

UNIVERSITY OF CALIFORNIA

RIVERSIDE

A Many Small Programs (MSP) Approach in a CS1 Course

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Joe Michael Allen

June 2021

Dissertation Committee:

Dr. Frank Vahid, Chairperson

Dr. Stefano Lonardi

Dr. Paea LePendu

Dr. Tony Givargis

Copyright by

Joe Michael Allen

2021

The Dissertation of Joe Michael Allen is approved:

 Committee Chairperson

University of California, Riverside

 iv

ACKNOWLEDGEMENTS

First and foremost, I give praise, glory, and thanks to the Lord for blessing me

with all the opportunities I have had and for giving me the strength and the patience to

complete this work.

I give thanks to my mom, Lisa Allen, who is one of my greatest supporters

throughout this work and over my entire life. Being a single mom is not easy, but your

strength, sacrifice, and devotion to me and the family is something I will always admire.

Your love and support is unconditional and I am grateful to God to be your son. I strive

to be more like you every day. Love you mom!

To my beautiful wife Mrs. Ashley Allen. You are my rock, my joy, my love, and

my life. You show me so much love and so much support every day. I would not have

been able to complete this journey without you. You make each day worth living, thank

you for always being there for me and making me smile during the rough days. I love you

so much.

To my brother Christopher Allen, our walking miracle. It is my honor to be your

brother. You may not know it, but I look up to you so much and admire you in all you do.

You are one of a kind and I love you so much. Thank you for always being there for me.

Thank you to all my other siblings as well: Alex Estevez, Aaron Allen, Presley Allen, and

Grace Allen. I am blessed to be your brother and I am so proud of the lives you are all

leading. Your love and support have always been with me.

 v

To my Gaga Nora Allen, Papa Joe V. Allen, and Margie Briseno. Though you

may be my grandparents, I will always look to you as my second set of parents. You have

raised me, loved me, and nurtured me into the man I am today. If I did not have you in

my life, I would surely be lost. Thank you for all the support you've given me all my life.

I love you all forever until the sun don't shine.

A mi suegra Ana Martínez, mi tío político Edgar Martínez, mi cuñado Andy

Polanco y mi primo el pequeño Edgar. Estoy muy bendecido de ser parte de la familia

(¡oficialmente ahora!) Y muy agradecido por todo el amor y el apoyo que me han

brindado. Me han mostrado tanta amabilidad, ánimo y calidez desde el primer día que los

conocí. Los amo mucho a todos y estoy muy agradecido con Dios por el crecimiento de

mi familia.

I give thanks for all the support, guidance, and opportunity given to me by my

Ph.D. advisor Dr. Frank Vahid. You have always been a role model to me. Thank you for

teaching me critical thinking skills and how to write an email :) I will always admire your

passion and devotion for others - especially the students that you teach, including myself.

Thank you to my committee members: Dr. Stefano Lonardi, Dr. Paea LePendu,

and Dr. Tony Givargis for supporting me in this work and providing helpful feedback

that shaped this work.

I give thanks to my best friend Rishi Naik. I am so blessed by your friendship and

all the wisdom you have shared over years. I have always looked up to you and admire

you a ton. Thank you for putting up with me, like almost every day, but I appreciate all

our time together these past 10 years and looking forward to a lifetime more.

 vi

I would like to thank the Association of Computing Machinery (ACM), the

American Society for Engineering Education (ASEE), the Consortium for Computing

Sciences in Colleges, and the Institute of Electrical and Electronics Engineers (IEEE)

organizations for providing constructive criticisms and opportunities for publishing my

works.

Finally, I thank the University of California, Riverside (UCR) for providing me

with an education and opportunities such as this Ph.D., all my colleagues over the years

that have knowingly and unknowingly supported me, and anyone else I forgot to mention

or do not have room to mention. God bless.

 vii

DEDICATION

I dedicate this work to my mom, Lisa Allen. You are my rock and everything I

hope to be one day. Words on this page could never express the gratitude and love I have

for you. You have been by my side every day of my life and continue to support me in

every step I take, giving everything you have to me, my brother, and the family. Without

you, none of this would be possible, I mean this with all of my heart. You deserve every

blessing God can give and I hope this small token of gratitude can express how much you

mean to me. Love you mom.

I dedicate this work to my grandparents Nora Allen, Joe V. Allen, and Margarita

Briseno. I am not sure what I did to deserve you, but I will be sure to thank God when I

see Him. I hope you know how much I love you and how thankful I am for all the love

you have given me and for raising me as your own son. Life has not always been easy for

us and the family, but with the support and devotion from you, we have all remained

strong and united. There is nothing I can do to repay you back for all the blood, sweat,

tears, and sacrifices you have made for me and the family, but may this small token of

gratitude serve as a reminder of my love for you.

I dedicate this work to my wife Ashley Allen. It's crazy thinking back and

realizing that in the timespan of my Ph.D., we have dated, become boyfriend and

girlfriend, gotten engaged, and then gotten married. Wow! You are my everything Love

and I hope I prove that to you each and every day. You are my strength, my support, my

joy, my happiness, my everything. We have been through so much together and we are

 viii

just starting our life together. Your support and your love mean everything to me and I

look forward to growing old with you. I love you so much my Ashley. May this small

token of gratitude show you how much you mean to me and how thankful to God I am to

be your husband.

I dedicate this work to my uncle Michael Postich. You were taken away far before

your time uncle. I am sad to say we didn't know each other as well as I would have liked,

but I do have fond memories of us on camping trips and white-water rafting. In your final

days, you showed us all so much strength, love, and kindness to all those around you.

Even through your suffering, you were always the devoted and loving husband to my

aunt and the kind, gentle, and goofy brother to my mom. You are an inspiration and

although you are no longer with us to share with me in this moment of success, may this

small token of gratitude reach you in heaven where you are at peace and enjoying the

company of our Lord. Rest in peace Uncle Michael, we love you and we will see you

again soon.

 ix

ABSTRACT OF THE DISSERTATION

A Many Small Programs (MSP) Approach in a CS1 Course

by

Joe Michael Allen

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, June 2021

Dr. Frank Vahid, Chairperson

A well-run introductory CS1 course is essential for all students within CS

education. CS1 is necessary to keep students in the major and important to attract non-

majors to the CS field. Unfortunately, there are many well-known issues that most CS1

courses have in common: high drop rates, low retention, high student stress, student

struggle, academic dishonesty, and low grades. In this work, we aim to address these

issues and seek to improve CS1 courses by focusing on weekly programming

assignments. Our work introduces a different teaching approach from the traditional One

Large Program (OLP) teaching approach, to a Many Small Programs (MSP) teaching

approach. Instead of assigning students one large programming assignment to complete

each week, the MSP approach involves assigning students multiple smaller programming

assignments, for example 5-7 programs each week, instead. Such an approach has

become more feasible with the advent of program auto-graders with immediate feedback

to students, partial credit, and resubmit capabilities. In this dissertation, we discuss the

 x

conception of the MSP approach, provide insight into the process of transitioning from an

