CS 150 (Closed-book) Midterm Test I

May 1, Thursday, 2:40-3:20pm, 2025 Total: 40 points

Name:

UCR Net ID:

QUESTION 1. [10 pts] Design a DFA to accept the following language:

 $L = \{x \mid x \in \{0,1\}^*, \text{ the number of } 0's \text{ in } x \text{ is divisible by } 4 \text{ and the number of } 1's \text{ in } x \text{ is divisible by } 2\}$

Answer:

	0	1
$* \rightarrow q_{0,0}$	$q_{1,0}$	$q_{0,1}$
$q_{0,1}$	$q_{1,1}$	$q_{0,0}$
$q_{1,0}$	$q_{2,0}$	$q_{1,1}$
$q_{1,1}$	$q_{2,1}$	$q_{1,0}$
$q_{2,0}$	$q_{3,0}$	$q_{2,1}$
$q_{2,1}$	$q_{3,1}$	$q_{2,0}$
$q_{3,0}$	$q_{0,0}$	$q_{3,1}$
$q_{3,1}$	$q_{0,1}$	$q_{3,0}$

Give partial credits for DFAs that handles the number of 0's or the number of 1's correctly.

QUESTION 2. [10 pts] Design an ϵ -NFA to accept the following language:

 $L = \{x \mid x \in \{0,1\}^*, x \text{ begins or ends with } 101\}$

Answer:

	ϵ	0	1
$\rightarrow q_0$	$\{q_1, q_2\}$	Ø	Ø
q_1	Ø	Ø	$\{q_3\}$
q_3	Ø	$\{q_5\}$	Ø
q_5	Ø	Ø	$\{q_{7}\}$
*q7	Ø	$\{q_7\}$	$\{q_{7}\}$
q_2	Ø	$\{q_2\}$	$\{q_2\}$
q_2	Ø	Ø	$\{q_4\}$
q_4	Ø	$\{q_6\}$	Ø
q_6	Ø	Ø	$\{q_8\}$
$*q_8$	Ø	Ø	Ø

Note that the answer is not unique, and it is also possible to design an NFA for the language without using ϵ -transitions or even a DFA.

QUESTION 3. [10 pts] Convert the following NFA to a DFA:

	0	1
$\rightarrow q_0$	$\{q_1\}$	$\{q_0,q_1\}$
q_1	$\{q_1, q_2\}$	$\{q_2\}$
$*q_2$	$\{q_1\}$	Ø

Answer:

	0	1
$\rightarrow \{q_0\}$	$\{q_1\}$	$\{q_0, q_1\}$
$\{q_1\}$	$\{q_1, q_2\}$	$\{q_2\}$
$*\{q_2\}$	$\{q_1\}$	Ø
$\{q_0, q_1\}$	$\{q_1, q_2\}$	$\{q_0, q_1, q_2\}$
$^{*}\{q_{1},q_{2}\}$	$\{q_1, q_2\}$	$\{q_2\}$
$^{*}\{q_{0},q_{1},q_{2}\}$	$\{q_1, q_2\}$	$\{q_0, q_1, q_2\}$
Ø	Ø	Ø

It's okay to includue inaccessible states (*i.e.*, $\{q_0, q_2\}$). Give partial credits for correct steps.

QUESTION 4. [10 pts] Give a regular expression for the following language:

 $L = \{x \mid x \in \{0,1\}^*, x \text{ has at most two 0's between consecutive 1's}\}$

For example, the language constains strings 000,01000,00100101101000, but not strings like 010001 or 10001011.

Answer:

$$0^* + 0^* 1((\epsilon + 0 + 00)1)^* 0^*$$

The regex is not unique. Give partial credits for regex's containing some correct components.