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Undecidability

Everything is an Integer
Countable and Uncountable Sets

Turing Machines
Recursive and Recursively 
Enumerable Languages
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Integers, Strings, and Other Things

Data types have become very 
important as a programming tool.
But at another level, there is only one 

type, which you may think of as 
integers or strings.
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Example: Text

Strings of ASCII or Unicode characters 
can be thought of as binary strings, 
with 8 or 16 bits/character.
Binary strings can be thought of as 

integers.
It thus makes sense to talk about “the i-th 

string”.
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Binary Strings to Integers

There’s a small glitch:
 If you think them simply as binary integers, 

then strings like 101, 0101, 00101, … all 
appear to represent 5.

Fix by prepending a “1” to the string 
before converting to an integer.
 Thus, 101, 0101, and 00101 are the 13th, 

21st, and 37th strings, respectively.
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Example: Images

Represent an image in (say) GIF.
The GIF file is an ASCII string.
Convert string to binary.
Convert binary string to integer.
Now we have a notion of “the i-th 

image”.
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Example: Proofs

A formal proof is a sequence of logical 
expressions, each of which follows from 
the ones before it.
Encode mathematical expressions of 

any kind in Unicode.
Convert expression to a binary string 

and then an integer.
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Proofs – (2)

But since a proof is a sequence of 
expressions, it would be convenient to
have a simple way to separate them.
Also, we need to indicate which 

expressions are given.
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Proofs – (3)

 Quick-and-dirty way to introduce new 
symbols into binary strings:

1. Given a binary string, precede each bit by 0.
 Example: 101 becomes 010001.

2. Use strings of two or more 1’s as the special 
symbols.
 Example: 111 = “the following expression is 

given”; 11 = “end of expression.”
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Example: Encoding Proofs

1110100011111100000101110101…

A given
expression
follows

An ex-
pression

End of
expression

Notice this
1 could not
be part of
the “end”

A given
expression
follows

Expression

End
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Example: Programs

Programs are just another kind of data.
Represent a program in ASCII.
Convert to a binary string, then to an 

integer.
Thus, it makes sense to talk about “the 

i-th program”.  
Hmm…There aren’t all that many programs.

Each (decision) program accepts one language.
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Finite Sets

Intuitively, a finite set is a set for 
which there is a particular integer that 
is the count of the number of members.
Example: {a, b, c} is a finite set; its 

cardinality is 3.
It is impossible to find a 1-1 mapping 

between a finite set and a proper 
subset of itself.
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Infinite Sets

Formally, an infinite set is a set for which 
there is a 1-1 correspondence between 
itself and a proper subset of itself.
Example: the positive integers {1, 2, 3, …} 

is an infinite set.
 There is a 1-1 correspondence 1<->2, 2<->4, 

3<->6,… between this set and a proper 
subset (the set of even integers).
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Countable Sets

A countable set is a set with a 1-1 
correspondence with the positive integers.
 Hence, all countable sets are infinite.

Example: All integers.
 0<->1; -i <-> 2i; +i <-> 2i+1.
 Thus, order is 0, -1, 1, -2, 2, -3, 3,…

Examples: set of binary strings, set of Java 
programs.
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Example: Pairs of Integers

Order the pairs of positive integers first 
by sum, then by first component:
[1,1], [2,1], [1,2], [3,1], [2,2], [1,3], 

[4,1], [3,2],…, [1,4], [5,1],…
Interesting exercise: Figure out the 

function f(i,j) such that the pair [i,j] 
corresponds to the integer f(i,j) in this 
order.
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Enumerations

An enumeration of a set is a 1-1 
correspondence between the set and 
the positive integers.
Thus, we have seen enumerations for 

strings, programs, proofs, and pairs of 
integers.
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How Many Languages?

Are the languages over {0,1}* countable?
No; here’s a proof.
Suppose we could enumerate all 

languages over {0,1}* and talk about “the 
i-th language.”
Consider the language L = { w | w is the 

i-th binary string and w is not in the i-th 
language}.
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Proof – Continued

Clearly, L is a language over {0,1}*.
Thus, it is the j-th language for some 

particular j.
Let x be the j-th string.
Is x in L?
 If so, x is not in L by definition of L.
 If not, then x is in L by definition of L.

