}^{(k)}$

Each inductive step grows the expression 4-fold

 $R_{ij}^{(n)}$ could have size 4^n

For all $\{i, j\} \subseteq \{1, ..., n\}$, $R_{ij}^{(k)}$ uses $R_{kk}^{(k-1)}$ so we have to write n^2 times the regex $R_{kk}^{(k-1)}$ but most of them can be removed by annihilation!

We need a more efficient approach: the state elimination technique

The state elimination technique

Let's label the edges with regex's instead of symbols

Now, let's eliminate state s.

For each accepting state q eliminate from the original automaton all states exept q_0 and q.

For each $q \in F$ we'll be left with an A_q that looks like

that corresponds to the regex $E_q = (R + SU^*T)^*SU^*$

or with A_q looking like

corresponding to the regex $E_q = R^*$

• The final expression is

$$\bigoplus_{q \in F} E_q$$

Note that the algorithm also works for NFAs and ϵ -NFAs.

Example: A, where $L(A) = \{W : w = x1b, \text{ or } w = x1bc, x \in \{0, 1\}^*, \{b, c\} \subseteq \{0, 1\}\}$

We turn this into an automaton with regex labels

Let's eliminate state B

Then we eliminate state C and obtain \mathcal{A}_D

with regex $(0+1)^*1(0+1)(0+1)$

From

we can eliminate D to obtain \mathcal{A}_C

with regex $(0+1)^*1(0+1)$

• The final expression is the sum of the previous two regex's:

 $(0+1)^*1(0+1)(0+1) + (0+1)^*1(0+1)$

From regex's to ϵ -NFA's

Theorem 3.7: For every regex R we can construct an ϵ -NFA A, s.t. L(A) = L(R).

Proof: By structural induction:

Basis: Automata for ϵ , \emptyset , and a.

Induction: Automata for R + S, RS, and R^*

Example: We convert $(0+1)^*1(0+1)$

