
An Analysis of Using Many Small Programs in CS1

Joe Michael Allen1, Frank Vahid1,2, Alex Edgcomb1,2, Kelly Downey1, and Kris Miller1

1Computer Science and Engineering, University of California, Riverside
2zyBooks, Los Gatos, California

jalle010@ucr.edu, vahid@cs.ucr.edu, alex.edgcomb@zybooks.com, kelly@cs.ucr.edu, kmiller@cs.ucr.edu

ABSTRACT

Modern program auto-graders enable new CS1 approaches.

Instructors can easily create new assignments, with students

receiving immediate score feedback and resubmitting

assignments. With such auto-graders, one approach assigns many

small programs (MSPs) each week instead of one large program

(OLP). Earlier research showed MSPs in CS1 yielded happier

students and better grades. Our university and other schools have

switched to MSPs in CS1. This paper addresses common

questions about MSPs. We analyzed submissions for a 76-student

section of our MSP CS1 course. Given 7 MSPs per week each

worth 10 points, students needed 50 points for full credit. Students

averaged 17 minutes per MSP and 120 minutes per week. Given 7

days, students on average started 2.2 days ahead of the due date,

with 37% starting at least 3 days ahead. 40% of students exceeded

the required 50 points per week (no extra credit was given). 50%

of students "pivoted" -- switching to another program before

completing the previous one. 54% used MSPs to study for exams.

Students used MSPs in ways beneficial to their learning and stress

reduction: spending sufficient time, completing more than

necessary, preparing for exams, and pivoting to avoid getting

stuck. A common concern is that MSP CS1 students will do

poorly in a CS2 using OLPs. We analyzed 5 quarters of CS2 and

found MSP students do fine (in fact slightly better). These results

encourage use and refinement of MSPs in CS1 and other courses.

CCS CONCEPTS

• Human-centered computing~Empirical studies in HCI • Social

and professional topics~CS1 • Social and professional

topics~Student assessment • Applied computing~Interactive

learning environments • Applied computing~E-learning

KEYWORDS

CS1; MSPs; Auto-grader; Programming; Time spent; Days before

due; Threshold; Pivot; Exam preparation; CS2

ACM Reference format:

Joe M. Allen, Frank Vahid, Alex Edgcomb, Kelly Downey, and Kris

Miller. 2018. An Analysis of Using Many Small Programs in CS1. In

SIGCSE ’19: 50th ACM Technical Symposium on Computer Science

Education, Feb 27–Mar 2, 2019, Minneapolis, MN

DOI: https://doi.org/10.1145/3287324.3287466

1 Introduction

Student success in CS1 classes is critical to keeping students in

the computer science (CS) major, training students in other majors

who need some programming, and attracting students to CS.

High-stress, poor performance, and negative evaluations in

college-level introductory programming classes (CS1) are well

known [2, 4, 6]. As such, improving CS1 teaching attracts much

research attention, such as peer instruction [7, 8, 9, 10, 11, 14],

media focus [3, 7, 10], student self-selection of projects [12], and

pair programming [5, 7, 10, 13].

One improvement approach makes use of modern program auto-

graders like zyBooks [18], Mimir [16], CodeLab [17], or Cody

Coursework [15], to give students immediate feedback, thus

allowing for resubmission and improved grades (while conserving

limited instructor grading time). Modern commercial auto-graders

make assignment creation easier than in the past, causing a

dramatic increase in their use in CS1 and other courses; for

example, since zyBooks' auto-grader was released in 2016, over

200 courses (mostly CS1) have started using an auto-grader that

did not before. With the ease of creating and grading

programming assignments, more instructors are creating and

assigning many small programs (MSPs) per week rather than the

more common one large program (OLP) per week. Our 2018

paper [1] summarized a study showing that MSPs led to happier

less-stressed students, without hurting student performance -- and

in fact leading to improved code-writing scores on exams, likely

due to students having more practice on focused concepts.

This paper's purpose is to answer various common questions

about MSPs. This research presents data and analysis on our

experience using MSPs in CS1 at our university.

Section 2 describes our methodology, describing our CS1 course

and detailing our data collection techniques. Section 3 addresses

the question "How much time do students spend working on

MSPs?" Section 4 addresses the question "How many days before

the due date do students start MSPs?" Section 5 addresses the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

©2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-5890-3/19/02…$15.00

https://doi.org/10.1145/3287324.3287466

question "What percent of MSPs do students complete each day?"