Recall: L = { w | w is the
i-th binary string and w is
not in the i-th language}.

x

j-th

Lj
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Diagonalization Picture
Strings

1     2     3    4     5  …
1

12

3

4

5

…

Languages

0

111

1

0

00 …

…
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Diagonalization Picture
Strings

1     2     3    4     5  …
1

02

3

4

5

…

Languages

1

110

0

1

00 …

…

Flip each
diagonal
entry

Can’t be
a row –
it disagrees
in an entry
of each row.
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Proof – Concluded

We have a contradiction: x is neither in 
L nor not in L, so our sole assumption 
(that there was an enumeration of the 
languages) is wrong.
Comment: This is really bad; there are 

more languages than programs.
E.g., there are languages that are not

 accepted by any program/algorithm. 

jiang
Text Box
Recall languages are essentially decision problems and algorithms accepting the languages basically solve the decision problems.
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Hungarian Arguments

We have shown the existence of a 
language with no algorithm to test for 
membership, but we have no way to 
exhibit a particular language with that 
property.
A proof by counting the things that work 

and claiming they are fewer than all 
things is called a Hungarian argument.
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Turing-Machine Theory

The purpose of the theory of Turing 
machines is to prove that certain 
specific languages have no algorithm.
Start with a language about Turing 

machines themselves.
Reductions are used to prove more 

common questions undecidable.
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Picture of a Turing Machine

State

. . . . . .A B C A D

Infinite tape with
squares containing
tape symbols chosen
from a finite alphabet

Action: based on
the state and the
tape symbol under
the head: change
state, rewrite the
symbol and move the
head one square.
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Why Turing Machines?

Why not deal with C programs or 
something like that?
Answer: You can, but it is easier to prove 

things about TM’s, because they are so 
simple.
 And yet they are as powerful as any 

computer.
• More so, in fact, since they have infinite memory.



25

Then Why Not Finite-State 
Machines to Model Computers?
In principle, you could, but it is not 

instructive.
Programming models don’t build in a 

limit on memory.
In practice, you can go to Fry’s and buy 

another disk.
But finite automata vital at the chip 

level (model-checking).
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Turing-Machine Formalism

 A TM is described by:
1. A finite set of states (Q, typically).
2. An input alphabet (Σ, typically).
3. A tape alphabet (Γ, typically; contains Σ).
4. A transition function (δ, typically).

5. A start state (q0, in Q, typically).
6. A blank symbol (B, in Γ- Σ, typically).
 All tape except for the input is blank initially.

7. A set of final states (F ⊆ Q, typically).
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Conventions

a, b, … are input symbols.
…, X, Y, Z are tape symbols.
…, w, x, y, z are strings of input 

symbols.
, ,… are strings of tape symbols.
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The Transition Function

 Takes two arguments:
1. A state, in Q.
2. A tape symbol in Γ.

 δ(q, Z) is either undefined or a triple of 
the form (p, Y, D).
 p is a state.
 Y is the new tape symbol.
 D is a direction, L or R.
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Actions of the TM

 If δ(q, Z) = (p, Y, D) then, in state q, 
scanning Z under its tape head, the 
TM:

1. Changes the state to p.
2. Replaces Z by Y on the tape.
3. Moves the head one square in direction D.
 D = L: move left; D = R; move right.
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Example: Turing Machine

This TM scans its input right, looking 
for a 1.
If it finds one, it changes it to a 0, goes 

to final state f, and halts.
If it reaches a blank, it changes it to a 

1 and moves left.
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Example: Turing Machine – (2)

States = {q (start), f (final)}.
Input symbols = {0, 1}.
Tape symbols = {0, 1, B}.
δ(q, 0) = (q, 0, R).
δ(q, 1) = (f, 0, R).
δ(q, B) = (q, 1, L).
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  B  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  B  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  B  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  1  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  1  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  0  B  . . .

