HW2 Solutions

Q1 [15 pts] P.79 Ex.2.5.2.

Answer:

```
a) ECLOSE(p) = \{p,q,r\}

ECLOSE(q) = \{q\}

ECLOSE(r) = \{r\}
```

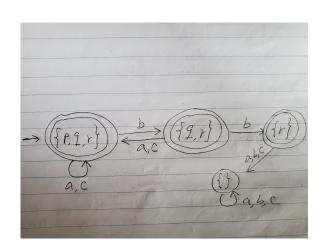
b) Any string over {a,b,c} whose length is less than or equal to 3, with the exception of {bba,bbb,bbc}.

```
In other words, the following strings:
{epsilon, a, b, c,
aa, ab, ac, ba, bb, bc, ca, cb, cc,
aaa, aab, aac, aba, abb, abc, aca, acb, acc,
baa, bab, bac, bca, bcb, bcc,
caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc}
```

c) Starting from ECLOSE(p) = $\{p,q,r\}$, we define the following transitions in the DFA:

```
transition (\{p,q,r\},a)=\{p,q,r\}
transition (\{p,q,r\},b)=\{q,r\}
transition (\{p,q,r\},c)=\{p,q,r\}
```

Then, continuing with the state $\{q,r\}$, we define:


```
 \begin{array}{l} transition \ (\{q,r\},a) = \{p,q,r\} \\ transition \ (\{q,r\},b) = \{r\} \\ transition \ (\{q,r\},c) = \{p,q,r\} \end{array}
```

For the state $\{r\}$, we define:

```
transition (\{r\},a)=empty set
transition (\{r\},b)=empty set
transition (\{r\},c)=empty set
```

Finally, for the state empty (or {}), we define

```
transition ({ },a)={ }
transition ({ },b)={ }
transition ({ },c)={ }
```


The state state is $\{p,q,r\}$ and the final states are $\{p,q,r\}$, $\{q,r\}$ and $\{r\}$.

Q2 [10 pts]

Part a)

Part b)

$$(b+ab)*(e+a+aa)(b+ba)*$$

Note that other valid regex's may also exist.

Q3 [20 pts] Convert the following DFA to a regular expression by following the state elimination technique. Show all the important intermediate steps.

Answer: Please see the last page for details. Note that here we may also convert the given the DFA to an epsilon-NFA with a unique final state and then perform state elimination.

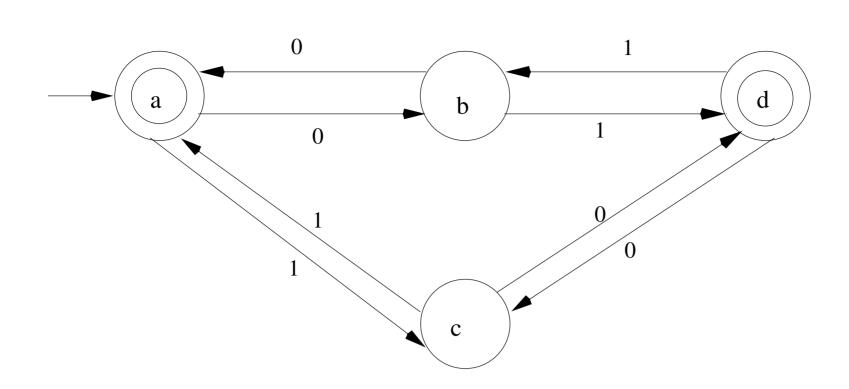
Q4 [10 pts] P.108 Ex.3.2.6: c), d)

Answer:

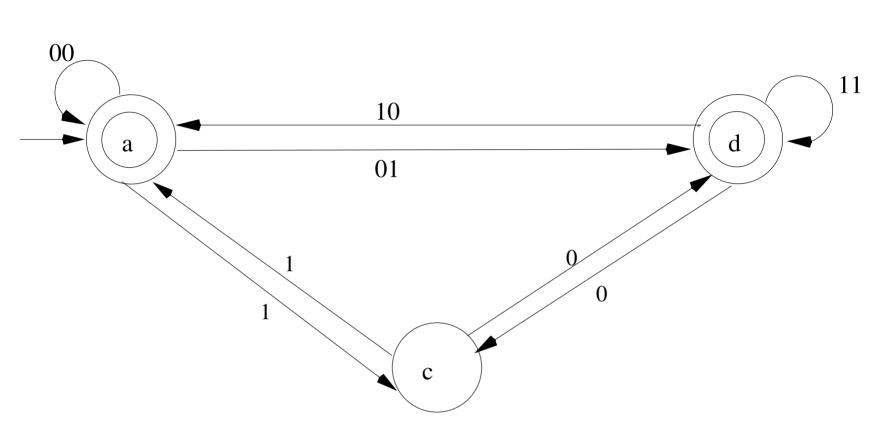
- c) The set of prefixes of strings in L.
- d) The set of all substrings of L (including epsilon).

Answer:

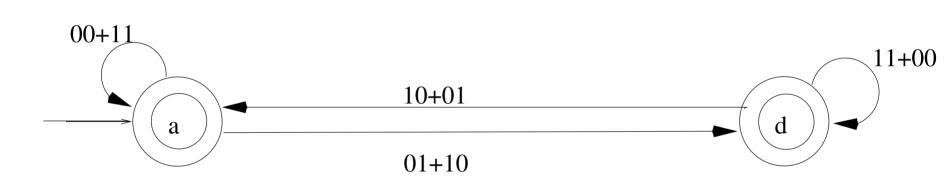
e)

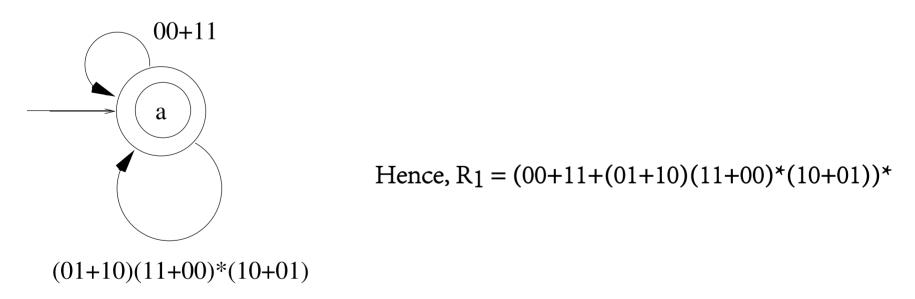

Replace R by symbol a, S by b and T by c. The lefthand side becomes (a+b)c. The righthand side is ac+bc. $L((a+b)c) = L(a+b)L(c) = \{a,b\}\{c\}$ = $\{ac,bc\} = L(ac+bc)$.

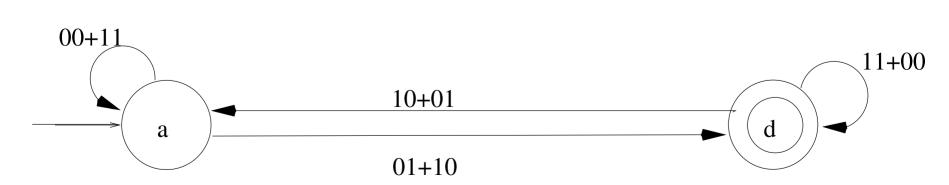
g)


Replace R by a. The lefthand side becomes (e+a)*.

The righthand side becomes a^* , which represents all strings over the unary alphabet $\{a\}$ (i.e., its universe). Obviously, the LHS is contained in the RHS. Since L(a) is contained in L(e+a), L(a*) is contained in L((e+a)*). Hence, the RHS is contained in the LHS as well, and both sides are equal.


Solution for Q3:


1) eliminate state (b)


2) eliminate state (c)

3) Regard a as the only final state and eliminate state d:

Regard d as the only final state:

Hence, $R_2 = (00+11+(01+10)(11+00)*(10+01))*(01+10)(00+11)*$

4) final regular expression

$$R = R_1 + R_2$$