Section 6 addresses the question "Will students complete more

MSPs than required?" Section 7 addresses the question "Do

students take advantage of switching among MSPs when stuck

(pivot)?" Section 8 addresses the question "Do students use MSPs

to study for exams?" Section 9 addresses the question "Do

students who learn using MSPs in CS1 do poorly in a CS2 using

OLPs?" Section 10 concludes.

2 Methodology

2.1 Course

The study was conducted at our U.S. public research university,

whose CS department typically ranks in the top 60 by U.S. News

and World Report. The university operates on the quarter system.

Each academic year is divided into three "regular" 10-week

quarters (fall, winter, spring) and one compressed 5-week summer

session. Throughout the academic year, the CS1 course serves

around 300-500 students each quarter. The course is required for

all computing majors and for various engineering, science, and

math majors, such that about half the students are computing

majors and half are non-computing majors. The course topics

include basic input/output, assignments, branches, loops,

functions, and vectors. The weekly structure of the course

includes three hours of instructor-led lecture, two hours of TA-led

labs, interactive online readings, and auto-graded homework

assignments. The course teaches C++ as the programming

language. The course has a midterm during week six and a final

after week 10. Each exam's points come half from multiple choice

questions and half from free-response coding questions. The

course uses active learning and peer learning in lectures.

2.2 Data collection

We analyzed data from a Spring 2017 76-student section of our

CS1 course that used MSPs. Our CS1 used an online textbook

published by zyBooks for all class readings, activities, and

programming assignments. At the quarter's end, we collected all

student submissions and explores for programming assignments

from zyBooks and combined them into one spreadsheet. A

submission is defined as when the student "turns in" their

assignment for grading. An explore is defined as when a student

runs their code through the zyBooks compiler for testing without

grading (development was done in the built-in zyBooks coding

windows; students were not introduced to an external

development environment). Each student submission has metadata

about the assignment title, a userID (anonymized and generated

from zyBooks), the submission score, the max score possible for

the submission, and a timestamp. An explore has the same

metadata as a submission but without a score and a max score. For

this study, we collected data from the 76 students for 61 MSPs. In

total, we collected 16,106 submissions and 48,186 explores for a

total of 64,292.

3 How much time do students spend working on

MSPs?

We generally expect students to spend about 3 hours per week

working on their programming assignments. Our past surveys and

analyses showed students on average spending about 2 hours, the

average pulled down by students who submit few or no programs

(of course some students spend more than 3 hours as well). We

designed the MSPs to take about the same total time per week as

the traditional OLP approach. A key question is how much time

do students actually spend working on MSPs.

To calculate the total time students spent on MSPs, we used each

timestamp for an explore or submit, calculated the difference

between each timestamp, and summed the differences. We

excluded a difference that exceeded 10 minutes, assuming the

student took a break. Note that our calculations are thus an

underestimate, as some breaks may have actually involved the

student working or researching, and we also cannot capture time

spent understanding and working on the program before the first

explore or submit.

Figure 1 summarizes the average time spent by students on MSPs

per week, as calculated above. The x-axis is the week number and

the y-axis is the time spent in minutes. On average, students spent

17 minutes per MSP, and 120 minutes per week, excluding week

1 (which had easy introductory programs) and week 9 (which had

fewer programs to complete). The two most challenging weeks

were week 4 covering loops, and week 8 covering vectors. The

dips in weeks 6 and 7 are due to several MSPs having students

rewrite earlier MSPs, but using user-defined functions.

Figure 1: Average time spent by students each week on MSPs.

Students with 0 submissions or 0 time spent were excluded

from calculations.

We compared our analyses with a survey during lecture of week 8

that had 21 questions, one of which being "The average hours per

week spent on all zyLab programming assignments that week

was?" with response options 1-2, 2-3, 3-4, …, 10+. Figure 2

summarizes student responses. 67 students responded. A weighted

average yields about 5 hours per week, which is higher than our

calculated time of 2 hours a week. This higher value may be due

to various factors including: our calculations being an

underestimate as mentioned earlier, students may overestimate or

overreport time spent, weaker students may skip lecture and not

be included in the survey, the survey's options may bias students

towards selecting higher values, and the weighted sum may

unintentionally round up.

