Equivalence of DFA and NFA

e NFA's are usually easier to “program” in.

e Surprisingly, for any NFA N thereisa DFA D,
such that L(D) = L(N), and vice versa.

e [ hisinvolves the subset construction, an im-
portant example how an automaton B can be
generically constructed from another automa-
ton A.

e Given an NFA

N = (QNazacsN?CIO)FN)
we will construct a DFA

D = (QD, 275D7 {qO}ﬂFD)
such that

L(D) = L(N)
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T he details of the subset construction:

o Qp={5:5CQn}

Note: |Qp| = 2/9N~| although most states in
Qp are likely to be garbage.

o 'p={SCQN:SNFyF*0D}

e Forevery SCQn and a € 2,

5D(S7 CL) — U 5N(p7 CL)
peS
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Let's construct ép from the NFA on slide 27

O 1
00 )
— {q0} | {90,91} | {90}
{q1} ]| @ {qo}
*{qo} || @ )

{go0,q1} || {90,491} | {90, a2}
*{q0,92} || {90,491} | {q0}
*{q1,q2} | 0 {g2}

*{q0,91,92} || {90,991} | {90, 92}
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Note: The states of D correspond to subsets
of states of N, but we could have denoted the
states of D by, say, A — F' just as well.

O |1

Al Al A

— B | E | B
Cl|lA|D
*D || Al A
F|FE|F
xF | E | B
*G || A| D
*xH | E | F
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We can often avoid the exponential blow-up
by constructing the transition table for D only
for accessible states S as follows:

Basis: S = {qp} is accessible in D

Induction: If state S is accessible, so are the
states in Uges{dp (S, a)

Example: The “subset” DFA with accessible
states only.

1 0

Start m m
gt
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Theorem 2.11: Let D be the “subset” DFA
of an NFA N. Then L(D) = L(N).

Proof: First we show by an induction on |w|
that

op({go}, w) = dn (g0, w)

Basis: w = €. The claim follows from def.
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Induction:

Sp({ao}, za) € 5p(5p({a0}, z), a)

in. .
= 5p(6n(q0,2), a)

t
= J  on(pa)
pESN(QO,fU)

def =
= dn(qo, za)

Now (why?) it follows that L(D) = L(N).
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Theorem 2.12: A language L is accepted by
some DFA if and only if L is accepted by some
NFA.

Proof: The "“if" partis Theorem 2.11.

For the “only if” part we note that any DFA
can be converted to an equivalent NFA by mod-
ifying the 6p to o) by the rule

e If 5p(q,a) = p, then dx5(q,a) = {p}.

By induction on |w| it will be shown in the
tutorial that if §p(qg, w) = p, then dx(qg, w) =

{r}.

The claim of the theorem follows.

How do you convert an NFA to C/C++ code”. 20
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Exponential Blow-Up

There is an NFA N with n+ 1 states that has
no equivalent DFA with fewer than 2™ states

0,1

Sta?l °:_1,QL1,

L(N) ={zlcocz---cp:xz € {0,1}" ¢; € {0,1}}

Suppose an equivalent DFA D with fewer than
2" states exists.

D must remember the last n symbols it has
read.

There are 2™ bitsequences aias---an

Jq,a1a2---an,brby---bn i qg= p(qo,a1az - an),
q= p(qo, b1b2 - - - bn),
a1a2"'an7ﬁb1b2"‘bn
41
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Case 1:

1a2...an
Obs - - - by

Then g has to be both an accepting and
nonaccepting state.

