
Homework 3

Q1 [10 pts] P.131 Ex.4.1.1: b), e)

b)
Let p be the pumping-lemma constant. Pick w =(p)p. String w contains p (’s, which are
followed by p)’ s. Then when we write w = xyz, we know that |xy| <= p, and therefore y
consists of only ('s. Thus, xyyz, which must be in L if L is regular, consists of more than p
('s, followed by exactly p)'s. That string is not in L, so we contradict the assumption that
L is regular.

f)
Let p be the pumping-lemma constant. Pick w = 0p12p . Then when we write w = xyz, we
know that |xy| <= p, and therefore y consists of only 0's. Thus, xyyz, which must be in L
if L is regular, consists of more than p 0's, followed by exactly 2p1's. That string is not in
L, so we contradict the assumption that L is regular.

Q2 [10 pts] P.132 Ex.4.1.2: c)

c)
Let p be the pumping-lemma constant. Pick a string

p20 . Then when we write it as xyz,
we know that |xy| <= p, and therefore y consists of only 0's. Let’s assume that |y| = m,
thus, xyk z , which must be in L if L is regular, consists of 2p + m * (k-1) 0's. Clearly, for all
k >= 0, the total number of 0’s cannot always be the power of 2. This string is not in L,
so we contradict the assumption that L is regular.

Q3 [15 pts] P.147 Ex.4.2.4: b), c)

b) wrong
If L ={ a, aab, baa }, then a\L = { epsilon, ab }, then left side = a(a\L) = { a, aab } ≠ L

c) true
By doing the concatenation of L and a, we get a new language L’, which is the set of
strings wa such that w is in L. Then we go ahead to get the quotient of L’ and a, which by
definition is the set of strings w such that wa is in L’. Obviously this leads us back to L.

Q4 [10 pts] P.155 Ex.4.3.3
Given a regular language L, we can construct a corresponding DFA for it, say it is A. By
reversing the non-accepting states and the accepting states of A, we get a DFA A’ which
describe the complement of language L, which takes O(n) time if A has at most O(n)
states and transitions. It’s clear to see the problem whether L contains all strings over its
alphabet is equivalent to the problem whether the complement of L is empty. Section
4.3.2 has given us an algorithm to test emptiness of regular languages, so basically we’ve
done.

Q5 [15 pts] P.165 Ex.4.4.2
a) The table of distinguishabilities

B X
C X X
D X X
E X X X
F X X X X
G X X X X
H X X X X X
I X X X X X X
 A B C D E F G H

b) the minimum-state equivalent DFA
 0 1
->ADG BEH BEH
BEH CFI CFI
*CFI ADG BEH

A,D,G 0,1
B,E,H

0,10

1

C,F,I