Figure 2: CS1 Spring 2017 survey responses (67 students) for

"The average hours per week spent on all zyLab

programming assignments that week was?" A weighted sum

yields an average of 5 hours per week.

Figure 3 shows the time spent per MSP, using a box-and-whisker

plot. The x-axis is the MSP (61 total) and the y-axis is the time

spent in minutes. Dashed lines separate MSPs by week. The y-

axis is capped at one hour (60 minutes). Students who did not

attempt the given MSP are excluded from the calculations.

4 How many days before the due date do

students start MSPs?

We released each week's MSPs on Tuesday, all due the following

Tuesday at 9:00 pm. That week's readings and lectures (Tuesday

and Thursday, 80 minutes each) taught the concepts covered by

that week's MSPs. That week's 2-hour lab (Thursday) also taught

those concepts, with about 30 minutes at the end for students to

work on the MSPs and ask questions. A key question is how many

days before the due date do students start working on MSPs.

Figure 4 summarizes the average number of days students began

working on MSPs before the due date. The average was computed

by finding students' first submission for all MSPs, computing the

days between the first submission and the MSP due date,

calculating the percent of students that started T-7, T-6, …, T-0

days before the due date, and then averaging across all MSPs. The

x-axis is the number of days prior to the due date. Using "NASA

countdown-like" terminology, we use "T-2" to mean two days

before the due date (or Sunday). The y-axis is the average percent

of students that fall under each category. Week 1 is excluded from

these calculations since week 1 MSPs were very easy.

Figure 4: Percent of students who began MSPs each week T-X

days prior to the due date - Spring 2017.

To our pleasure, 37% of students (28) started 3 days ahead or

more. To our displeasure, 63% of students started only 2 days

ahead or less, with 35% of students (27) starting on the due date.

Students on average began 2.2 days ahead of the due date.

Figure 5 shows start times for the other two CS1 sections that

quarter, which used OLPs. Those students began on average 2.1

days ahead of the due date. Only 28% (48) started 3 days ahead or

more, and 25% (43) started on the due date. Note that the due

dates were different between the sections, but this comparison still

gives valuable insight.

Figure 3: Box-and-whisker plot of student time spent for each MSP. On average, students spent 17 minutes per MSP excluding

weeks 1 and 9.

Figure 5: Percent of students who began OLPs each week T-X

days prior to the due date - Spring 2017.

We had hoped that MSPs' less-intimidating nature would have led

to earlier starts by most students. MSPs had a mild impact on

students starting earlier, but many students still started on or near

the due date. We believe starting earlier is good practice, and thus

decided to try to encourage earlier starts. MSPs made such

encouragement easy. In our Fall 2018 course, we simply included

the following policy in our syllabus: "To discourage

procrastination, you will be required to complete at least 20 points

out of the 50 points each week by Sunday at 10 pm", which is 2

days prior to the Tuesday, 10 pm deadline. That small change led

to substantial modification in student behavior, with start dates

shifting from 2.5 (weeks 2 – 5) to 5.3 days before the due date. At

the time of this publication, that Fall 2018 course covered up to

week 5, and also excludes week 1 like the earlier data. Future

work is needed to see if this improvement also helps to reduce

student stress and improve grade performance.

5 What percent of MSPs do students complete

each day?

The previous section showed when students started, defined as

achieving at least 1 point on the MSP (out of 10 points). Here, we

analyze total completion percent per day. A key question is what

percentage of MSPs do students complete each day.

Figure 6 summarizes the completion rate of MSPs per day. The x-

axis is the number of days prior to the due date and the y-axis is

the completion percentage. The top bar is the percent completed

on that day and the bottom bar is the cumulative completion prior

to that day. Recall that only 50 of 70 points (71%) were required

for full credit.

Figure 6: MSP completion T-X days prior to the due date. The

top bar is the percent completed on that day, and the bottom

bar is the percent completed prior to that day.

Figure 6 shows a gradual increase in the completion rate

throughout the week. The completion rate increases 5-10% each

day except for the last day (T-0) which has about a 20% increase.

Because students need only complete 50 of 70 points, some MSPs

have 0% completion, pulling down the averages shown.

6 Will students complete more MSPs than

required?