Case 2:

bl"'bi—lobz’—l-l"'bn

Now 6p(qo, a1+ aj—11a;41 - an0'" 1) =
(g, b1 - b;_10b; 41 -+ - b0~ 1)

and (g0, a1 - aj—1la;41---an0"1) € Fp

0p(qo, b1 -+ - bj—10bj41---bn0"" 1) & Fpy
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FA’s with Epsilon-Transitions

An e-NFA accepting decimal numbers consist-
ing of:

1. An optional 4+ or - sign

2. A string of digits

_ _ E.g. -12.5
3. a decimal point +10.0(

4. another string of digits

One of the strings (2) are (4) are optional

01,..9 01,..,9
)
@ (")
01,..9
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Example:

e-NFA accepting the set of keywords {ebay, web}
o N o)

We canhaveane-movesfor eachkeyword
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An e-NFA is a quintuple (Q, X, 4, qo, F') where §
is a function from @ x (X U {e}) to the powerset

of Q.

Example: The eeNFA from the previous slide

E = ({qO7Q17 © '7Q5}7 {'7 +7 T Oa 17 . 79} 57 q0; {Q5})

where the transition table for ¢ is

€ —+,- | . 0,...,9
— qo éQ1} {a1} | 0 )

q1 ) {2} | {q1,94}
q2 | 0 0 ) {q3}
q3 | {gs} | 0 ) {a3}
q4 | 0 ) {a3} | 0
xqs || 0 0 0 0
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ECLOSE or e-closure

We close a state by adding all states reachable
by a sequence ee---¢€

Inductive definition of ECLOSE(q)
Basis:

g € ECLOSE(q)

Induction:

p € ECLOSE(q) and r € 6(p,e) =
r € ECLOSE(q)
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Example of e-closure
L /
For instance,

ECLOSE(1) = {1,2,3,4,6}

&)

@
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e Inductive definition of § for e-NFA's

Basis:

6(q,€) = ECLOSE(q)

Induction:

6(q, xa) = U ECLOSE(p)
p€d(6(g,r),a)

Let’'s compute on the blackboard in class
6(qp,5.6) for the NFA on slide 43

3(00) = ECLOSE(®) = {00,
8(qo,5) = ECLOSE({0,a}) = {d1,0}, becauss(qo5) U 8(c5) = { Gu.0e)
0(0o,5.) = ECLOSE({tp,:}) = {02,050}

0(0o,5.6) = ECLOSE({ts}) ={0q3,G5}
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d(q0,e) = ECLOSE(q0) = {q0,q1}
 
d(q0,5) = ECLOSE({q1,q4}) = {q1,q4},   because d(q0,5) U d(q1,5) = {q1,q4}
 
d(q0,5.) = ECLOSE({q2,q3}) = {q2,q3,q5}
 
d(q0,5.6) = ECLOSE({q3}) = {q3,q5}
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Given an e-NFA

bE = (QE) Za 5E7 q0, FE)

we will construct a DFA

D = (QD) 275D7QD7FD)
such that
L(D) = L(E)

Details of the construction:

e Qp={5:5C Qg and S = ECLOSE(S)}
e gp = ECLOSE(qp)

e Fp={S:5€Q@Qpand SN Fg # 0}

e 6p(S,a) =
| J{ECLOSE(pP) : p € o(t,a) for some t € S}
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Example: e-NFA E

0,1,....9 0,1,...9
O S
" @@ @@ @
0,1,....9

DFA D corresponding to E



Tao
Oval

Tao
Typewritten Text
{f}

Tao
Typewritten Text
.,+,-

Tao
Typewritten Text

Tao
Line

Tao
Typewritten Text
+,-

Tao
Line

Tao
Typewritten Text
.,+,-

Tao
Line

Tao
Line

Tao
Typewritten Text
+,-

Tao
Line

Tao
Typewritten Text
.,+,-

Tao
Line

Tao
Line

Tao
Typewritten Text
+,-,.,0,1,...,9


Theorem 2.22: A language L is accepted by
some e-NFA FE if and only if L is accepted by
some DFA.

Proof: We use D constructed as above and
show by induction that dp(gp, w) = dp(q, ,w)

Basis: 5(qo,€) = ECLOSE(qp) = qp = 0(gp,€)
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Induction:

- DEF
0p(qo, za) = 9 ECLOSE(p)

p€dp(dp(qo,1),a)

I.H.
= g ECLOSE(p)
p€5E (&)(QD,%),G)

CST

5 (3 (0o X))

DEF _
= dp(gp,za)
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Regular expressions

An FA (NFA or DFA) is a “blueprint” for con-
tructing a machine recognizing a regular lan-
guage.

