Undecidability

Everything is an Integer Countable and Uncountable Sets Turing Machines Recursive and Recursively Enumerable Languages

Integers, Strings, and Other Things

 Data types have become very important as a programming tool.

But at another level, there is only one type, which you may think of as integers or strings.

Example: Text

 Strings of ASCII or Unicode characters can be thought of as binary strings, with 8 or 16 bits/character.

- Binary strings can be thought of as integers.
- It thus makes sense to talk about "the i-th string".

Binary Strings to Integers

There's a small glitch:

- If you think them simply as binary integers, then strings like 101, 0101, 00101, ... all appear to represent 5.
- Fix by prepending a "1" to the string before converting to an integer.
 - Thus, 101, 0101, and 00101 are the 13th, 21st, and 37th strings, respectively.

Example: Images

Represent an image in (say) GIF.
The GIF file is an ASCII string.
Convert string to binary.
Convert binary string to integer.
Now we have a notion of "the i-th image".

Example: Proofs

A formal proof is a sequence of logical expressions, each of which follows from the ones before it.

- Encode mathematical expressions of any kind in Unicode.
- Convert expression to a binary string and then an integer.

Proofs – (2)

But since a proof is a sequence of expressions, it would be convenient to have a simple way to separate them.
 Also, we need to indicate which expressions are given.

Proofs – (3)

- Quick-and-dirty way to introduce new symbols into binary strings:
 - Given a binary string, precede each bit by 0.
 Example: 101 becomes 010001.
 - 2. Use strings of two or more 1's as the special symbols.
 - Example: 111 = "the following expression is given"; 11 = "end of expression."

Example: Encoding Proofs

Example: Programs

Programs are just another kind of data.
Represent a program in ASCII.
Convert to a binary string, then to an integer.

 Thus, it makes sense to talk about "the i-th program".

Hmm...There aren't all that many programs.
 Each (decision) program accepts one language.

Finite Sets

Intuitively, a *finite set* is a set for which there is a particular integer that is the count of the number of members.
Example: {a, b, c} is a finite set; its *cardinality* is 3.
It is impossible to find a 1-1 mapping between a finite set and a proper

subset of itself.

Infinite Sets

Formally, an *infinite set* is a set for which there is a 1-1 correspondence between itself and a proper subset of itself.

- Example: the positive integers {1, 2, 3, ...} is an infinite set.
 - There is a 1-1 correspondence 1<->2, 2<->4, 3<->6,... between this set and a proper subset (the set of even integers).

Countable Sets

A countable set is a set with a 1-1 correspondence with the positive integers. Hence, all countable sets are infinite. Example: All integers. ◆ 0<->1; -i <-> 2i; +i <-> 2i+1. Thus, order is 0, -1, 1, -2, 2, -3, 3,... Examples: set of binary strings, set of Java programs.

Example: Pairs of Integers

Order the pairs of positive integers first by sum, then by first component:

[1,1], [2,1], [1,2], [3,1], [2,2], [1,3], [4,1], [3,2],..., [1,4], [5,1],...

Interesting exercise: Figure out the function f(i,j) such that the pair [i,j] corresponds to the integer f(i,j) in this order.

Enumerations

An enumeration of a set is a 1-1 correspondence between the set and the positive integers.

 Thus, we have seen enumerations for strings, programs, proofs, and pairs of integers.

How Many Languages?

Are the languages over {0,1}* countable?
No; here's a proof.

 Suppose we could enumerate all languages over {0,1}* and talk about "the i-th language."

Consider the language L = { w | w is the i-th binary string and w is not in the i-th language}.

Proof – Continued

Clearly, L is a language over {0,1}*.
Thus, it is the j-th language for some particular j.
Let x be the j-th string.
Is x in L?
If so, x is not in L by definition of L. j-th

If not, then x is in L by definition of L.

Diagonalization Picture

Can't be a row – it disagrees in an entry of each row.

Proof – Concluded

We have a contradiction: x is neither in L nor not in L, so our sole assumption (that there was an enumeration of the languages) is wrong.

- Comment: This is really bad; there are more languages than programs.
- E.g., there are languages that are not accepted by any program/algorithm.

Recall languages are essentially decision problems and algorithms ²⁰ accepting the languages basically solve the decision problems.

Hungarian Arguments

We have shown the existence of a language with no algorithm to test for membership, but we have no way to exhibit a particular language with that property.

A proof by counting the things that work and claiming they are fewer than all things is called a *Hungarian argument*.

Turing-Machine Theory

The purpose of the theory of Turing machines is to prove that certain specific languages have no algorithm.

- Start with a language about Turing machines themselves.
- Reductions are used to prove more common questions undecidable.

Picture of a Turing Machine

 State
 the state and the tape symbol under the head: change state, rewrite the symbol and move the head one square.

 ...
 A
 B
 C
 A
 D
 ...

Infinite tape with squares containing tape symbols chosen from a finite alphabet

Action: based on

Why Turing Machines?

Why not deal with C programs or something like that?

- Answer: You can, but it is easier to prove things about TM's, because they are so simple.
 - And yet they are as powerful as any computer.
 - More so, in fact, since they have infinite memory.

Then Why Not Finite-State Machines to Model Computers?

- In principle, you could, but it is not instructive.
- Programming models don't build in a limit on memory.
- In practice, you can go to Fry's and buy another disk.
- But finite automata vital at the chip level (model-checking).

Turing-Machine Formalism

- A TM is described by:
 - 1. A finite set of *states* (Q, typically).
 - 2. An *input alphabet* (Σ , typically).
 - 3. A *tape alphabet* (Γ , typically; contains Σ).
 - 4. A *transition function* (δ , typically).
 - 5. A *start state* (q_0 , in Q, typically).
 - 6. A *blank symbol* (B, in $\Gamma \Sigma$, typically).
 - All tape except for the input is blank initially.
 - 7. A set of *final states* ($F \subseteq Q$, typically).

