11. String Search

- The goal is to find the first occurrence of a pattern \(P \) of length \(m \) in a text \(T \) of length \(n \). Pattern \(P \) and text \(T \) can be sequences of any kind, not necessarily character sequences:

\[
\text{found}' = (\exists i \mid 1 \leq i \leq n-m+1 \cdot \text{match}(i,m)) \land \\
(\text{found}' \Rightarrow 1 \leq i' \leq n-m +1 \land \text{match}(i',m) \land \text{nomatch}(i'-1))
\]

where

\[
\text{match}(i,k) = (P[1..k] = T[i..i+k-1])
\]
\[
\text{nomatch}(i) = (\forall i \mid 1 \leq k \leq i \cdot \neg \text{match}(i,m))
\]

Naive String Search ...

- The most straightforward solution is to start comparing \(P \) with \(T \) at position 1 and in case of mismatch shift the position of \(P \):

\[
\begin{array}{cccccccc}
t_1 & t_2 & \ldots & t_i & t_{i+1} & \ldots & t_{i+m-1} & \ldots & t_n \\
\end{array}
\]

\[
\text{shift} \quad \rightarrow \quad \begin{array}{cccc}
P_1 & P_2 & \ldots & P_m \\
\end{array}
\]

\[
i \leftarrow 0 \; ; \; \text{found} \leftarrow \text{false}
\]

while \(\neg \text{found} \land i + m \leq n \) do

\[
\triangleright \quad \text{invariant: nomatch}(i)
\]
\[
i \leftarrow i + 1
\]
\[
\text{found} \leftarrow \text{match}(i, m)
\]

- For the invariant, we observe that nomatch(0) holds initially and that nomatch(i-1) and ¬match(i,m) implies nomatch(i). The loop terminates with the postcondition (assuming \(m \leq n \)):

\[
\text{nomatch}(i) \land ((\neg \text{found} \land i+m > n) \lor (\text{found} \land i+m \leq n \land \text{match}(i,m)))
\]
... Naive String Search

- The statement found ← match(i,m) needs to be refined to a loop:

i ← 0 ; found ← false
 while ¬found ∧ i + m ≤ n do
 ▶ invariant: nomatch(i)
 i ← i + 1 ; j ← 0
 while j < m ∧ P[j + 1] = T[i + j] do
 ▶ invariant: match(i,j)
 j ← j + 1
 found ← j = m

Analysis of Naive String Search

- In the average case, if the characters are drawn from an alphabet with two or more characters and occur randomly, we can expect a mismatch after less than two comparisons (cf. analysis of table search and linear search and CRL exercise 34.1-4). Hence an upper bound of the average number of comparisons is
 \[2(n - m + 1) \]
 which makes an average case running time of \(O(n - m)\).

- For the worst case, suppose \(P\) consists of \(m-1\) characters "a" followed by character "b" and
 - \(T\) consists of \(n\) characters "a", or
 - \(T\) consists of \(n-1\) characters "a" followed by "b".
 In both cases, \((n - m + 1)\) \(m\) comparisons are necessary, making a running time of \(\Theta((n - m + 1)\ m)\).
Improving Naive String Search ...

- The idea is to use the information provided by a partial match to avoid further comparisons which cannot possibly succeed:

<table>
<thead>
<tr>
<th>Text</th>
<th>... a b c ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern</td>
<td>a b d</td>
</tr>
<tr>
<td>Shifted Pattern</td>
<td>a b d</td>
</tr>
<tr>
<td>Shifted Again</td>
<td>a b d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text</th>
<th>... a b c ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern</td>
<td>a b d</td>
</tr>
<tr>
<td>Shifted Pattern</td>
<td>a b d</td>
</tr>
</tbody>
</table>

... Improving Naive String Search

<table>
<thead>
<tr>
<th>Text</th>
<th>... a a c ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern</td>
<td>a a d</td>
</tr>
<tr>
<td>Shifted Pattern</td>
<td>a a d</td>
</tr>
<tr>
<td>Shifted Again</td>
<td>a a d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text</th>
<th>... a b c a b d ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern</td>
<td>a b c a b c</td>
</tr>
<tr>
<td>Shifted Pattern</td>
<td>a b c a b c</td>
</tr>
</tbody>
</table>

In other words, we could shift faster and make fewer comparisons if we know the repetitive structure of the pattern!
Structure of Knuth-Morris-Pratt Search...

At each position i in the text T, we compare $T[i]$ with one or more elements of P.

The index i used for comparisons with $T[i]$ is either incremented by one or remains the same; it is never decremented.

The index j used for comparisons with $P[j+1]$ is either incremented by one or decremented by a value such that it becomes greater than or equal to zero.

... Structure of Knuth-Morris-Pratt Search

The outer loop is responsible for incrementing i by one and, in case of a match, incrementing j by one. The inner loop is responsible for shifting P to the right, if possible:

```plaintext
i ← 0; j ← 0
while j < m ∧ i < n do
  ▷ invariant: nomatch(i−j) ∧ match(i−j+1, j)
  i ← i+1
  while j > 0 ∧ P[j+1] ≠ T[i] do
    j ← D
    if P[j+1] = T[i] then
      j ← j+1
  found ← (j = m)
```

$D[1..m]: \text{int}$

$j ←-- D[j]$

D is still unspecified. However, we note that if $D < j$, then the assignment $j ← D$ will shift P to the right! If $D = 0$, then the pattern is shifted beyond its current position.
Determining Maximal Shifts

- The idea of D is that it depends only on the pattern P and the position j, where 1 ≤ j ≤ m. Hence it can be represented by D = d[j], where d is an array of type:
 \[d : \text{array}[1..m] \text{ of integer}\]

- For example, for P = "ababc" we have

- In general, d[j] is the length of the longest prefix of P[1..j] which is also a suffix of P[1..j]:
 \[d[j] = \max\{k \mid 0 ≤ k < j \land P[1..k] = P[j-k+1..j]\}\]

- Computing d amounts to searching strings, for which we can use Knuth-Morris-Pratt search itself.

