CS150 Homework 3 Solution keys, spring, 2025

Problem 1. (10 points)

Prove that the following are not regular languages.

- (a) $\{0^n 1^m 2^n \mid n \text{ and } m \text{ are arbitrary integers}\}.$
- (b) $\{0^{2n}1^n \mid n \ge 1\}$
- (a) **Proof.** Assuming the language L is regular, let p be the pumping-lemma constant. Pick $w = 0^p 12^p$. Then when we write w = xyz, we know that $|xy| \le p$, and therefore y consists of only 0's. Thus, xz, which must be in L if L is regular, consists of fewer than p 0's, followed by a 1 and exactly p 2's. That string is not in L, so we contradict the assumption that L is regular.
- (b) Proof. Assuming the language L is regular, let p be the pumping-lemma constant. Pick w = 0^{2p}1^p. Then when we write w = xyz, we know that |xy| ≤ p, and therefore y consists of only 0's. Thus, xyyz, which must be in L if L is regular, consists of more than 2p 0's, followed by exactly p 1's. That string is not in L, so we contradict the assumption that L is regular.

Problem 2. (10 points)

Prove that the following are not regular languages:

The set of strings of 0's and 1's that are of the form ww, that is, same string repeated.

Proof. Assuming the language L is regular, let p be the pumping-lemma constant. Pick a string $0^{p}1^{p}0^{p}1^{p}$. Then when we write it as xyz, we know that $|xy| \leq p$, and therefore y consists of only 0's. Thus, xz, which must be in L if L is regular, consists of fewer than p 0's, followed by exactly p 1's, then exactly p 0's, and another p 1's. Clearly this string is not of the form ww, so we contradict the assumption that L is regular.

Problem 3. (Exercise 4.2.3, 10 points)

If L is a language, and a is a symbol, then $a \setminus L$ is the set of string w such that aw is in L. For example, if $L = \{a, aab, baa\}$, then $a \setminus L = \{\epsilon, ab\}$. Prove that if L is regular, so is $a \setminus L$. *Hint:* Remember that the regular languages are closed under reversal and under the quotient operation of Exercise 4.2.2.

Proof. If L is regular, so is L^R (the regular languages are closed under reversal). According to Exercise 4.2.2, we know L^R/a is also regular. Since it is easy to prove $a \ L = (L^R/a)^R$, we conclude that $a \ L$ is regular.

3

Problem 4. (10 points)

Give an algorithm to tell whether a regular language L contains at least 100 strings.

Algorithm 1 NUMBEROFSTRINGS(D, n)

Input: D: a black box that tests if a string is in L. n: pumping lemma constant. Output: Return "yes" if L contains at least 100 strings, otherwise return "no" 1: for $i \leftarrow n$ to 2n - 1 do for all string w of length i do 2: 3: if D(w) = accept then return4: "yes" // the language is infinite // 5: $count \leftarrow 0$ 6: for $i \leftarrow 0$ to n - 1 do 7: for all string w of length i do if D(w) = accept then8: $count \leftarrow count + 1$ 9: 10: if $count \ge 100$ then return "yes" 11: 12: else return "no" 13:

Suppose, however, that there are no strings in L whose lengths are in the range n to 2n-1. We claim there are no strings in L of lengths 2n or more, and thus testing all strings of lengths between 0 and n-1 is sufficient for us to tell whether L contains at least 100 strings. In the proof, suppose w is the shortest string in L of length at least 2n. Then the pumping lemma applies to w, and we can write w = xyz, where xz is also in L. How long could xz be? It can't be as long as 2n, because it is shorter than w, and w is the shortest string in L of length 2n or more. It can't be shorter than n, because $|y| \le n$. Thus, xz is of length between n and 2n - 1, which is a contradiction, since we assumed there were no strings in L with a length in that range.

Clearly, the blackbox D and constant n can be easily determined if the input regular language is represented as a DFA (or NFA or regular expression), That is, D is basically the membership algorithm and n could be fixed as the size of the DFA.

Problem 5. (Exercise 4.4.2, 20 points)

The following figure is the transition table of a DFA.

	0	1
$\rightarrow A$	B	E
B	C	F
*C	D	H
D	E	H
E	F	Ι
*F	G	B
G	H	B
H	I	C
*I	A	E

(a) Draw the table of distinguishabilities for this automaton.

(b) Construct the minimum-state equivalent DFA.

(a)										
	B	×								
	C	×	×							
	D		×	×						
	E	×		×	×					
	F	×	×		×	×				
	G		×	×		×	×			
	H	×		×	×		×	×		
	Ι	×	×		×	×		×	×	
		A	B	C	D	E	F	G	H	

(b) Equivalent classes: $\{A, D, G\}, \{B, E, H\}, \{C, F, I\}.$

