Problem 1. (10 points)

Prove that the following are not regular languages.

(a) \(\{0^n1^m 2^n | n \text{ and } m \text{ are arbitrary integers} \} \).

(b) \(\{0^{2^n} 1^n | n \geq 1 \} \)

(d) Proof. Assuming the language \(L \) is regular, let \(p \) be the pumping-lemma constant. Pick \(w = 0^p1^p2^p \). Then when we write \(w = xyz \), we know that \(|xy| \leq p \), and therefore \(y \) consists of only 0’s. Thus, \(xz \), which must be in \(L \) if \(L \) is regular, consists of fewer than \(p \) 0’s, followed by a 1 and exactly \(p \) 2’s. That string is not in \(L \), so we contradict the assumption that \(L \) is regular. □

(f) Proof. Assuming the language \(L \) is regular, let \(p \) be the pumping-lemma constant. Pick \(w = 0^{2p}1^p \). Then when we write \(w = xyz \), we know that \(|xy| \leq p \), and therefore \(y \) consists of only 0’s. Thus, \(xyyz \), which must be in \(L \) if \(L \) is regular, consists of more than \(2p \) 0’s, followed by exactly \(p \) 1’s. That string is not in \(L \), so we contradict the assumption that \(L \) is regular. □
Problem 2. (10 points)

Prove that the following are not regular languages:

The set of strings of 0’s and 1’s that are of the form ww, that is, same string repeated.

Proof. Assuming the language L is regular, let p be the pumping-lemma constant. Pick a string $0^p1^p0^p1^p$. Then when we write it as xyz, we know that $|xy| \leq p$, and therefore y consists of only 0’s. Thus, xz, which must be in L if L is regular, consists of fewer than p 0’s, followed by exactly p 1’s, then exactly p 0’s, and another p 1’s. Clearly this string is not of the form ww, so we contradict the assumption that L is regular. □
Problem 3. (Exercise 4.2.3, 10 points)

If L is a language, and a is a symbol, then $a \setminus L$ is the set of string w such that aw is in L. For example, if $L = \{a, aab, baa\}$, then $a \setminus L = \{\epsilon, ab\}$. Prove that if L is regular, so is $a \setminus L$.

Hint: Remember that the regular languages are closed under reversal and under the quotient operation of Exercise 4.2.2.

Proof. If L is regular, so is L^R (the regular languages are closed under reversal). According to Exercise 4.2.2, we know L^R/a is also regular. Since it is easy to prove $a \setminus L = (L^R/a)^R$, we conclude that $a \setminus L$ is regular.

□
Problem 4. (10 points)

Give an algorithm to tell whether a regular language \(L \) contains at least 100 strings.

Algorithm 1 \textsc{NumberOfStrings}(D, n)

\textbf{Input:} \(D \): a black box that tests if a string is in \(L \). \(n \): pumping lemma constant.

\textbf{Output:} Return “yes” if \(L \) contains at least 100 strings, otherwise return “no”

\begin{enumerate}
\item for \(i \leftarrow n \) to \(2n - 1 \) do \\
\item \hspace{1em} for all string \(w \) of length \(i \) do \\
\item \hspace{2em} if \(D(w) = \) accept then return “yes” // the language is infinite // \\
\item \hspace{1em} \text{count} \leftarrow 0 \\
\item \hspace{1em} for \(i \leftarrow 0 \) to \(n - 1 \) do \\
\item \hspace{2em} for all string \(w \) of length \(i \) do \\
\item \hspace{3em} if \(D(w) = \) accept then \\
\item \hspace{4em} \text{count} \leftarrow \text{count} + 1 \\
\item \hspace{1em} if \(\text{count} \geq 100 \) then \\
\item \hspace{2em} return “yes” \\
\item \hspace{1em} else \\
\item \hspace{2em} return “no”
\end{enumerate}

Suppose, however, that there are no strings in \(L \) whose lengths are in the range \(n \) to \(2n - 1 \). We claim there are no strings in \(L \) of lengths \(2n \) or more, and thus testing all strings of lengths between 0 and \(n - 1 \) is sufficient for us to tell whether \(L \) contains at least 100 strings. In the proof, suppose \(w \) is the shortest string in \(L \) of length at least \(2n \). Then the pumping lemma applies to \(w \), and we can write \(w = xyz \), where \(xz \) is also in \(L \). How long could \(xz \) be? It can’t be as long as \(2n \), because it is shorter than \(w \), and \(w \) is the shortest string in \(L \) of length \(2n \) or more. It can’t be shorter than \(n \), because \(|y| \leq n \). Thus, \(xz \) is of length between \(n \) and \(2n - 1 \), which is a contradiction, since we assumed there were no strings in \(L \) with a length in that range.

Clearly, the blackbox \(D \) and constant \(n \) can be easily determined if the input regular language is represented as a DFA (or NFA or regular expression). That is, \(D \) is basically the membership algorithm and \(n \) could be fixed as the size of the DFA.
Problem 5. (Exercise 4.4.2, 20 points)

The following figure is the transition table of a DFA.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rightarrow A)</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>(\ast C)</td>
<td>D</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>I</td>
</tr>
<tr>
<td>(\ast F)</td>
<td>G</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>(\ast I)</td>
<td>A</td>
<td>E</td>
</tr>
</tbody>
</table>

(a) Draw the table of distinguishabilities for this automaton.

(b) Construct the minimum-state equivalent DFA.

(a) Equivalent classes: \(\{A, D, G\} \), \(\{B, E, H\} \), \(\{C, F, I\} \).