Knuth-Morris-Pratt Search

▷ compute d
 \[d[1] \leftarrow 0\]
 \[k \leftarrow 0\]
 for j ← 2 to m
 while k > 0 ∧ P[k+1] ≠ P[j] do
 k ← d[k]
 if P[k+1] = P[j] then
 k ← k+1
 d[j] ← k
▷ search for P
 i ← 0 ; j ← 0
 while j < m ∧ i < n do
 i ← i+1
 while j > 0 ∧ P[j+1] ≠ T[i] do
 j ← d[j]
 if P[j+1] = T[i] then
 j ← j+1
 found ← (j = m)

How would you analyze this algorithm? How many comparisons would it require in the worst case?
Principle of Boyer-Moore Search

- Knuth-Morris-Pratt search yields a genuine benefit only in the case of a partial mismatch, which is comparatively rare. Boyer-Moore Search improves also the average case.
- The idea is to start comparing the pattern with the text at the end of the pattern. In case of a mismatch, the pattern can immediately be shifted to the right by a precomputed number of positions.

Example where the compared characters are underlined:

Hoola-Hoola girls like Hooligans
Hooligan
 Hooligan
 Hooligan
 Hooligan
 Hooligan

Structure of Boyer-Moore Search

- Let match(i,j) mean that when P[1] is shifted over T[i], then all elements to the right of P[j] match the corresponding ones in T; let nomatch(i) mean that there is no complete match up to T[i]:

 match(i, j) = (P[j + 1 .. m] = T[i + j .. i + m – 1])
 nomatch(i) = (∀ k | 1 ≤ k ≤ i • ¬match(i, 0))

- i ← m
 while i ≤ n do
 ▷ invariant: nomatch(i - m)
 j ← m; k ← i
 while j > 0 ∧ P[j] = T[k] do
 ▷ invariant: match(i - m + 1, j) ∧ i - m = k - j
 j ← j - 1; k ← k - 1
 if j = 0 then
 return k + 1
 i ← i + d[T[i]]
Maximal Shifts

- \(d[x]\) is defined to be the rightmost occurrence of character \(x\) in \(P\) from the end (not including the last character):
 \[
 \forall k \mid m - d[x] < k < m \cdot P[k] \neq x
 \]

- For example, if \(P = \text{"abc"}\), then
 \(d[a] = 2, d[b] = 1, d[c] = 3, d[x] = 3\) for all \(x \neq a, b, c\)

- If \(P = \text{"aab"}\), then
 \(d[a] = 1, d[b] = 3, d[x] = 3\) for all \(x \neq a, b\)

- If \(P = \text{"aba"}\), then
 \(d[a] = 2, d[b] = 1, d[x] = 3\) for all \(x \neq a, b\)

Boyer-Moore Search

- Boyer-Moore-Search \((P, T)\)
 \[
 \begin{align*}
 &\text{for each character } x \text{ do} \\
 &\hspace{1em} d[x] \leftarrow m \\
 &\hspace{1em} \text{for } j \leftarrow 1 \text{ to } m - 1 \text{ do} \\
 &\hspace{2em} d[P[j]] \leftarrow m - j \\
 &\hspace{1em} i \leftarrow m \\
 &\hspace{1em} \text{while } i \leq n \text{ do} \\
 &\hspace{2em} j \leftarrow m; k \leftarrow i \\
 &\hspace{3em} \text{while } j > 0 \land P[j] = T[k] \text{ do} \\
 &\hspace{4em} j \leftarrow j - 1; k \leftarrow k - 1 \\
 &\hspace{2em} \text{if } j = 0 \text{ then} \\
 &\hspace{3em} \text{return } k + 1 \\
 &\hspace{2em} i \leftarrow i + d[T[i]]
 \end{align*}
 \]

What is the best and worst case running time?
Comparison of String Search Algorithms

- Let m be the length of the pattern and n the length of the text. We assume that the size of the alphabet is a constant (otherwise we would need to add the size to the running time of Boyer-Moore). We are interested in the average and worst case running times in case when the pattern does not occur in the text:

<table>
<thead>
<tr>
<th></th>
<th>Naive</th>
<th>Knuth-Morris-Pratt</th>
<th>Boyer-Moore</th>
</tr>
</thead>
<tbody>
<tr>
<td>average</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n+m)$</td>
<td>$\Theta(n/m)$</td>
</tr>
<tr>
<td>worst</td>
<td>$\Theta(nm)$</td>
<td>$\Theta(n+m)$</td>
<td>$\Theta(n \cdot m)$</td>
</tr>
</tbody>
</table>

- Combination of Knuth-Morris-Pratt and Boyer-Moore is possible by building tables d_1 and d_2, respectively, and taking the larger shift of both. This way we achieve $\Theta(n/m)$ in average and $\Theta(n+m)$ in the worst case. However, the additional bookkeeping makes the gain questionable in practice.