
CS150 Homework 3

Due 5/15

Problem 1. (10 points)

Prove that the following are not regular languages.

(a) {0n1m2n | n and m are arbitrary integers}. 
(b) {02n1n | n ≥ 1}

(d) Proof. Assuming the language L is regular, let p be the pumping-lemma constant. Pick 
w = 0p12p.                 Then when we write w = xyz, we know that |xy| ≤ p, and therefore
y consists of only 0’s. Thus, xz, which must be in L if L is regular, consists of fewer 
than p 0’s, followed by a 1 and exactly p 2’s. That string is not in L, so we contradict
the assumption that L is regular. ¤

(f) Proof. Assuming the language L is regular, let p be the pumping-lemma constant. Pick     
w= 02p1p.                     Then when we write w = xyz, we know that |xy| ≤ p, and therefore
y consists of only 0’s. Thus, xyyz, which must be in L if L is regular, consists of more 
than 2p 0’s, followed by exactly p 1’s. That string is not in L, so we contradict the
assumption that L is regular. ¤
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Problem 2. (10 points)

Prove that the following are not regular languages:

The set of strings of 0’s and 1’s that are of the form ww, that is, same string repeated.

Proof. Assuming the language L is regular, let p be the pumping-lemma constant. Pick a 
string 0p1p0p1p. Then when we write it as xyz, we know that |xy| ≤ p, and therefore y 
consists of only 0’s. Thus, xz, which must be in L if L is regular, consists of fewer than p 
0’s, followed by exactly p 1’s, then exactly p 0’s, and another p 1’s. Clearly this string is
not of the form ww, so we contradict the assumption that L is regular. ¤
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Problem 3. (Exercise 4.2.3, 10 points)

If L is a language, and a is a symbol, then a \ L is the set of string w such that aw is
in L. For example, if L = {a, aab, baa}, then a \ L = {ε, ab}. Prove that if L is regular, so
is a \ L. Hint: Remember that the regular languages are closed under reversal and under
the quotient operation of Exercise 4.2.2.

Proof. If L is regular, so is LR (the regular languages are closed under reversal). 
According to Exercise 4.2.2, we know LR/a is also regular. Since it is easy to prove 
a \ L= (LR/a)R, we conclude that a \ L is regular.
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Problem 4. (10 points)

Give an algorithm to tell whether a regular language L contains at least 100 strings.

Algorithm 1 NumberOfStrings(D, n)
Input: D: a black box that tests if a string is in L. n: pumping lemma constant.
Output: Return “yes” if L contains at least 100 strings, otherwise return “no”
1: for i ← n to 2n− 1 do
2: for all string w of length i do
3:

4:

if D(w) = accept then return              
“yes”    // the language is infinite //

5: count ← 0
6: for i ← 0 to n− 1 do
7: for all string w of length i do
8: if D(w) = accept then
9: count ← count + 1

10: if count ≥ 100 then
11: return “yes”
12: else
13: return “no”

Suppose, however, that there are no strings in L whose lengths are in the range n to 2n− 1. 
We claim there are no strings in L of lengths 2n or more, and thus testing all strings of lengths 
between 0 and n − 1 is sufficient for us to tell whether L contains at least 100 strings. In the 
proof, suppose w is the shortest string in L of length at least 2n. Then the pumping lemma 
applies to w, and we can write w = xyz, where xz is also in L. How long could xz be? It can’t 
be as long as 2n, because it is shorter than w, and w is the shortest string in L of length 2n or 
more. It can’t be shorter than n, because |y| ≤ n. Thus, xz is of length between n and 2n − 1, 
which is a contradiction, since we assumed there were no strings in L with a length in that 
range.
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Clearly, the blackbox D and constant n can be easily determined if the input regular language is represented as a DFA (or NFA or regular expression), That is, D is basically the membership algorithm and n could be fixed as the size of the DFA.



Problem 5. (Exercise 4.4.2, 20 points)

The following figure is the transition table of a DFA.

0 1
→ A B E

B C F
∗C D H
D E H
E F I
∗F G B
G H B
H I C
∗I A E

(a) Draw the table of distinguishabilities for this automaton.

(b) Construct the minimum-state equivalent DFA.

(a)
B ×
C × ×
D × ×
E × × ×
F × × × ×
G × × × ×
H × × × × ×
I × × × × × ×

A B C D E F G H

(b) Equivalent classes: {A,D, G}, {B, E, H}, {C, F, I}.

A,D,G B,E,H

C,F,I

0,1

0,1

1

0
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