f

No move is possible.
The TM halts and
accepts.
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Instantaneous Descriptions of 
a Turing Machine

Initially, a TM has a tape consisting of a 
string of input symbols surrounded by 
an infinity of blanks in both directions.
The TM is in the start state, and the 

head is at the leftmost input symbol.
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TM ID’s – (2)

An ID is a string q, where  is the 
tape between the leftmost and 
rightmost nonblanks (inclusive).
The state q is immediately to the left of 

the tape symbol scanned.
If q is at the right end, it is scanning B.
 If q is scanning a B at the left end, then 

consecutive B’s at and to the right of q are 
part of .

jiang
Text Box
b
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TM ID’s – (3)

As for PDA’s we may use symbols ⊦ and 
⊦* to represent “becomes in one move” 
and “becomes in zero or more moves,” 
respectively, on ID’s.
Example: The moves of the previous TM 

are q00⊦0q0⊦00q⊦0q01⊦00q1⊦000f
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Formal Definition of Moves

1. If δ(q, Z) = (p, Y, R), then
 qZ⊦Yp
 If Z is the blank B, then also q⊦Yp

2. If δ(q, Z) = (p, Y, L), then
 For any X, XqZ⊦pXY
 In addition, qZ⊦pBY
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Languages of a TM

A TM defines a language by final state, 
as usual.
L(M) = {w | q0w⊦*I, where I is an ID 

with a final state}.
Or, a TM can accept a language by 

halting.
H(M) = {w | q0w⊦*I, and there is no 

move possible from ID I}.
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Equivalence of Accepting and 
Halting

1. If L = L(M), then there is a TM M’ 
such that L = H(M’).

2. If L = H(M), then there is a TM M” 
such that L = L(M”).
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Proof of 1: Acceptance -> 
Halting

 Modify M to become M’ as follows:
1. For each final state of M, remove any 

moves, so M’ halts in that state.
2. Avoid having M’ accidentally halt.
 Introduce a new state s, which runs to the right 

forever; that is δ(s, X) = (s, X, R) for all symbols X.
 If q is not final, and δ(q, X) is undefined, let 
δ(q, X) = (s, X, R).



45

Proof of 2: Halting -> 
Acceptance

 Modify M to become M” as follows:
1. Introduce a new state f, the only final

 state of M”.
2. f has no moves.
3. If δ(q, X) is undefined for any state q and 

symbol X, define it by δ(q, X) = (f, X, R).
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Recursively Enumerable 
Languages

We now see that the classes of 
languages defined by TM’s using final 
state and halting are the same.
This class of languages is called the 

recursively enumerable languages.
Why?  The term actually predates the 

Turing machine and refers to another 
notion of computation of functions.

jiang
Text Box
AMB = {<G> | G is an ambiguous CFG}
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Recursive Languages

An algorithm  is a TM that is 
guaranteed to halt whether or not it 
accepts.
If L = L(M) for some TM M that is an 

algorithm, we say L is a recursive
(or decidable) language.
Why?  Again, don’t ask; it is a term with a 

history.

jiang
Text Box
Church-Turing Thesis: Halting Turing machines are equivalent to intuitive notion of algorithms.
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Example: Recursive Languages

Every CFL is a recursive language.
 Use the CYK algorithm.

Every regular language is a CFL (think 
of its DFA as a PDA that ignores its 
stack); therefore every regular 
language is recursive.
Almost anything you can think of is 

recursive.

jiang
Text Box
But not HALT = {<M> | M is a TM that halts on every input} or AMB = {<G> | G is an ambiguous CFG}or EQCFG = {<G1,G2> | G1 and G2 are CFGs, L(G1) = L(G2)}
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jiang
Text Box
An example non-recursive (undecidable) language:ATM = { <M,w> | TM M accepts string w }Proof. Suppose that ATM is recursive and decided by an algorithm (TM) H. Construct a TM D as follows:     For any input <M> where M is a TM, run H on          <M,<M>>, and accept iff H  rejects. In other words, D accepts <M> iff M does not accept <M>.What would D do on <D>?It should accept <D> iff D rejects <D> !