Each week, students were assigned 7 MSPs (10 points each) and

were only required to complete 50 points of 70 to score 100% on

programming assignments for the week. No extra credit was given

for exceeding 50 points. We refer to the 50-point cutoff as the

full-credit threshold. A key question is whether students would

willingly complete more MSPs than required, which would

suggest that they find MSPs useful and/or enjoyable.

Figure 7 shows the percent of students that scored equal to or

above the full-credit threshold each week. The bottom bar is the

students that completed above the threshold and the top bar is the

students that completed equal to the threshold. In weeks 1, 2, 3,

and 6, a higher percentage of students scored above the threshold

than equal to the threshold. Across the quarter, an average of 40%

of students scored above the threshold.

Figure 7: Percent of students who completed equal to or above

the full-credit threshold each week.

Figure 8 provides a more detailed analysis via a bubble chart. The

x-axis is the week number and the y-axis is the total points scored

per week. The bubble size represents the number of students that

scored that number of points. For example, the largest bubble in

week 1 is labeled 53 because 53 students scored 70 points on

MSPs for that week. Note that students who scored 0 points for

the week are not included because those students likely dropped

the class or decided not to submit labs for the week. The dashed

line represents the full-credit threshold for each week. Note that

week 9's threshold is lower since only five MSPs were given to

students. On average, students who scored more than the full-

credit threshold scored an additional 13 points. As each MSP is

worth 10 points, this translates to completing an additional 1.3

MSPs each week.

Figure 8: Points students scored each week. Students who

scored 0 points for the week are excluded. Dashed line

indicates max points for the week.

We were pleased to find that so many students were able to meet

the full-credit threshold and that a substantial number were

willing to do more than the minimum required work.

7 Do students take advantage of switching among

MSPs when stuck (pivot)?

Pivoting is when a student partially completes an MSP (e.g.,

scores 6 of 10 points) and then decides to work on a different

MSP. Typically, with traditional OLPs, students only have the

option to work on the program until completion. If stuck, a

student has few or no options. With MSPs, the students can pivot

to another MSP. A key question is do students take advantage of

the opportunity to pivot, and if so how often.

A submission is defined as a pivot if all following rules are met:

1. The current submission is not the student's first submission

for the week

2. The current submission is for a different MSP than the

previous submission

3. The current submission is for an MSP that has not been

completed

4. The previous submission has not been completed

5. The current submission and previous submission are for

MSPs assigned in the same week

Figure 9 shows the percent of students who pivoted at least once

in a given week. The x-axis is the week number and the y-axis is

the percent of students that pivoted that week.

Figure 9: Percentage of students who pivoted at least once in a

given week. An average of 50% of students pivoted at least

once each week.

We found that students pivot on average 1.3 times each week. The

highest number of pivots was one student who pivoted 12 times in

week 4. Week 1 had few pivots due to the programs being easy.

With more challenging programs beginning in week 2, students

made much use of pivots. Students who pivoted at least once a

week pivoted on average 2.5 times.

For insight, we highlight three actual pivoting scenarios.

7.1 Pivot at 0% - Week 8 (vectors)

A student attempted MSP 5 three times but received 0 points on

all submissions. Instead of continuing MSP 5, the student

switched to MSP 7 and scored 10 points. The student did not

return to complete MSP 5. The student scored 50 points on MSPs

for the week, meeting the 50-point full-credit threshold.

7.2 Single pivot - Week 3 (branches)

A student worked on MSP 4 and scored 8 points. The student

switched to MSP 6 and scored 10 points. The student did not

return to complete MSP 4. The student scored 48 points on MSPs

for the week, nearly meeting the 50-point full-credit threshold.

7.3 Multiple pivots (3 or more) - Week 4 (loops)

A student worked on MSP 4 and scored 2 points. The student

switched to MSP 5 and scored 10 points. The student returned to

MSP 4 and improved their score from 2 points to 8. The student

moved to MSP 7 and scored 9 points. The student then worked on

MSP 6 and scored 10 points. Finally, the student returned to MSP

4 and improved their score from 8 points to 10. The student

scored 69 points on MSPs for the week, exceeding the 50-point

full-credit threshold and nearly hitting the 70-point max.

Students seem to take advantage of the pivot benefit that MSPs

offer, especially when a threshold is used. 94% of students (71

students) pivoted at least once throughout the 10-week quarter. As

a result, we hope to do future work to investigate whether students

who pivot score higher than those who do not, whether there any

detriments to pivoting, and whether students who pivot return and

solve the MSP they switched away from.