A regular expression is a ‘‘user-friendly,” declar-
ative way of describing a regular language.

Example: 01* 4+ 10*

Regular expressions are used in e.g.

1. UNIX grep command

grep PATTERN FILE

2. UNIX Lex (Lexical analyzer generator) and
Flex (Fast Lex) tools.

3. Text/email mining (e.g., for HomeUnion)
53


jiang
Text Box
grep  PATTERN  FILE


Operations on languages

Union:
LUM={w:welLorweM}
Concatenation:
LM="w:w=zxy,x€ L,ye M}
Powers:

IO ={e}, L' =1L, LFtl =L Lk
Kleene Closure:

> .
L= J L'
1=0

Question: What are 0°, (¢, and ¢*

QuestionWhatis {02,0%} " ?
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Building regex’s

Inductive definition of regex’s:

Basis: € is a regex and 0 is a regex.

L(e) = {e}, and L(0) = 0.

If a € 2, then a is a regex.

L(a) = {a}.
Induction:

If £ is a regex’s, then (FE) is a regex.
L((E)) = L(E).

If £ and F' are regex’'s, then E + F is a regex.
L(E+ F)=L(E)UL(F).

If £ and F are regex's, then E.F is a regex.
L(E.F) = L(E).L(F).

If £ is a regex’'s, then E* is a regex.
L(E*) = (L(E))™.
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Example: Regex for

L={we{0,1}*: 0 and 1 alternate in w}

(01)* + (10)* + 0(10)* 4+ 1(01)*

or, equivalently,

(e+1)(01)*(e +0)

Order of precedence for operators:

1. Star
2. Dot
3. Plus

Example: 01* 4+ 1 is grouped (0(T)) + 1

56
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Equivalence of FA’'s and regex’s

We have already shown that DFA's, NFA's,
and e-NFA'’s all are equivalent.

To show FA's equivalent to regex’s we need to
establish that

1. For every DFA A we can find (construct,
in this case) a regex R, s.t. L(R) = L(A).

2. For every regex R there is an e-NFA A, s.t.
L(A) = L(R).
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Theorem 3.4: Forevery DFA A= (Q,%X,9,qp, F)
there is a regex R, s.t. L(R) = L(A).

Proof: Let the states of A be {1,2,...,n},
with 1 being the start state.

o Let R,g?“) be a regex describing the set of
labels of all paths in A from state ¢ to state

j going through intermediate states {1,...,k}
only. Notethat,i andj don'thaveto bein {1, ...,k}.
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R{) will be defined inductively. Note that

L (@ Ry,

jEF

) — L(A)

Basis: £ =0, i.e. no intermediate states.

e Case 1: 1# )

l.e.,arci -> |

(0) _
Rij = EB a

e Case 2: 1=

" =

{a€X:6(i,a)=j}

l.e.,arci ->10re

$ a

{a€3:6(i,a)=1i}

4+ €
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Induction:

(k)
R(’?—l) doesnotgo throughk
tJ
_|_
k—1 E—1)\* ~(k—1 goesthroughk
Rz{k )<RI(<I§ )> Rl(cj ) atleastonce

AW AWV

-~

In R (&1
ik Zero or morestringsin R (7

(k-1)
In R ki
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Example: Let's find R for A, where
L(A) ={z0y :z € {1}* and y € {0,1}*}
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We will need the following simplification rules:
e (e+R)*=R* (e+R)R* = R*
e R+ RS* = RS* e+R+R* = R*
e PR = RO = 0 (Annihilation)

e )+ R= R+ 0 = R (Identity)
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RO | et+0+1

1 0 0 0)\* (0
jo) — Rz(j) + Rgl)(Rgl)) jo)

