
1

Undecidability

Everything is an Integer
Countable and Uncountable Sets

Turing Machines
Recursive and Recursively
Enumerable Languages

2

Integers, Strings, and Other Things

Data types have become very
important as a programming tool.
But at another level, there is only one

type, which you may think of as
integers or strings.

3

Example: Text

Strings of ASCII or Unicode characters
can be thought of as binary strings,
with 8 or 16 bits/character.
Binary strings can be thought of as

integers.
It thus makes sense to talk about “the i-th

string”.

4

Binary Strings to Integers

There’s a small glitch:
 If you think them simply as binary integers,

then strings like 101, 0101, 00101, … all
appear to represent 5.

Fix by prepending a “1” to the string
before converting to an integer.
 Thus, 101, 0101, and 00101 are the 13th,

21st, and 37th strings, respectively.

5

Example: Images

Represent an image in (say) GIF.
The GIF file is an ASCII string.
Convert string to binary.
Convert binary string to integer.
Now we have a notion of “the i-th

image”.

6

Example: Proofs

A formal proof is a sequence of logical
expressions, each of which follows from
the ones before it.
Encode mathematical expressions of

any kind in Unicode.
Convert expression to a binary string

and then an integer.

7

Proofs – (2)

But since a proof is a sequence of
expressions, it would be convenient to
have a simple way to separate them.
Also, we need to indicate which

expressions are given.

8

Proofs – (3)

 Quick-and-dirty way to introduce new
symbols into binary strings:

1. Given a binary string, precede each bit by 0.
 Example: 101 becomes 010001.

2. Use strings of two or more 1’s as the special
symbols.
 Example: 111 = “the following expression is

given”; 11 = “end of expression.”

9

Example: Encoding Proofs

1110100011111100000101110101…

A given
expression
follows

An ex-
pression

End of
expression

Notice this
1 could not
be part of
the “end”

A given
expression
follows

Expression

End

10

Example: Programs

Programs are just another kind of data.
Represent a program in ASCII.
Convert to a binary string, then to an

integer.
Thus, it makes sense to talk about “the

i-th program”.
Hmm…There aren’t all that many programs.

Each (decision) program accepts one language.

11

Finite Sets

Intuitively, a finite set is a set for
which there is a particular integer that
is the count of the number of members.
Example: {a, b, c} is a finite set; its

cardinality is 3.
It is impossible to find a 1-1 mapping

between a finite set and a proper
subset of itself.

12

Infinite Sets

Formally, an infinite set is a set for which
there is a 1-1 correspondence between
itself and a proper subset of itself.
Example: the positive integers {1, 2, 3, …}

is an infinite set.
 There is a 1-1 correspondence 1<->2, 2<->4,

3<->6,… between this set and a proper
subset (the set of even integers).

13

Countable Sets

A countable set is a set with a 1-1
correspondence with the positive integers.
 Hence, all countable sets are infinite.

Example: All integers.
 0<->1; -i <-> 2i; +i <-> 2i+1.
 Thus, order is 0, -1, 1, -2, 2, -3, 3,…

Examples: set of binary strings, set of Java
programs.

14

Example: Pairs of Integers

Order the pairs of positive integers first
by sum, then by first component:
[1,1], [2,1], [1,2], [3,1], [2,2], [1,3],

[4,1], [3,2],…, [1,4], [5,1],…
Interesting exercise: Figure out the

function f(i,j) such that the pair [i,j]
corresponds to the integer f(i,j) in this
order.

15

Enumerations

An enumeration of a set is a 1-1
correspondence between the set and
the positive integers.
Thus, we have seen enumerations for

strings, programs, proofs, and pairs of
integers.

16

How Many Languages?

Are the languages over {0,1}* countable?
No; here’s a proof.
Suppose we could enumerate all

languages over {0,1}* and talk about “the
i-th language.”
Consider the language L = { w | w is the

i-th binary string and w is not in the i-th
language}.