OLP approach to an MSP approach, discuss various benefits that an MSP approach

offers, discuss some pros and cons for using such an approach, present results from

surveys and multiple analyses on various metrics related to an MSP approach, and

discuss future use and improvements to the current MSP approach and tools used to

analyze student interaction. This work shows that an MSP approach can lead to reduced

student stress, can improve student grade performance, finds students making good use of

the benefits an MSP approach offers, and shows that students are still well prepared for a

CS2. Finally, we introduce a tool for instructors to upload their own MSP data sets to

gain deep insight into their own students' behavior when using an MSP approach in their

own classes.

 xi

TABLE OF CONTENTS

Acknowledgements .. iv

Dedication .. vii

Abstract of the Dissertation .. ix

Table of Contents ... xi

List of Figures .. xx

List of Tables .. xxvi

Chapter 1. Introduction of Dissertation ... 1

1.1 Improving CS1 .. 1

1.2 Background on CS1 Educational Research ... 3

1.2.1 Pair Programming ... 3

1.2.2 Peer Instruction ... 4

1.2.3 Game Design and Gamification ... 4

1.2.4 Flipped Classroom .. 5

1.2.5 Programming Language and Applications ... 6

1.2.6 Automated homework Grading Systems .. 7

1.2.7 Other ... 7

1.3 MSP Teaching Approach Introduction ... 8

 xii

1.3.1 One Large Program (OLP) Teaching Approach ... 8

1.3.2 Auto-graded Programs .. 9

1.3.3 Many Small Programs (MSP) Teaching Approach .. 10

1.3.4 MSP Lab Activity Details ... 12

1.4 Common Terms Used in this Dissertation .. 14

Chapter 2. Weekly Programs in a CS1 Class: Experiences With Auto-Graded Many

Small Programs (MSPs) ... 15

2.1 Introduction ... 15

2.2 Methodology ... 17

2.2.1 CS1 Course Details ... 17

2.2.2 The Experimental Group .. 18

2.2.3 Course Tasks and Grades ... 18

2.2.4 Program Auto-grader .. 19

2.2.5 Many Small Program (MSP) Assignments .. 20

2.2.6 Collaboration on Many Small Programs .. 20

2.3 CS1 Student Survey Results .. 21

2.4 CS1 Student Grade Performance... 24

2.5 Discussion ... 26

2.6 Conclusion ... 29

 xiii

Chapter 3. An Analysis of Using Many Small Programs in CS1................................ 30

