CS150 Homework 3
Solution keys, winter, 2018

Problem 1. (10 points)

Prove that the following are not regular languages.

(a) \{0^n1^m2^n | n and m are arbitrary integers\}.
(b) \{0^{2n}1^n | n \geq 1\}

(d) Proof. Assuming the language L is regular, let p be the pumping-lemma constant. Pick
w = 0^p12^p. Then when we write w = xyz, we know that |xy| \leq p, and therefore
y consists of only 0’s. Thus, xz, which must be in L if L is regular, consists of fewer
than p 0’s, followed by a 1 and exactly p 2’s. That string is not in L, so we contradict
the assumption that L is regular. □

(f) Proof. Assuming the language L is regular, let p be the pumping-lemma constant. Pick
w = 0^{2p}1^p. Then when we write w = xyz, we know that |xy| \leq p, and therefore
y consists of only 0’s. Thus, xyyz, which must be in L if L is regular, consists of more
than 2p 0’s, followed by exactly p 1’s. That string is not in L, so we contradict the
assumption that L is regular. □
Problem 2. (10 points)

Prove that the following are not regular languages:

The set of strings of 0’s and 1’s that are of the form ww, that is, same string repeated.

Proof. Assuming the language L is regular, let p be the pumping-lemma constant. Pick a string $0^p1^p1^p$. Then when we write it as xyz, we know that $|xy| \leq p$, and therefore y consists of only 0’s. Thus, xz, which must be in L if L is regular, consists of fewer than p 0’s, followed by exactly p 1’s, then exactly p 0’s, and another p 1’s. Clearly this string is not of the form ww, so we contradict the assumption that L is regular. □
Problem 3. (Exercise 4.2.3, 10 points)

If \(L \) is a language, and \(a \) is a symbol, then \(a \setminus L \) is the set of string \(w \) such that \(aw \) is in \(L \). For example, if \(L = \{a, aab, baa\} \), then \(a \setminus L = \{\epsilon, ab\} \). Prove that if \(L \) is regular, so is \(a \setminus L \). Hint: Remember that the regular languages are closed under reversal and under the quotient operation of Exercise 4.2.2.

Proof. If \(L \) is regular, so is \(L^R \) (the regular languages are closed under reversal). According to Exercise 4.2.2, we know \(L^R/a \) is also regular. Since it is easy to prove \(a \setminus L = (L^R/a)^R \), we conclude that \(a \setminus L \) is regular.
Problem 4. (10 points)

Give an algorithm to tell whether a regular language L contains at least 100 strings.

Algorithm 1 \textsc{NumberOfStrings}(D, n)

Input: D: a black box that tests if a string is in L. n: pumping lemma constant.

Output: Return “yes” if L contains at least 100 strings, otherwise return “no”

1: for $i ← n$ to $2n - 1$ do
2: for all string w of length i do
3: if $D(w) = \text{accept}$ then
4: return “yes”
5: count ← 0
6: for $i ← 0$ to $n - 1$ do
7: for all string w of length i do
8: if $D(w) = \text{accept}$ then
9: count ← count + 1
10: if count ≥ 100 then
11: return “yes”
12: else
13: return “no”

Suppose, however, that there are no strings in L whose length is in the range n to $2n - 1$. We claim there are no strings in L of length $2n$ or more, and thus testing all strings of length between 0 and $n - 1$ is sufficient for us to tell whether L contains at least 100 strings. In proof, suppose w is the shortest string in L of length at least $2n$. Then the pumping lemma applies to w, and we can write $w = xyz$, where xz is also in L. How long could xz be? It can’t be as long as $2n$, because it is shorter than w, and w is the shortest string in L of length $2n$ or more. It can’t be shorter than n, because $|y| \leq n$. Thus, xz is of length between n and $2n - 1$, which is a contradiction, since we assumed there were no strings in L with a length in that range.

Clearly, the blackbox D and constant n can be easily determined if the input regular language is represented as a DFA (or NFA or regular expression). That is, D is basically the membership algorithm and n could be fixed as the size of the DFA.
Problem 5. (Exercise 4.4.2, 20 points)

The following figure is the transition table of a DFA.

<table>
<thead>
<tr>
<th>→</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>*C</td>
<td>D</td>
<td>H</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>H</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>I</td>
</tr>
<tr>
<td>*F</td>
<td>G</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>B</td>
</tr>
<tr>
<td>H</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>*I</td>
<td>A</td>
<td>E</td>
</tr>
</tbody>
</table>

(a) Draw the table of distinguishabilities for this automaton.

(b) Construct the minimum-state equivalent DFA.

(a)

(b) Equivalent classes: \{A, D, G\}, \{B, E, H\}, \{C, F, I\}.