17

Proof – Continued

Clearly, L is a language over {0,1}*.
Thus, it is the j-th language for some

particular j.
Let x be the j-th string.
Is x in L?
 If so, x is not in L by definition of L.
 If not, then x is in L by definition of L.

Recall: L = { w | w is the
i-th binary string and w is
not in the i-th language}.

x

j-th

Lj

18

Diagonalization Picture
Strings

1 2 3 4 5 …
1

12

3

4

5

…

Languages

0

111

1

0

00 …

…

19

Diagonalization Picture
Strings

1 2 3 4 5 …
1

02

3

4

5

…

Languages

1

110

0

1

00 …

…

Flip each
diagonal
entry

Can’t be
a row –
it disagrees
in an entry
of each row.

20

Proof – Concluded

We have a contradiction: x is neither in
L nor not in L, so our sole assumption
(that there was an enumeration of the
languages) is wrong.
Comment: This is really bad; there are

more languages than programs.
E.g., there are languages that are not

 accepted by any program/algorithm.

jiang
Text Box
Recall languages are essentially decision problems and algorithms accepting the languages basically solve the decision problems.

21

Hungarian Arguments

We have shown the existence of a
language with no algorithm to test for
membership, but we have no way to
exhibit a particular language with that
property.
A proof by counting the things that work

and claiming they are fewer than all
things is called a Hungarian argument.

22

Turing-Machine Theory

The purpose of the theory of Turing
machines is to prove that certain
specific languages have no algorithm.
Start with a language about Turing

machines themselves.
Reductions are used to prove more

common questions undecidable.

23

Picture of a Turing Machine

State

.A B C A D

Infinite tape with
squares containing
tape symbols chosen
from a finite alphabet

Action: based on
the state and the
tape symbol under
the head: change
state, rewrite the
symbol and move the
head one square.

24

Why Turing Machines?

Why not deal with C programs or
something like that?
Answer: You can, but it is easier to prove

things about TM’s, because they are so
simple.
 And yet they are as powerful as any

computer.
• More so, in fact, since they have infinite memory.

25

Then Why Not Finite-State
Machines to Model Computers?
In principle, you could, but it is not

instructive.
Programming models don’t build in a

limit on memory.
In practice, you can go to Fry’s and buy

another disk.
But finite automata vital at the chip

level (model-checking).

26

Turing-Machine Formalism

 A TM is described by:
1. A finite set of states (Q, typically).
2. An input alphabet (Σ, typically).
3. A tape alphabet (Γ, typically; contains Σ).
4. A transition function (δ, typically).

5. A start state (q0, in Q, typically).
6. A blank symbol (B, in Γ- Σ, typically).
 All tape except for the input is blank initially.

7. A set of final states (F ⊆ Q, typically).

27

Conventions

a, b, … are input symbols.
…, X, Y, Z are tape symbols.
…, w, x, y, z are strings of input

symbols.
, ,… are strings of tape symbols.

28

The Transition Function

 Takes two arguments:
1. A state, in Q.
2. A tape symbol in Γ.

 δ(q, Z) is either undefined or a triple of
the form (p, Y, D).
 p is a state.
 Y is the new tape symbol.
 D is a direction, L or R.

29

Actions of the TM

 If δ(q, Z) = (p, Y, D) then, in state q,
scanning Z under its tape head, the
TM:

1. Changes the state to p.
2. Replaces Z by Y on the tape.
3. Moves the head one square in direction D.
 D = L: move left; D = R; move right.

30

Example: Turing Machine

This TM scans its input right, looking
for a 1.
If it finds one, it changes it to a 0, goes

to final state f, and halts.
If it reaches a blank, it changes it to a

1 and moves left.

31

Example: Turing Machine – (2)

States = {q (start), f (final)}.
Input symbols = {0, 1}.
Tape symbols = {0, 1, B}.
δ(q, 0) = (q, 0, R).
δ(q, 1) = (f, 0, R).
δ(q, B) = (q, 1, L).

32

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 B B . . .

q

33

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 B B . . .

q

34

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 B B . . .

q

35

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 1 B . . .

q

36

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 1 B . . .

q

37

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 0 B . . .

f

No move is possible.
The TM halts and
accepts.