3.1 Introduction ... 30

3.2 Methodology ... 30

3.2.1 Course ... 30

3.2.2 Data Collection ... 31

3.3 How Much Time Do Students Spend Working on MSP Assignments? 32

3.4 How Many Days Before the Due Date Do Students Start MSP Assignments? 35

3.5 What Percent of MSP Lab Activities Do Students Complete Each Day? 38

3.6 Will Students Complete More MSP Lab Activities Than Required? 39

3.7 Do Students Take Advantage of Switching Among MSP Lab Activities When

Stuck (pivot)? .. 41

3.7.1 Pivot at 0% - Week 8 (vectors) ... 42

3.7.2 Single Pivot - Week 3 (branches) ... 43

3.7.3 Multiple Pivots (3 or more) - Week 4 (loops) .. 43

3.8 Do Students Use MSP Lab Activities to Study For Exams? 44

3.9 Do MSP-Trained Students Do Poorly in a CS2 Using an OLP Approach? 45

3.10 Conclusion ... 46

Chapter 4. Does a Many Small Programs Approach in CS1 Hurt Student

Performance in CS2? .. 48

 xiv

4.1 Introduction ... 48

4.2 Methodology ... 49

4.2.1 Course ... 49

4.2.2 Data Collection and Analysis ... 49

4.3 Main Results .. 51

4.3.1 CS2 Programming Assignments ... 51

4.3.2 CS2 Midterm and Final Exams, and More ... 52

4.4 Considering Gaps Between CS1 and CS2 Terms ... 54

4.5 Considering Gender... 55

4.6 Conclusion ... 56

Chapter 5. Many Small Programs in CS1: Usage Analysis from Multiple

Universities .. 58

5.1 Introduction ... 58

5.2 CS1 University Metadata .. 58

5.3 Data Collection .. 59

5.4 How Much Time Do Students Spend Working on MSP Lab Activities? 60

5.4.1 Analysis and Procedure .. 60

5.4.2 Results .. 61

 xv

5.5 How Many Days Before the Due Date Do Students Start Working on MSP Lab

Activities?.. 62

5.5.1 Analysis and Procedure .. 62

5.5.2 Results .. 63

5.6 How Do Students Score on MSP Assignments? ... 64

5.6.1 Analysis and Procedure .. 64

5.6.2 Results .. 64

5.7 Discussion ... 65

5.8 Conclusion ... 65

Chapter 6. An Analysis of Using Coral Many Small Programs in CS1 67

6.1 Introduction ... 67

6.2 Coral Programming Language .. 67

6.3 Methodology ... 70

6.3.1 Course ... 70

6.3.2 Experiment Details ... 70

6.3.3 Data Collection ... 71

6.4 Student Grade Performance .. 71

6.4.1 Results .. 71

6.5 Time Spent Metrics for Weekly MSP Assignments ... 72

 xvi

6.5.1 Results .. 72

6.6 Activity Run Metrics for Weekly MSP Assignments ... 73

6.6.1 Results .. 73

6.7 Start Date Metrics for Weekly MSP Assignments .. 74

6.7.1 Results .. 74

6.8 Pivot Metrics for Weekly MSP Assignments ... 75

6.8.1 Results .. 75

6.9 Discussion ... 76

6.10 Conclusion ... 77

Chapter 7. Concise Graphical Representations of Student Effort on Weekly Many

Small Programs ... 79

7.1 Introduction ... 79

7.2 Methods ... 80

7.2.1 Data Collection ... 80

7.2.2 Time Spent Calculations ... 81

7.2.3 Construction of Programming Workflow Charts ... 81

7.3 The Evolution of Our Workflow Charts ... 82

7.3.1 Version 1 -- Calendar View .. 83

7.3.2 Version 2 -- Compressed Chart .. 84

 xvii

7.3.3 Version 3 -- Color / Score Per Submit Run / Statistics Per Lab Activity 85

7.3.4 Version 4 -- More develop/submit details .. 87

7.3.5 Version 5 -- Tick Marks for Develop and Submit Runs................................... 89

7.3.6 Version 6 -- Pivot Indicators .. 90

7.3.7 Version 7 -- Dual Time and Weekly View Charts / Classification Features 91

7.4 Current Uses and Discussion... 93

7.4.1 Understanding Student Effort ... 93

7.4.2 Detecting Unallowed Collaboration ... 96

7.4.3 Student Classifications ... 97

7.4.4 Interactive Web Page .. 98

7.4.5 Future Improvements .. 100

7.5 Conclusion ... 101

Chapter 8. Analyzing Pivoting Among Weekly Many Small Programs in a CS1

Course .. 102

8.1 Introduction ... 102

8.2 Methodology ... 102

8.2.1 Course ... 102

8.2.2 Data Collection ... 103

8.3 MSP Student Pivoting ... 104

 xviii

8.4 How Many Times Do Students Pivot Each Week?... 105

8.4.1 Analysis and Procedure .. 105

8.4.2 Results .. 105

8.5 What Percent of Students Pivot Each Week?.. 106

8.5.1 Analysis and Procedure .. 106

8.5.2 Results .. 107

8.6 What Are Some Observed Pivot Patterns? .. 108

8.6.1 Analysis and Procedure .. 108

8.6.2 Results .. 108

8.6.2.1 Student Pattern 1: 0 Pivots .. 108

8.6.2.2 Student Pattern 2: 3 Pivots .. 109

8.6.2.3 Student Pattern 3: 10 pivots .. 110

8.7 Do Students Pivot More or Less Given a Full-credit Threshold? 111

8.7.1 Analysis and Procedure .. 112

8.7.2 Results .. 112

8.8 Do Students Return to Complete the Original Lab Activity They Pivot From? ... 114

8.8.1 Analysis and Procedure .. 114

8.8.2 Results .. 115

8.9 Student Feedback .. 116

 xix

8.10 Threats to Validity ... 116

8.10.1 Different Instructors ... 116

8.10.2 Different Style of an MSP Approach ... 117

8.10.3 Outside Code Development .. 117

8.11 Conclusion ... 118

Chapter 9. Contributions ... 119

References .. 122

 xx

LIST OF FIGURES

Figure 1.1: 2014 study by Watson and Li found that CS1 classes have a 30% non-

passing rate over a 30-year period from 1979 - 2013 [67]. .. 1

Figure 1.2: Instructor solution LOC for each OLP programming assignment from

a CS1 course taught during Spring 2017. Average LOC is 101, max 210. 9

Figure 1.3: High level depiction of an OLP programming assignment versus an

MSP programming assignment. .. 11

Figure 1.4: Instructor solution LOC for each MSP lab activity from a 2017 CS1

course taught at our university. Horizontal lines have been added to separate weekly MSP

assignments. Average is 32, max 90. Outliers in weeks 3 and 7 are due to tall if-elseif-

else trees. ... 11

Figure 1.5: Sample MSP lab activity with a title, prompt, instructor solution, and

test cases.. 13

Figure 2.1: Sample MSP lab activity generated via zyBooks' program auto-grader.

... 20

Figure 3.1: Average time spent by students each week on MSP assignments.

Students with 0 submits or 0 time spent were excluded from calculations. 33

Figure 3.2: CS1 Spring 2017 survey responses (67 students) for "The average

hours per week spent on all zyLab programming assignments that week was?" A

weighted sum yields an average of 5 hours per week. .. 34

 xxi

Figure 3.3: Box-and-whisker plot of student time spent for each MSP lab activity.

On average, students spent 17 minutes per MSP lab activity excluding weeks 1 and 9. . 34

Figure 3.4: Percent of students who began MSP lab activities each week T-X days

prior to the due date - Spring 2017. .. 36

Figure 3.5: Percent of students who began OLP assignments each week T-X days

prior to the due date - Spring 2017. .. 37

Figure 3.6: MSP lab activity completion T-X days prior to the due date. The top

bar is the percent completed on that day, and the bottom bar is the percent completed

prior to that day. .. 38

Figure 3.7: Percent of students who completed equal to or above the full-credit

threshold each week. ... 39

Figure 3.8: Points students scored each week. Students who scored 0 points for

the week are excluded. Dashed line indicates max points for the week. 40

Figure 3.9: Percentage of students who pivoted at least once in a given week. An

average of 50% of students pivoted at least once each week. .. 42

Figure 3.10: CS2 performance for MSP-trained students versus OLP-trained

students. MSP-trained students do no worse, and in fact do slightly better. 46

Figure 4.1: CS1 and CS2 class offerings considered. ... 50

Figure 4.2: CS2 student performance on all seven large CS2 programming

assignments. MSP-trained students did not perform worse than OLP-trained students (and

in fact did slightly better). p-values are shown above each column. p-values denoted with

* are nearing significance (p < 0.05). ... 51

 xxii

Figure 4.3: CS2 student performance on midterm and final exams. MSP-trained

students did not perform worse (and in fact performed slightly better). 52

Figure 4.4: CS2 student performance on all aspects of the CS2 course. MSP-

trained students do no worse in any aspect. .. 53

Figure 4.5: CS2 student performance considering only students known to have

taken CS1 at our university. Results are the same: MSP-trained students perform no

worse in any aspect. .. 53

Figure 4.6: CS2 performance for students having no gap between taking CS1 and

CS2. ... 54

Figure 4.7: CS2 performance for students having a one-quarter gap between CS1

and CS2. .. 55

Figure 4.8: CS2 performance for students having a two-quarter or more gap

between CS1 and CS2. .. 55

Figure 4.9: CS2 student grade performance considering gender. Data shows that

MSP-trained CS1 females display similar performance in CS2, in fact performing slightly

better. .. 56

Figure 5.1:Average time spent by students on each MSP lab activity. Students

with 0 submits or 0 time spent were excluded from calculations. 61

Figure 5.2: Average T-X days prior to the due date students began working on

MSP lab activities. .. 63

Figure 5.3: Average percentage score on MSP lab activities. 64

 xxiii

Figure 6.1: Sample introductory program written in C++, Java, Python, and Coral

(listed left to right). ... 68

Figure 6.2: Coral's online web-based simulator. ... 69

Figure 6.3: Coral's online web-based visual flowchart simulator. 69

Figure 6.4: Grade performance results: Both the pure C++ group (avg. 97%) and

the hybrid Coral/C++ group (avg. 95%) scored equally well on MSP assignments. 71

Figure 6.5: Time spent results: The hybrid group (avg. 95 min) spends slightly

more time working on MSP assignments each week than the pure C++ group (avg. 81

min). .. 73

Figure 6.6: Activity run results: The pure C++ group (avg. 48dev / 24sub)

develops less and submits more than the hybrid Coral/C++ group (avg. 67dev / avg. 16

sub). ... 74

Figure 6.7: Start date results: The pure C++ group (avg. 4.5days / 4.8days adj.)

begins working earlier than the hybrid Coral/C++ group (avg. 4.6days / 3.9days adj.). .. 75

Figure 6.8: Pivot results: The hybrid Coral/C++ group (avg. 2.4 / 2.2adj.) pivots

more than the pure C++ group (avg. 1.3 / 1.5adj.) each week. ... 76

Figure 7.1: Version 1 of the workflow chart. An expanded calendar view with lab

activities on the y-axis and days on the x-axis. Horizontal lines added to indicate when

students worked. ... 83

Figure 7.2: Version 2 of the workflow chart. Compressed chart only considering

total time spent represented by a black horizontal line per lab activity and a completion

score above.. 84

 xxiv

Figure 7.3: Version 3 of the workflow chart, adding color, summary statistics on

the right, gridlines, and more submit scores. .. 86

Figure 7.4: Version 4a. Used large filled in points to indicate a submit run, added

text to summarize student activity per work session, minor adjustments to chart labels. 88

Figure 7.5: Version 4b. Used small points with a 'S' label to indicate a submit run

and a 'D' label to indicate a develop run. Other updates are similar to Figure 7.4. 89

Figure 7.6: Version 5. Added tick marks below the time lines to indicate develop

runs, and tick marks above the time lines to indicate submit runs. 90

Figure 7.7: Version 6. Added arrows to indicate pivots. 91

Figure 7.8: Version 7. Time view combined with a weekly view and addition of

workflow classification features. .. 93

Figure 7.9: 'Healthy' programming workflow chart from a CS1 class. 94

Figure 7.10: Programming workflow chart showing a student likely struggling

with lab activity 2.. 95

Figure 7.11: Programming workflow chart for an OLP assignment in a CS1 class.