Conventions

- a, b, ... are input symbols.
 ..., X, Y, Z are tape symbols.
 ..., w, x, y, z are strings of input symbols.
- $\diamond \alpha$, β ,... are strings of tape symbols.

The Transition Function

- Takes two arguments:
 1. A state, in Q.
 - 2. A tape symbol in Γ.
- δ(q, Z) is either undefined or a triple of the form (p, Y, D).
 - p is a state.
 - Y is the new tape symbol.
 - D is a *direction*, L or R.

Actions of the TM

- If δ(q, Z) = (p, Y, D) then, in state q, scanning Z under its tape head, the TM:
 - 1. Changes the state to p.
 - 2. Replaces Z by Y on the tape.
 - 3. Moves the head one square in direction D.
 - \bullet D = L: move left; D = R; move right.

Example: Turing Machine

- This TM scans its input right, looking for a 1.
- If it finds one, it changes it to a 0, goes to final state f, and halts.
- If it reaches a blank, it changes it to a 1 and moves left.

Example: Turing Machine – (2)

States = {q (start), f (final)}.
Input symbols = {0, 1}.
Tape symbols = {0, 1, B}.
δ(q, 0) = (q, 0, R).
δ(q, 1) = (f, 0, R).
δ(q, B) = (q, 1, L).

Simulation of TM $\delta(q, 0) = (q, 0, R)$ $\delta(q, 1) = (f, 0, R)$ $\delta(q, B) = (q, 1, L)$

 $\delta(q, 0) = (q, 0, R)$ $\delta(q, 1) = (f, 0, R)$ $\delta(q, B) = (q, 1, L)$

No move is possible. The TM halts and accepts.

Instantaneous Descriptions of a Turing Machine

Initially, a TM has a tape consisting of a string of input symbols surrounded by an infinity of blanks in both directions.
The TM is in the start state, and the head is at the leftmost input symbol.

TM ID's – (2)

An ID is a string αqβ, where αβ is the tape between the leftmost and rightmost nonblanks (inclusive).

- The state q is immediately to the left of the tape symbol scanned.
- If q is at the right end, it is scanning B.
 - If q is scanning a B at the left end, then consecutive B's at and to the right of q are part of β.

TM ID's – (3)

As for PDA's we may use symbols + and +* to represent "becomes in one move" and "becomes in zero or more moves," respectively, on ID's.

Example: The moves of the previous TM are q00+0q0+00q+0q01+00q1+000f

Formal Definition of Moves

If δ(q, Z) = (p, Y, R), then
 αqZβ⊦αYpβ
 If Z is the blank B, then also αq⊦αYp
 If δ(q, Z) = (p, Y, L), then
 For any X, αXqZβ⊦αpXYβ
 In addition, qZβ⊦pBYβ

Languages of a TM

- A TM defines a language by final state, as usual.
- L(M) = {w | q₀w⊦*I, where I is an ID with a final state}.
- Or, a TM can accept a language by halting.
- H(M) = {w | q₀w⊦*I, and there is no move possible from ID I}.

Equivalence of Accepting and Halting

- 1. If L = L(M), then there is a TM M' such that L = H(M').
- If L = H(M), then there is a TM M" such that L = L(M").

Proof of 1: Acceptance -> Halting

Modify M to become M' as follows:

1. For each final state of M, remove any moves, so M' halts in that state.

2. Avoid having M' accidentally halt.

- Introduce a new state s, which runs to the right forever; that is $\delta(s, X) = (s, X, R)$ for all symbols X.
- If q is not final, and δ(q, X) is undefined, let δ(q, X) = (s, X, R).

Proof of 2: Halting -> Acceptance

Modify M to become M" as follows:

- Introduce a new state f, the only final state of M".
- 2. f has no moves.
- 3. If $\delta(q, X)$ is undefined for any state q and symbol X, define it by $\delta(q, X) = (f, X, R)$.

Recursively Enumerable Languages

We now see that the classes of languages defined by TM's using final state and halting are the same.

- This class of languages is called the recursively enumerable languages.
 - Why? The term actually predates the Turing machine and refers to another notion of computation of functions.

 $AMB = \{ \langle G \rangle | G \text{ is an ambiguous CFG} \}$

Recursive Languages

An algorithm is a TM that is guaranteed to halt whether or not it accepts.

If L = L(M) for some TM M that is an algorithm, we say L is a *recursive* (or decidable) language.

 Why? Again, don't ask; it is a term with a history.

Church-Turing Thesis: Halting Turing machines are equivalent to intuitive notion of algorithms. **Example:** Recursive Languages

- Every CFL is a recursive language.
 - Use the CYK algorithm.
- Every regular language is a CFL (think of its DFA as a PDA that ignores its stack); therefore every regular language is recursive.

But not HALT = {<M> | M is a TM that halts on every input} or AMB = {<G> | G is an ambiguous CFG} or EQCFG = {<G₁,G₂> | G₁ and G₂ are CFGs, L(G₁) = L(G₂)} ⁴⁸ An example non-recursive (undecidable) language: $A_{TM} = \{ \langle M, w \rangle | TM M \text{ accepts string } w \}$

Proof. Suppose that A_{TM} is recursive and decided by an algorithm (TM) H. Construct a TM D as follows:

For any input <M> where M is a TM, run H on <M,<M>>, and accept iff H rejects. In other words, D accepts <M> iff M does not accept <M>.

What would D do on <D>?

It should accept <D> iff D rejects <D> !