38

Instantaneous Descriptions of
a Turing Machine

Initially, a TM has a tape consisting of a
string of input symbols surrounded by
an infinity of blanks in both directions.
The TM is in the start state, and the

head is at the leftmost input symbol.

39

TM ID’s – (2)

An ID is a string q, where is the
tape between the leftmost and
rightmost nonblanks (inclusive).
The state q is immediately to the left of

the tape symbol scanned.
If q is at the right end, it is scanning B.
 If q is scanning a B at the left end, then

consecutive B’s at and to the right of q are
part of .

jiang
Text Box
b

40

TM ID’s – (3)

As for PDA’s we may use symbols ⊦ and
⊦* to represent “becomes in one move”
and “becomes in zero or more moves,”
respectively, on ID’s.
Example: The moves of the previous TM

are q00⊦0q0⊦00q⊦0q01⊦00q1⊦000f

41

Formal Definition of Moves

1. If δ(q, Z) = (p, Y, R), then
 qZ⊦Yp
 If Z is the blank B, then also q⊦Yp

2. If δ(q, Z) = (p, Y, L), then
 For any X, XqZ⊦pXY
 In addition, qZ⊦pBY

42

Languages of a TM

A TM defines a language by final state,
as usual.
L(M) = {w | q0w⊦*I, where I is an ID

with a final state}.
Or, a TM can accept a language by

halting.
H(M) = {w | q0w⊦*I, and there is no

move possible from ID I}.

43

Equivalence of Accepting and
Halting

1. If L = L(M), then there is a TM M’
such that L = H(M’).

2. If L = H(M), then there is a TM M”
such that L = L(M”).

44

Proof of 1: Acceptance ->
Halting

 Modify M to become M’ as follows:
1. For each final state of M, remove any

moves, so M’ halts in that state.
2. Avoid having M’ accidentally halt.
 Introduce a new state s, which runs to the right

forever; that is δ(s, X) = (s, X, R) for all symbols X.
 If q is not final, and δ(q, X) is undefined, let
δ(q, X) = (s, X, R).

45

Proof of 2: Halting ->
Acceptance

 Modify M to become M” as follows:
1. Introduce a new state f, the only final

 state of M”.
2. f has no moves.
3. If δ(q, X) is undefined for any state q and

symbol X, define it by δ(q, X) = (f, X, R).

46

Recursively Enumerable
Languages

We now see that the classes of
languages defined by TM’s using final
state and halting are the same.
This class of languages is called the

recursively enumerable languages.
Why? The term actually predates the

Turing machine and refers to another
notion of computation of functions.

jiang
Text Box
AMB = {<G> | G is an ambiguous CFG}

47

Recursive Languages

An algorithm is a TM that is
guaranteed to halt whether or not it
accepts.
If L = L(M) for some TM M that is an

algorithm, we say L is a recursive
(or decidable) language.
Why? Again, don’t ask; it is a term with a

history.

jiang
Text Box
Church-Turing Thesis: Halting Turing machines are equivalent to intuitive notion of algorithms.

48

Example: Recursive Languages

Every CFL is a recursive language.
 Use the CYK algorithm.

Every regular language is a CFL (think
of its DFA as a PDA that ignores its
stack); therefore every regular
language is recursive.
Almost anything you can think of is

recursive.

jiang
Text Box
But not HALT = {<M> | M is a TM that halts on every input} or AMB = {<G> | G is an ambiguous CFG}or EQCFG = {<G1,G2> | G1 and G2 are CFGs, L(G1) = L(G2)}

49

jiang
Text Box
An example non-recursive (undecidable) language:ATM = { <M,w> | TM M accepts string w }Proof. Suppose that ATM is recursive and decided by an algorithm (TM) H. Construct a TM D as follows: For any input <M> where M is a TM, run H on <M,<M>>, and accept iff H rejects. In other words, D accepts <M> iff M does not accept <M>.What would D do on <D>?It should accept <D> iff D rejects <D> !