8 Do students use MSPs to study for exams?

Given that MSPs are short, concise, and focus on a single concept,

a key question is whether students voluntarily redo MSPs to

prepare for exams.

Given the dates for the midterm and final exams, we defined

criteria to determine if a student used an MSP for exam practice.

We said that a student used an MSP for exam practice if the

student had, for that MSP, a submission or explore timestamp that

was after the MSP's due date and within one week prior to the

exam. The midterm occurred during week six of the quarter and

the final occurred at the end of the quarter.

Table 1 shows the results of how many students used MSPs for

practice and how many unique MSPs were used to study. 54% of

students (41) used MSPs to study for either the midterm or final.

98% of all MSPs (60) were used by at least one student to study

for an exam.

Table 1: Student use of MSPs for exam preparation.

Total number of students 76

Total number of MSPs 61

% of students that used MSPs to study for the midterm 38%

% of students that used MSPs to study for the final 37%

% of students that used MSPs to study for either exam 54%

% of MSPs that were used to study for the midterm 97%

% of MSPs that were used to study for the final 90%

% of MSPs that were used to study for either exam 98%

We are pleased to see many students using MSPs to study for

exams. For comparison, we looked at the other two sections of

CS1 from Spring 2017, which used OLPs. Only 10% of students

(17) used OLPs to study for exams.

9 Do students who learn using MSPs in CS1 do

poorly in a CS2 using OLPs?

A common concern regarding MSPs in CS1 is the impact MSPs

will have on students when they reach CS2 using OLPs. A key

question is how do students taught via MSPs in CS1 fare in CS2,

compared to students taught via OLPs in CS1.

We gathered data from our CS2 course from Winter 2017 through

Spring 2018 (5 quarters). We determined which students took CS1

using MSPs and which took CS1 using OLPs. To be conservative,

we excluded students who did not take CS1 at our university. We

found 241 students that took MSPs and 312 students that took

OLPs. In total, 553 students who took CS2 at our university were

considered in our analysis.

Figure 10 shows CS2 performance results. The x-axis shows the

class work categories we analyzed (participation activities, labs,

programming assignments, midterm exams, final exam, and total

grade in the class) and the y-axis is student grade performance.

OLP students are the light bars on the left and MSP students are

the dark bars on the right.

Figure 10: CS2 performance for MSP CS1 students vs. OLP

CS1 students. MSP CS1 students do no worse, and in fact do

slightly better.

Figure 10 shows that students who took CS1 with MSPs perform

similarly, and in fact slightly better, than the students who took

CS1 with OLPs. Note that the purpose of this analysis is not to

claim MSPs in CS1 lead to better performance in CS2. Instead,

the analysis shows that MSPs are not harming students in CS2.

We hope to do further research to better understand the effects

that using MSPs in CS1 has on students in CS2.

10 Conclusion

Modern easy-to-use auto-graders enable new teaching approaches

in CS1 courses, like using MSPs instead of OLPs for weekly

programming assignments. Our previous research showed that

using MSPs in CS1 yielded happier students and better grades in

the course. This paper analyzed how students use MSPs. We

conclude that students are making good use of MSPs to aid in

their learning process: Students spend sufficient time working on

MSPs each week, begin working on MSPs earlier than for OLPs,

complete more MSPs than necessary with a full-credit threshold,

take advantage of pivoting between MSPs, and use MSPs to study

for exams. We also see that MSP CS1 students do just as well,

even slightly better, than OLP CS1 students in an OLP CS2. Our

department now uses MSPs in all CS1 sections, and we are aware

of dozens of other schools that have switched to MSPs as well.

ACKNOWLEDGEMENTS

This work was supported by the U.S. Dept. of Education

(GAANN fellowship) and by Google.

REFERENCES

[1] Joe Michael Allen, Frank Vahid, Kelly Downey, and Alex

Edgcomb. 2018. Weekly Programs in a CS1 Class:

Experiences with Auto-graded Many-small Programs (MSP).

In Proceedings of 2018 ASEE Annual Conference &

Exposition. DOI: https://peer.asee.org/31231

[2] Theresa Beaubouef and John Mason. 2005. Why the high

attrition rate for computer science students: some thoughts

and observations. SIGCSE Bull. 37, 2 (June 2005), 103-106.