... 96

Figure 7.12: Potentially 'suspicious' programming workflow chart in a CS1 class.

... 97

Figure 7.13: High level description of the process to get a log file from a program

auto-grader and use the file to automatically generate workflow charts on a web page

using our tool. ... 98

 xxv

Figure 7.14: Screenshot of the current interactive programming workflow chart

website: summary analysis table. .. 99

Figure 7.15: Screenshot of the current interactive programming workflow chart

website: textual view... 99

Figure 7.16: Screenshot of the current interactive programming workflow chart

website: visual view. ... 100

Figure 7.17: Screenshot of multiple programming workflow charts to see the vast

number of charts we generate and display. ... 100

Figure 8.1: Box-and-whisker plot to show the pivots each week with a full-credit

threshold. The average pivots and standard deviation appear above each whisker (avg,

stdev). Total average pivots is 2.2 per week. .. 106

Figure 8.2: Percent of students that pivot each week.. 107

Figure 8.3: Programming workflow chart for a student during week 5. 109

Figure 8.4: Programming workflow chart for a student during week 4. 110

Figure 8.5: Programming workflow chart for a student during week 8. 111

Figure 8.6: Box-and-whisker plot to show the pivots each week without a full-

credit threshold. The average pivots and standard deviation appear above each whisker

(avg, stdev). Total average pivots is 1.6 per week. ... 113

Figure 8.7: Average percent of students that pivot each week without full-credit

threshold. ... 113

Figure 8.8: Pie chart summarizing student pivot categories. 115

 xxvi

LIST OF TABLES

Table 2.1: Results of the “stress survey” for Spring 2017. p-values denoted by *

are nearing significance (p < 0.05) and p-values denoted by ** are significant under the

Bonferroni correction (p < 0.0028). Most favored the experimental group. 22

Table 2.2: Control vs. experimental group averages on exams and other course

tasks for Spring 2017. p-values denoted with * are nearing significance (p < 0.05) and p-

values denoted with ** are significant under the Bonferroni correction (p < 0.0056). 25

Table 2.3: In-person versus online averages for Spring 2016, Fall 2016, and

Winter 2017, for about 1,000 physical and 300 online students, showing the online

section traditionally performs worse on exams compared with the in-person section. P-

values denoted with a * are nearing significance (p < 0.05). .. 25

Table 3.1: Student use of MSP lab activities for exam preparation...................... 44

Table 5.1: Metadata on the 10 universities included in this study. Details include

the programming language being taught, number of students in the class, number of MSP

lab activities given, number of submits collected, and number of develops collected. 59

Table 6.1: Student grade performance on all categories of our CS1 class. Students

that did not take the midterm exam or the final exam are excluded from calculations. p-

values denoted with * are nearing significance (p < 0.05). .. 72

 1

Chapter 1. INTRODUCTION OF DISSERTATION

1.1 IMPROVING CS1

Student success in introductory programming courses (known as CS1) is critical

to keeping students in the computer science (CS) major, training students in other majors

who need some programming experience, and attracting students to CS. Unfortunately,

CS1 courses have many well-known issues: high drop rates, low retention, high stress,

academic dishonesty, and low grades [34][47][8][9]. In 2005, Beaubouef and Mason [7]

reported that drop rates between 30%-40% is the norm for most CS programs. Similarly,

in 2014 Watson and Li [67] reported that over a 30-year period between 1979 and 2013,

CS1 courses have an average 30% non-passing rate. Figure 1.1 summarizes their

findings. These issues have drawn the attention of education researchers to find ways to

improve CS1.

Figure 1.1: 2014 study by Watson and Li found that CS1 classes have a 30% non-passing rate over a 30-

year period from 1979 - 2013 [67].

 2

CS educational research is vast and as such, this dissertation focuses on one small

aspect of CS1: weekly programming assignments. Weekly programming assignments

form a large portion of the CS1 curriculum and thus have a high impact on students'

experience in CS1. This dissertation introduces a Many Small Programs (MSP) teaching

approach meant to improve the student experience while maintaining good student grade

performance.

The following chapters consist of:

• A description of a Many Small Programs (MSP) teaching approach

including details of creating, using, and analyzing MSP programming

assignments.

• An analysis of student grade performance and student stress after being

taught CS1 via an MSP approach.

• An examination of factors such as time spent, start time, pivot usage,

student workflow, CS2 performance, and more as a result of using an MSP

approach in CS1.

• An introduction of student workflow charts and how to understand student

behavior on weekly programming assignments.

• An introduction of tools for other instructors to gain insight on their

students' interaction and performance with weekly MSP assignments.

 3

1.2 BACKGROUND ON CS1 EDUCATIONAL RESEARCH

College-level CS1 education researchers are focused on finding ways to improve

CS1 courses for students. Section 1.2 introduces and discusses seven CS1 research areas

currently being analyzed.

1.2.1 PAIR PROGRAMMING

Researchers have examined how student collaboration and instruction affects the

student experience. Pair programming is when at least two students collaborate on a

single program; working on the same design, algorithm, etc. Pair programming offers

benefits such as community building, stress reduction, active learning, and increased

student support. Nagappan et al. [44] researched pair programming in their introductory

programming courses and found an increase in the retention of students in CS, reduced

burden on students since pairs help each other, and no loss in student performance.

Rodriguez et al. [55] examined how pair programming and student collaboration affected

learning outcomes, finding that if pair programming is done properly, collaboration

increases learning and understanding. Blaheta [11] studied cooperative learning and

found that students had a positive reaction. Simon et al. [51] found that peer instruction

had a positive impact on student perception of learning. Porter and Simon [48] taught

CS1 using three practices, media computation, pair programming, and peer instruction.

They found an improvement in student retention in CS and a decrease in drop/fail rates.

Porter et al. [52] reports that pair programming, contrary to the claim that some students

may fail to learn since their partners do all the work, actually improves student grade

performance. Williams et al. [70] found that pair programming leads to higher grades on

 4

programming assignments, exams, and in the class overall. An added benefit is that pair

programming also reduces the stress on instructors and teaching assistants since students

get help from their peers. Work [37][53][59] continues to study the effects of peer

collaboration, finding many benefits.

