CS 150 (Closed-book) Midterm Test II

Nov. 19, Wednesday, 6:30-7:50pm, 2025 Total: 75 points

Name:

UCR Net ID:

QUESTION 1. [10 pts] Following the procedure given in class, convert the following regular expression to an ϵ -NFA:

$$R = (10)^* + 010$$

Answer:

	ϵ	0	1
$\rightarrow q_0$	$\{q_1,q_7\}$	Ø	Ø
$\overline{q_1}$	$\{q_2,q_5\}$	Ø	Ø
q_2	Ø	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_2,q_5\}$	Ø	Ø
q_5	$\{q_6\}$	Ø	Ø
$^{*q_{6}}$	Ø	Ø	Ø
$\overline{q_7}$	Ø	$\{q_8\}$	Ø
q_8	Ø	Ø	$\{q_9\}$
q_9	Ø	$\{q_{10}\}$	Ø
q_{10}	$\{q_6\}$	Ø	Ø

Note that the answer may not be unique. For example, some of the states can be merged to simplify the ϵ -NFA without losing the correctness. Give most partial credits as long as the final ϵ -NFA works.

QUESTION 2.

1. [10 pts] Convert the following DFA to a regular expression by using the state elimination algorithm:

	0	1
$\rightarrow *q_0$	q_0	q_1
q_1	q_2	q_0
q_2	q_1	q_2

2. [5 pts] What is the language accepted by the above DFA? You may describe the language by giving the (mathematical) property of its strings.

Answer:

- 1. After eliminating state q_2 , the arc label from q_1 to q_1 becomes 01^*0 . (5 pts) After eliminating state q_1 , the arc label from q_0 to q_0 becomes $0+1(01^*0)^*1$, which leaves the final answer as $(0+1(01^*0)^*1)^*$. (5 pts)
- 2. Binary numbers divisible by 3.

Give partial credits for correct steps. If state q_1 is eliminated first, the final answer will be (0 + 11 + 10(00 + 1)*01)*.

QUESTION 3. [10 pts] Prove or disprove the following identities. Note that you can disprove an identity by means of a counterexample.

1.
$$(0^*1^*)^* = (01)^* + 0^*1^*$$

2.
$$0*(0+1)* = (0+1)*0*$$

Answer:

- 1. False (2 pts). E.g., 10 is in the LHS but not the RHS (2 pts).
- 2. True (2 pts). We prove both sides are equal to $(0+1)^*$. Clearly, $L(0^*(0+1)^*) \subseteq L((0+1)^*)$ because the latter represents all binary strings (*i.e.*, it is the universe). (2 pts) Since $\epsilon \in L(1^*)$, $L((0+1)^*) = L(\epsilon(0+1)^*) \subseteq L(0^*(0+1)^*)$. (2 pts) Hence, $L(0^*(0+1)^*) = L((0+1)^*)$. Similarly, we can prove $L((0+1)^*0^*) = L((0+1)^*)$.

QUESTION 4. [10 pts] Prove that the following language is not regular using the Pumping Lemma:

$$L = \{0^{i+j}1^i2^j \mid i, j \ge 0\}$$

Answer:

Let n be the constant in the Pumping Lemma. Consider $w=0^{2n}1^n2^n\in L$. Let w=xyz be any partition satisfying (i) |y|>0 and $|xy|\leq n$. Clearly, $x=0^i$ and $y=0^j$ for some $i\geq 0$ and j>0. Then $xyyz=0^{2n+j}1^n2^n\notin L$, and thus a contradiction.

Give partial credits for correct/reasonable steps.

QUESTION 5. [10 pts] Convert the following DFA to the minimum-state equivalent DFA step-by-step using the TF algorithm.

	0	1
$\rightarrow *q_0$	q_1	q_2
$*q_1$	q_0	q_2
q_2	q_3	q_0
q_3	q_2	q_4
q_4	q_2	q_5
q_5	q_2	q_3

Answer:

The DFA in Q3. Must show the state equivalence table first.

Give partial credits for correct steps.

QUESTION 6. [10 pts] Give a context-free grammar for the following language:

$$L = \{0^{i}1^{j}2^{k}3^{n} \mid i, j, k, n \ge 0; i = j + 2k + 4n\}$$

Answer:

$$G=(V,\{0,1,2,3\},P,S),$$
 where $V=\{S,A,B\}$ and P contains the following rules: (4 pts)
$$S\to 0000S3|A$$

$$A\to 00A2|B$$

$$B\to 0B1|\epsilon$$
 (6 pts)

QUESTION 7. [10 pts] Let $\#_0(x)$ and $\#_1(x)$ denote the numbers of 0's and 1's in a binary string x, respectively. Design a PDA to accept the following language by empty stack.

$$L = \{x \mid x \in \{0,1\}^*, \#_0(x) = \#_1(x)\}$$

Answer:

The following is a PDA that accepts L by empty stack. Note that, it has no ϵ -moves when symbols O or I are on the top of the stack.

	$0, Z_0$	0, O	0, I	$1, Z_0$	1, O	$\mid 1, I \mid$	ϵ, Z_0
$\rightarrow q$	q, OZ_0	q, OO	q,ϵ	$q, 1Z_0$	q,ϵ	q, II	q,ϵ