By direct substitution Simplified
RV | e+ 1+ (e+D(e+1)*(e+1) | 1*
R |0+ (e+1)(e+1)*0 1*0
RY |0+ 0(e+1)*(e+1) 0
RY | e4+0+14+0(+1)*0 e+ 041

22
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Simplified

Ol
R{Y | 1*0
R |0
RY | e+041

2 1 1 1)\* (1
R = R 4 R (RS5) R

By direct substitution

1* 4+ 1*0(e 4 0 + 1)*0

1*0 + 1*0(e + 0+ 1)*(e + 0+ 1)

D+ (e+0+1)(e+0+1)*0
e+0+1+(e+0+1)(e+0+1)*(e+0+1)
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By direct substitution

R{ | 1% + 1*0(e + 0 + 1)*0

R{2) | 10 4+ 1*0(e + 0+ 1)*(e + 0 + 1)

RSY |0+ (e+0+1)(e+0+1)*0

RSY |e+0+1+(e+0+1)(e+0+1)*(e+0+1)

Simplified

R{?) | 1*

R{2) | 1*0(0 + 1)*
RS2 | 0
R | (0+1)*

The final regex for A is

R{? = 1*0(0 + 1)*
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Observations

There are n3 expressions Rg?)
Each inductive step grows the expression 4-fold

RZ(;L) could have size 4™

For all {i,57} C{1,...,n}, Rg?) uses R,g,z_l)

so we have to write n? times the regex R]g’]z_l)

but mostof themcanberemovedby annihilation!

We need a more efficient approach:
the state elimination technique
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The state elimination technique

Let's label the edges with regex’s instead of
symbols

o7



Now, let’'s eliminate state s.

Ry + O, 5*P

11

For each accepting state ¢ eliminate from the
original automaton all states exept qp and gq.
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For each ¢ € F' we'll be left with an A, that
looks like

R U
DS
Start /\
\/
T
that corresponds to the regex £, = (R+SU*T)*SU*

or with A, looking like

corresponding to the regex E; = R*

e [ he final expression is

D £

qe
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Notethatthealgorithmalsoworksfor NFAs ande-NFAs.

Example: A, where L(A) ={W :w = x1b, or w =
xlbc, x € {0,1}* {b,c} C {O,1}}

Start_>ml 0,1 ‘0,1

We turn this into an automaton with regex
labels

0+1

Start_»ﬂ 1 e 0+1 ‘ 0+1
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Start_»ﬂ 1 9 0+1 ‘ 0+1

Let's eliminate state B

0+1

Start 1(0 + 1) 0+1
DS ®

Then we eliminate state C and obtain Ap

0+1

Start_»@ 1(O+1)(O+1)>

with regex (0+1)*1(04+1)(0+1)
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From

0+1
Start_»Q 10+ 1) »@ 0+1 »@

we can eliminate D to obtain Ag

0+1
Start m 10+ 1)
—® -©

with regex (0 4+ 1)*1(0+ 1)

e [ he final expression is the sum of the previ-
ous two regex’s:

(0+1)"1(0+1)(0+ 1)+ (0+1)"1(0 + 1)
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From regex’s to e-NFA'’s

Theorem 3.7: For every regex R we can con-
struct an eNFA A, s.t. L(A) = L(R).

Proof: By structural induction:

Basis: Automata for €, @, and a.

)

(a) e-NFAs with properties:

* uniquestartandfinal

states
O ©
* no arcsinto the start

(b) state

* no arcsout of thefinal
state
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* unique start and final states

* no arcs into the start state

* no arcs out of the final state


Induction: Automata for R+ S, RS, and R*

O

©

s
ot

xVa

R
O S
(a)

0

J[>o R Q%S—E»O S
(b)
f /\8
»QS—E»O R @
(©)

€

k
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Example: We convert (0+1)*1(0+1)

O O
> \s~o—1»©/s'
(b)
€
€

75