1.2.2 PEER INSTRUCTION

Peer instruction is a teaching approach where students engage in small group

discussions and answer featured questions. This method adds interactivity to a traditional

lecture and has shown increased student engagement in class. Porter et al. [49] evaluated

10 years of instruction, looking at 16 courses that used peer instruction and concluded

that peer instruction reduced the failure rate by 61%. Porter et al. [50] performed a

similar study in upper division classes and found peer instruction did help students,

showing that peer instruction is beneficial even in upper level classes. Simon et al. [60]

performed a study of peer instruction in CS1 and CS1.5. Students were given clicker

questions, then they answered individually, discussed with their peers, and answered

again. The results found a 40% increase in the correct answer and found students felt peer

instruction was valuable. Zingaro [71] notes that peer instruction increases self-efficacy

in students while being enjoyable to both students and instructors.

1.2.3 GAME DESIGN AND GAMIFICATION

Gamification is defined as "the use of game design elements in non-game

contexts" [19]. This could include having students play games in class to learn, creating

programming assignments such that students are coding up a game, adding class

leaderboards to increase competition, and more. Cliburn and Miller [13] gave students

 5

three assignments with three project options each. The project options consisted of a

game, "choose your own adventure," or a traditional project. 71% of projects submitted

were the game option, although this choice did not have any statistical significance on

overall grade performance. Leutenegger and Edgington [38] describe using a "game first"

approach when teaching CS1. The course began teaching basic CS concepts like

variables, loops, conditional statements in flash, then teaching C++ programming with

pointers, concluding with graphics using OpenGL. Each assignment/project had a game-

like element or animation like moving a ball, creating a simulation, or designing a custom

game. Surveys showed that students learned effectively, enrollment in CS courses

increased, and retention of students in the game development CS class sequence

increased as well. Soh [62] applied gamification to a multiagent system class designed for

college seniors and graduate students. Students had to participate in several "game days"

where the students would compete against one another in games related to various class

concepts. Surveys showed students enjoyed the game days and thought that they were

useful to their learning.

1.2.4 FLIPPED CLASSROOM

The idea of a flipped classroom has been used in classrooms for years already.

Bishop and Verleger [10] define the flipped classroom as "an educational technique that

consists of two parts: interactive group learning activities inside the classroom, and direct

computer-based individual instruction outside the classroom." Instead of most of the

learning taking place in the traditional lecture, the flipped classroom inverts this idea and

suggests that most of the learning be done outside the classroom. Students are responsible

 6

for doing the reading and primary learning at home, and the classroom will be used for

problem solving, group activities, and group discussions. Findlay-Thompson and

Mombourquette [24] add that the "intent is to create a more collaborative learning

environment where students are focused on working through problems with both the

guidance of their teachers and the support of their peers." Giannakos et al. [28] surveyed

and summarized 32 peer-reviewed articles on flipped classrooms and reported benefits

such as increased student performance, attitudes, and engagement in the class. Students

reported to be more engaged with "authentic" learning due to the higher level of problem

solving in the classroom; thus student perception of the quality of learning is increased.

Additionally, the concept of a flipped classroom can be applied in many ways. Some

instructors assign students quizzes to take outside the classroom [22], some make videos

for students to watch outside the classroom [22], others give students additional online

studying resources for additional learning [27]. Flipped classrooms have shown various

benefits including improved performance, fewer drops, and happier students

[25][29][42][56].

1.2.5 PROGRAMMING LANGUAGE AND APPLICATIONS

Another area of educational research is to change the programming language or

the programming applications that are being used to teach CS1. Norman and Adams [45]

switched from C++ to Python, and also replaced weekly homework assignments with

labs and online problem sets. As a result, they observed an improvement in scores for

tests, lab exercises, the final exam, and the overall semester score. Layman et al. [36]

note that students are more interested in practical and socially-relevant assignments. As a

 7

follow-up, Layman et al. examined 200 CS1 programming assignments and found that

only 34% had a practical or socially-relevant context. Thus, the authors recommend

improving the applications of the programming assignments that instructors use. Guzdial

[31] changed their CS1 course to focus on media applications. Guzdial describes a new

course where students learn programming with Python and create programs for

manipulating sound, images, and movies.

1.2.6 AUTOMATED HOMEWORK GRADING SYSTEMS

Most closely related to our work is the increase of automated homework grading

systems and the introduction of small coding problems for homework or extra practice.

Automated homework systems have benefits such as easy assignment creation and

grading, quick and accurate feedback to students, and freeing of instructors' time.

Universities and companies have built automated homework grading systems and are

studying how to effectively use them [1][18][23][69]. In addition, smaller coding

problems are being introduced into classrooms. Systems such as CloudCoder [14],

CodingBat [15], Pearson's MyProgrammingLab [46], and Problets [54], help instructors

design small coding problems used as homework, warm-up, or extra practice in the

classroom.

1.2.7 OTHER

There are many other approaches that are being researched to improve CS1.

Studio-based learning [32][33] emphasizes student communication, collaboration, and

critical thinking skills; showing improvements in student attitude and content mastery.

Denny [17] viewed exam question creation as a tool for learning and had students author

 8

questions that could appear on their exam. Kumar [35] developed online tutors for their

course and evaluated student experience, opinions on learning, and other feedback.

Edgcomb et al. [21] replaced static textbooks with interactive textbooks at three

universities and found substantial improvements in exam scores, project scores, and

overall letter grades. Alfaro and Shavlovsky [2] created a system that allows students to

submit and collaboratively review and grade homework. They found that students had a

higher incentive to turn in higher quality work and homework reviews. Stone and

Madigan [63] allowed their students to choose their course projects from a comparable

set of alternatives. Allowing students to choose their projects increases student success

rate and enhances student perception of understanding the material.

1.3 MSP TEACHING APPROACH INTRODUCTION

1.3.1 ONE LARGE PROGRAM (OLP) TEACHING APPROACH

Traditionally, students are taught CS1 via a one large program (OLP) teaching

approach. An OLP approach involves instructors giving students one large programming

assignment each week to complete. This approach is manageable for instructors since

they only need to create, maintain, and grade a small number of assignments each term.

Typically, OLP programming assignments tend to share the following characteristics:

they cover many concepts at once, may require students to complete multiple parts,

usually have lots of text, and by nature, typically require a solution of 50 to 100 lines of

code, or more.

For example, our university has long taught CS1 by using an OLP approach.

Figure 1.2 shows the lines of code (LOC) for OLP programming assignments given at

 9

our university during the Spring 2017 quarter. We used 10 OLP programming

assignments with an average of 101 LOC with our largest assignment having 210 LOC.

For students who have never programmed before, such solution sizes can be intimidating,

thus, increasing stress or procrastination.

Figure 1.2: Instructor solution LOC for each OLP programming assignment from a CS1 course taught

during Spring 2017. Average LOC is 101, max 210.

For our university, and likely for most others, OLP programming assignments in

CS1 often account for much of the class grade. Some instructors assign simpler warm-

up/practice programs and/or smaller coding homework problems, worth a smaller grade

percentage. The weekly OLP programming assignments typically represent the hardest,

most-stressful part of CS1 for students, and is also where much of the learning occurs.

For this reason, we decided to focus our research on improving the way programming

assignments are used in CS1.