DOI: http://dx.doi.org/10.1145/1083431.1083474

[3] Mark Guzdial. 2003. A media computation course for non-

majors. In Proceedings of the 8th annual conference on

Innovation and technology in computer science education

(ITiCSE '03), David Finkel (Ed.). ACM, New York, NY,

USA, 104-108.DOI: http://dx.doi.org/10.1145/961511.961542

[4] Päivi Kinnunen and Lauri Malmi. 2006. Why students drop

out CS1 course?. In Proceedings of the second international

workshop on Computing education research (ICER '06).

ACM, New York, NY, USA, 97-108. DOI:

http://dx.doi.org/10.1145/1151588.1151604

[5] Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric

Wiebe, Kai Yang, Carol Miller, and Suzanne Balik. 2003.

Improving the CS1 experience with pair programming. In

Proceedings of the 34th SIGCSE technical symposium on

Computer science education (SIGCSE '03). ACM, New York,

NY, USA, 359-362.

DOI:http://dx.doi.org/10.1145/611892.612006

[6] Andrew Petersen, Michelle Craig, Jennifer Campbell, and

Anya Tafliovich. 2016. Revisiting why students drop CS1. In

Proceedings of the 16th Koli Calling International Conference

on Computing Education Research (Koli Calling '16). ACM,

New York, NY, USA, 71-80. DOI:

https://doi.org/10.1145/2999541.2999552

[7] Leo Porter and Beth Simon. 2013. Retaining nearly one-third

more majors with a trio of instructional best practices in CS1.

In Proceeding of the 44th ACM technical symposium on

Computer science education (SIGCSE '13). ACM, New York,

NY, USA, 165-170. DOI:

http://dx.doi.org/10.1145/2445196.2445248

[8] Leo Porter, Cynthia Bailey Lee, and Beth Simon. 2013.

Halving fail rates using peer instruction: a study of four

computer science courses. In Proceeding of the 44th ACM

technical symposium on Computer science education

(SIGCSE '13). ACM, New York, NY, USA, 177-182. DOI:

http://dx.doi.org/10.1145/2445196.2445250

[9] Leo Porter, Cynthia Bailey Lee, Beth Simon, and Daniel

Zingaro. 2011. Peer instruction: do students really learn from

peer discussion in computing?. In Proceedings of the seventh

international workshop on Computing education research

(ICER '11). ACM, New York, NY, USA, 45-52. DOI:

http://dx.doi.org/10.1145/2016911.2016923

[10] Leo Porter, Mark Guzdial, Charlie McDowell, and Beth

Simon. 2013. Success in introductory programming: what

works?. Commun. ACM 56, 8 (August 2013), 34-36. DOI:

https://doi.org/10.1145/2492007.2492020

[11] Beth Simon, Michael Kohanfars, Jeff Lee, Karen Tamayo,

and Quintin Cutts. 2010. Experience report: peer instruction

in introductory computing. In Proceedings of the 41st ACM

technical symposium on Computer science education

(SIGCSE '10). ACM, New York, NY, USA, 341-345. DOI:

http://dx.doi.org/10.1145/1734263.173438

[12] Jeffrey A. Stone and Elinor M. Madigan. 2008. The impact of

providing project choices in CS1. SIGCSE Bull. 40, 2 (June

2008), 65-68. DOI: https://doi.org/10.1145/1383602.1383637

[13] Laurie Williams, Kai Yang, Eric Wiebe, Miriam Ferzli, and

Carol Miller. 2002. Pair Programming in an Introductory

Computer Science. OOPSLA Educator's Symposium, Seattle,

WA.

[14] Daniel Zingaro. 2014. Peer instruction contributes to self-

efficacy in CS1. In Proceedings of the 45th ACM technical

symposium on Computer science education (SIGCSE '14).

ACM, New York, NY, USA, 373-378. DOI:

http://dx.doi.org/10.1145/2538862.2538878

[15] Cody Coursework. https://coursework.mathworks.com/.

Accessed: August, 2018.

[16] Mimir. https://www.mimirhq.com/. Accessed: August, 2018.

[17] Turing's Craft: CodeLab. https://www.turingscraft.com/.

Accessed: August, 2018.

[18] zyBooks. https://www.zybooks.com/catalog/zylabs-

 programming/. Accessed: August, 2018.