1.3.2 AUTO-GRADED PROGRAMS

To begin improving weekly programming assignments, we took advantage of

modern-day program auto-graders. A program auto-grader automatically runs students'

programs against test cases, scoring each program. Many auto-graders let a student

 10

directly submit a program and see score feedback immediately, including which test

cases failed, with the student allowed to submit multiple times. Program auto-graders

have existed for decades, such as CodeLab [65], Web-CAT [68], and numerous

homegrown auto-graders at various universities [6][64]. However, most early auto-

graders required high expertise to create new auto-graded assignments, involving

specialized scripting. In contrast, modern commercial auto-graders like zyBooks [72],

Mimir [41], and Matlab Grader [39] enable creation of new assignments in minutes,

entirely via web forms, with no specialized scripting. Due to the ease of use, there has

been a dramatic increase in program auto-grader use in CS1 and other courses. For

example, since zyBooks' auto-grader was released in 2016, over 250 courses (mostly

CS1) have started using an auto-grader that did not before.

1.3.3 MANY SMALL PROGRAMS (MSP) TEACHING APPROACH

The ease of creating and grading new programming assignments in modern auto-

graders, coupled with the learning benefit of students getting immediate fine-grained

score feedback, motivated us to consider a new teaching approach we refer to as the

many small programs (MSP) teaching approach. Instead of assigning students one large

programming assignment each week, we assign students multiple smaller programs, or

lab activities, each week instead. Typically, we give students between 5-7 lab activities to

complete each week. Figure 1.3 is a high-level depiction of an OLP programming

assignment versus an MSP programming assignment. Without auto-graders, the extensive

resources to grade so many programs deterred instructors from considering an MSP

 11

approach. Or, with older auto-graders, the difficulty of creating and maintaining so many

programs also deterred the approach.

Figure 1.3: High level depiction of an OLP programming assignment versus an MSP programming

assignment.

Compared to an OLP programming assignment, MSP lab activities teach one

specific concept at a time, are short in size, have short, concise prompts, and tend to have

smaller solution sizes. Figure 1.4 shows the lines of code (LOC) for each MSP lab

activity used at our university during the Spring 2017 quarter.

Figure 1.4: Instructor solution LOC for each MSP lab activity from a 2017 CS1 course taught at our

university. Horizontal lines have been added to separate weekly MSP assignments. Average is 32, max 90.

Outliers in weeks 3 and 7 are due to tall if-elseif-else trees.

MSP lab activities have several other immediate benefits. Students may find them

less intimidating due to their small size. There may be less inertia to get started on the

smaller programs, with students building confidence from the initial easier programs.

Students may benefit from the option of moving on to another program if stuck, then

coming back later to finish the incomplete program ("pivoting"). Finally, students get to

 12

have repeated but different learning experiences on the week's concepts (like "loops"),

meaning more practice.

1.3.4 MSP LAB ACTIVITY DETAILS

For additional insight, Figure 1.5 shows a sample MSP lab activity. Each MSP lab

activity consists of a title, a prompt, an instructor solution, and a set of test cases (with

assigned points) to grade the submitted code by. The prompt is short and concise; never

more than three sentences and contains specific instructions for the student to complete

the assignment. Sometimes the prompt can include helpful hints for students as well.

Instructor solutions are small and roughly between 10 - 50 LOC total with comments and

proper code styling. Test cases are typically input/output tests such that the program

expects an exact output for a given input. There is also the option to have unit tests where

the auto-grader tests a student's function directly. Point values are assigned to each test

case -- we found three to four test cases to be sufficient, typically totaling to 10 points per

assignment.

 13

Figure 1.5: Sample MSP lab activity with a title, prompt, instructor solution, and test cases.

 14

1.4 COMMON TERMS USED IN THIS DISSERTATION

An OLP approach (One Large Program Teaching Approach) is the traditional

teaching approach where students are given one larger programming assignment to

complete each week.

An MSP approach (Many Small Programs Teaching Approach) involves

assigning students multiple lab activities (programming assignments) to complete each

week. A weekly MSP assignment is a grouping of all MSP lab activities assigned to

students for the given week. For example, we typically assign students 5-7 MSP lab

activities each week, so all 5-7 lab activities collectively form an MSP assignment.

Students that have taken a CS1 taught via an MSP approach are considered MSP-trained

CS1 students.

We primarily use zyBooks' auto-grader for all our weekly MSP assignments. A

develop is when a student runs their code through zyBooks' compiler for testing without

grading and a submit is when a student "turns in" their code for grading. An activity run,

or run, is either a develop or a submit.

 15

Chapter 2. WEEKLY PROGRAMS IN A CS1 CLASS:

EXPERIENCES WITH AUTO-GRADED MANY SMALL PROGRAMS

(MSPS)

2.1 INTRODUCTION

Weekly programming assignments form a large part of the students' experience in

a CS1 course. At our university, our CS1 course followed the traditional one large

programming assignment per week (OLP) model with a few small warm-up programs,

for over 20 years. Our CS1 serves about 350 students per quarter (including majors and

non-majors). We used a program auto-grader for the past 10 years. We also used

commercial online auto-graded homework problems (which are even smaller coding

exercises) for about 15 years. Students are encouraged to collaborate on the warm-ups

and homework problems but are not permitted to collaborate on the weekly OLP

assignments. Students may, however, get help during instructor or teaching assistant (TA)

office hours or via discussion board posts to the class. We use pair programming at times

as well. Our lectures have included small-group collaborative programming (a form of

flipped classroom) since the late 1990s. Student evaluations indicate that the course is

reasonably well-liked, though many students indicate that the course is hard, time-

consuming, and stressful. We also check for and detect overly-similar submissions using

MOSS, a system for determining the similarity of programs [43]. Investigating and

pursuing academic dishonesty (typically 10-20 per quarter) is a time-consuming and

unpleasant part of the instructor’s job.

 16

About 10 years ago, faced with increasing enrollments and shrinking funds, we

developed an in-house program auto-grader. This dramatically reduced the time TAs

spent grading; freeing TAs to spend more time teaching and handling larger class

sections. Students also appreciated the immediate score feedback and the ability to

resubmit right away for a higher score. The auto-grader did not improve student

evaluations, exam performance, or academic dishonesty

In 2016, zyBooks [72] released a web-based program auto-grading system that

emphasized ease of use for both students (allows direct coding in the browser or file

upload) and instructors (creating new assignments via a simple web interface; requiring

no scripting or coding). With this system, any of our instructors or TAs could easily

create new assignments with no training. Creating each weekly large programming

assignment required only about 60-90 minutes; opposed to many hours in the past. Thus,

we created a new set of weekly assignments and warm-up assignments for winter 2016.

We continued revising assignments quarterly instead of yearly, or less.

The ease of creating new program assignments coupled with students getting

immediate, fine-grained score feedback enabled us to consider a new option. We

implemented a teaching approach that involves assigning students multiple smaller

assignments each week instead of the traditional OLP approach. We refer to this new

method as the many small programs (MSP) teaching approach.

Chapter 2 describes an experiment in which, for one of three class sections, we

taught CS1 via an MSP approach and compared survey results and grade performance

results to the other two class sections being taught via an OLP approach. We provide

 17

results of student surveys showing significantly happier students. We provide exam

results showing improved performance. Based on the results, our department changed all

CS1 class sections to use an MSP approach for the following quarter.

2.2 METHODOLOGY

2.2.1 CS1 COURSE DETAILS

The experiment was conducted in our CS1 course at the University of California,

Riverside. The CS department is typically ranked in the top 60 by the U.S. News and

World Report. The course usually serves about 350 students per quarter (three quarters

per year, plus summer) with four class sections containing 80-100 students per section. In

2013, our university made one class section completely online. The online section is run

identically to the physical class sections with the lectures and lab sessions carried out via

synchronized online meetings that require real-time attendance. Four instructors rotate to

teach the course, all with over five years of experience and strongly-positive student

evaluations. In a given quarter, two instructors teach the course, each with their own class

sections. Each section consists of three hours of instructor-led "lecture" per week. A

typical lecture consists of short talks, coding examples, and small-group coding activities.

All sections have two scheduled-lab hours per week led by a TA. Instructors and TAs

hold weekly office hours. An online discussion board is used for questions / answers.

This experiment was conducted during the Spring 2017 quarter. The CS1 course had

about 250 students split into three sections. Most students were non-computing majors.

 18

2.2.2 THE EXPERIMENTAL GROUP

The experimental group was one online section of our CS1 containing 76

students. The control group was the other two in-person sections containing 166 students.

Most features were kept the same for all three sections except the weekly programming

assignments, the midterm percentage, and allowing collaboration as described in 2.2.6.

All sections took the same midterm and final exams.

2.2.3 COURSE TASKS AND GRADES

In all class sections, students were assigned three tasks each week. (1) Reading

tasks that consisted of completing small activities and answering questions (multiple

choice, true/false, short-answer) found in our online textbook. Readings were due before

lecture. (2) Homework tasks were small auto-graded coding exercises, typically about 15-

20 per week, usually typing a few lines of code in a template program, like writing an if-

else statement or a for loop. (3) Programming assignments required students to apply that

week’s topics by writing one or more full programs.

The control and experimental groups had the same grade percentage points for

reading tasks (7.5%), homework tasks (7.5%), in-class participation (5%), and the final

exam (35%). Grade percentage points differed for programming assignments (control

25% vs. experimental 15%) and the midterm exam (control 20% vs. experimental 30%).

The experimental group was given 7 MSP lab activities per week versus the usual

one large programming assignment per week (plus warm-ups) in the control group.

Students could earn 0-10 points, per MSP lab activity, depending on how many test cases

their program passed. Students in the experimental group were told that 50 points yielded

 19

100% for the week. No extra credit was given for earning more than 50 points in a week.

Both groups used the same program auto-grader with immediate score feedback. Neither

group had limits on the number or rate of submissions.

2.2.4 PROGRAM AUTO-GRADER

We used a program auto-grader published by zyBooks [72]. zyBooks’ auto-grader

is a fully web-based system that makes creating and grading assignments simple. An

instructor creates a new lab activity by clicking a button that opens a web form. The

instructor enters a title and a text specification (with some formatting available). The

instructor chooses some configuration options such as compiler flags, number of submits

allowed (we selected unlimited), and whether submits are metered (we did not meter). A

code template can be provided for students as well (we usually provided a basic template

having includes and the main() function).

Next, the instructor creates test cases. An “input/output” test case involves typing

input values paired with expected output values. For example, if a program should square

its input, an “input/output” test case might have an input of -5 and an output of 25. The

instructor can create any number of test cases and assign any point value to each test

case. Test cases can also be configured to ignore output whitespace, indicate that the

output need only start with the expected output (or end with it), and more. Another kind

of test case is a unit test where a student’s function/method can be called directly to check

the returned result. Figure 2.1 shows a sample MSP lab activity generated via zyBooks'

program auto-grader. The specification section details the MSP lab activity's prompt and

title, the template code section is where sample code is provided and where the students

 20

interact with zyBooks' IDE, and the assessment section is where all the test cases are

located.

Figure 2.1: Sample MSP lab activity generated via zyBooks' program auto-grader.

2.2.5 MANY SMALL PROGRAM (MSP) ASSIGNMENTS

The course covered input/output, variables/assignments, branches, loops,

functions, and vectors. C++ was the language used in the course. All these topics were

taught within nine weeks (the 10th week covered various topics not involving

programming assignments). Solution sizes ranged from 10-50 lines of code. Each week's

MSP assignment consisted of 2 easy, 3-4 medium, and 1-2 hard MSP lab activities.

2.2.6 COLLABORATION ON MANY SMALL PROGRAMS

With each MSP lab activity being lower stakes in the experimental group vs. the

control group, the experimental group was told that they could collaborate versus the

control group whose students were allowed to discuss programs conceptually, but not to

show their programs to each other. The experimental group was told that similar or

 21

identical submissions were allowed (though they should indicate collaborators or other

helpers in comments). The only thing considered academic dishonesty would be having

someone else write their program. They were told that half the midterm and final exams

consisted of short coding problems of similar difficulty as the programming assignments,

and were given sample midterm and final exams illustrating that fact.

2.3 CS1 STUDENT SURVEY RESULTS

Our main goal was to improve student experience; hoping to reduce attrition and

attract students to computing majors. To gauge student satisfaction, we created a "stress

survey" to learn more about the students' experience in CS1. This survey asked 18

questions based on a 6-point Likert scale, with responses ranging from Strongly agree (6)

to Strongly disagree (1); no option of "Neither agree nor disagree" was given. To reduce

bias, some questions were asked such that a more agreeable answer was favorable ("I

enjoy the class") and others such that a less agreeable answer was favorable ("I am often

anxious about the class"). Questions such that a higher response number is favorable are

listed above the bolded line and questions such that a lower response number is favorable

are listed below the bolded line. The questions are shown in Table 2.1. Note that the

questions were asked to the students in an intermixed order. The survey was given in the

8th week of a 10-week quarter.

 22

Table 2.1: Results of the “stress survey” for Spring 2017. p-values denoted by * are nearing significance (p

< 0.05) and p-values denoted by ** are significant under the Bonferroni correction (p < 0.0028). Most

favored the experimental group.

Question Control

group avg.

Experimental

group avg.

p-value

I enjoy the class 4.53 4.87 0.046*

This class is an appropriate amount of work per week for the

number of units

3.73 4.09 0.073

I was prepared for the midterm exam 3.63 4.18 0.004*

I feel prepared for the final exam 2.78 2.84 0.414

The weekly programming assignments were enjoyable 3.37 4.13 0.001**

The weekly programming assignments contributed to my success

in the course

4.58 4.87 0.058

I learned a lot from the weekly programming assignments 4.58 4.94 0.029*

I frequently collaborated with others on the weekly programming

assignments

2.74 2.66 0.397

I feel confident in my ability to write a small (< 50 line) useful

program

3.98 4.32 0.087

I am often anxious about the class 3.72 3.15 0.020*

I spend a lot of time in the class figuring out system issues rather

than learning programming

2.99 2.43 0.022*

The number of tools and websites for this class are somewhat

overwhelming

3.15 2.50 0.010*

I have missed a deadline because I thought it was another time 2.48 2.75 0.202

I have looked for class info but couldn't find it 2.19 1.94 0.174

I felt anxious about the midterm exam 4.25 4.18 0.396

I feel anxious about the final exam 4.89 4.37 0.020*

The weekly programming assignments were stressful 4.31 3.93 0.058

The weekly programming assignments were frustrating 4.34 3.99 0.078

 23

In addition, we conducted a combined analysis. Per question, we z-scored all

responses. We concatenated the z-scores from the control group into one list, and

separately, the experimental group into another list. We compared the lists with the

student's T-test using two tails, yielding a p-value of 1.68E-69, which is smaller than the

Bonferroni correction value of 0.0028 (0.05 / 18), and thus interpreted as significant.

We converted the average of each list, control group's z-score average was -

0.0707 and experimental group's z-score was 0.1563, into a percentage difference via (1)

calculating the absolute difference between the average of each list, yielding 0.2270; (2)

converting the difference into a percentage using an online tool by Measuring U [40]

(two-sided); (3) dividing the resulting percentage by 2 to get the difference from the 50th

percentile. In conclusion, we found that the experimental group preferred the class 9%

more (p-value = 1.68E-69) than the control group.

We did not expect the experimental group to spend more time on programming

assignments per week since although more programs existed, they were smaller. We

expect all CS1 students to spend about 2-3 hours per week on their weekly programs and

our in-class surveys confirmed that both groups spent about that time. In Table 2.1, the

experimental group students indicated they felt the class was an appropriate amount of

work per week for the number of units (even more so than the control group, but not quite

statistically significant).

We also sought to compare the students’ experiences between the current

experimental group and the previous time that same instructor taught the course. This was

to determine whether the instructor alone might account for the differences. The

 24

instructor provided their teaching evaluations for their previous offering (55 students

completed the form) and for Spring 2017 (44 students completed the form). The

“Assignments contributed to my learning” response went from 4.4 of 5 (department

average was 4.2) to a high 4.72 (dept. avg. was 4.33) in the spring. In fact, nearly all

scores went up, including the university’s highest priority question “The instructor was

effective,” which improved from 4.3 (dept. avg. was 4.2) to 4.67 (dept. avg. was 4.25). In

fact, the course evaluations were in the 85th percentile for the entire university (30,000

students), which is unusual for a required CS class for non-majors. This data further

supports that the change to an MSP approach had a strong positive impact on the

students’ experiences.

2.4 CS1 STUDENT GRADE PERFORMANCE

We sought to improve the student experience without worsening student

performance. We thus compared the experimental and control groups’ performance on

exams and other course tasks. The exams were half multiple-choice questions and half

short coding questions (both in terms of points and approximate time). Table 2.2 shows

that the experimental group performed significantly better than the control group on the

midterm and final coding questions and slightly better on the multiple choice questions.

The experimental group and the control group performed similarly on reading activities

and weekly programming assignments. The control group performed better than the

experimental group on homework activities.

 25

Table 2.2: Control vs. experimental group averages on exams and other course tasks for Spring 2017. p-

values denoted with * are nearing significance (p < 0.05) and p-values denoted with ** are significant

under the Bonferroni correction (p < 0.0056).

 Control group % Experimental group % p-value

Final 70.1% 75.7% 0.009*

 Final multiple choice 72.9% 75.4% 0.097

 Final coding 67.2% 75.9% 0.003**

Midterm 68.2% 79.9% p < 0.001**

 Midterm multiple choice 84.4% 86.5% 0.075

 Midterm coding 53.6% 73.4% p < 0.001**

Reading activities 97.1% 95.3% 0.153

Homework activities 94.2% 87.6% 0.002**

Weekly programming assignments 88.4% 87.1% 0.317

Although we had no reason to believe that online students would do better, one

might question whether the section being online led to the higher scores. Thus, we

analyzed the scores for the past three offerings of the CS1 course. Table 2.3 shows that

the online section traditionally does not outperform the in-person sections, and in fact,

typically performs worse on the exams.

Table 2.3: In-person versus online averages for Spring 2016, Fall 2016, and Winter 2017, for about 1,000

physical and 300 online students, showing the online section traditionally performs worse on exams

compared with the in-person section. P-values denoted with a * are nearing significance (p < 0.05).

 Physical Online p-value

Final 81.1% 78.3% 0.390

Midterm 81.5% 78.3% 0.001*

Reading activities 93.1% 93.0% 0.964

Homework activities 94.3% 92.0% 0.030*

Weekly programming activities 89.1% 83.2% p < 0.001

We also note that the instructor who taught the experimental group section had

taught some of the online sections in the past (three times over the past three years).

 26

These instructor’s previous online sections never outperformed the other sections; instead

usually performed slightly worse; consistent with Table 2.3. This data increases our

confidence that the improvements seen in the online section of Spring 2017 is indeed due

to the introduction of an MSP approach.

2.5 DISCUSSION

The experimental group had three related changes: MSP approach versus an OLP

approach, allowing collaboration on those programs, and those programs being worth

15% rather than 25% (with more weight on the midterm). One might ask if one of the

latter two factors caused the different survey and performance results. However, we had

previously experimented with lowering the program percentage points and increasing

exam percentage points, but such a change was highly unpopular. Students complained

they spent too much time on programs worth little. We also experimented with

collaboration before but saw drops in exam scores as students over-relied on their

classmates for help.

Instead, we view the three changes as tightly interrelated. The MSP lab activities

are less intimidating, meaning students are less likely to seek inappropriate help and more

likely to attempt the programs themselves. The MSP lab activities are more focused,

allowing students to see their skills improving (e.g., each loop gets easier to write) and to

see how those skills will help on exams. Those factors enabled us to allow collaboration

since students would not immediately cheat such a system, instead first making attempts

because the programs are approachable and their usefulness clearer. (One might note that

the experimental group’s answer to the survey question “I frequently collaborated…” is

 27

not higher than the control group). Likewise, those factors allowed us to reduce the

program percentage, without students getting upset as in the past.

We note that, although the experimental group only needed 50 of 70 points or

71% program completion, the group obtained 87% completion, nearly identical to the

control group’s 88%. Students voluntarily completed more than necessary, further

suggesting students found the MSP lab activities approachable and useful. Also, no

student asked for an extension.

One might ask, given the rampant cheating common in CS1, is allowing

collaboration really going in the right direction? We think so. We believe most students

want to learn and will do so given what they understand to be a fair and valuable learning

experience. The positive benefits of student collaboration are well known and we wish to

encourage such collaboration in CS1.

Ultimately, we believe this is a case of technology enabling a new approach and

perspective. The traditional OLP model may never have been best for students but was

what instructors could manage. When programs were graded by hand (and when creating

auto-graded assignments was time-consuming), instructors could not conceive of giving

so many program assignments per week. Plus, with students not getting scores back

immediately, the idea of “you only need 50 out of 70 points” was less feasible since

students would not know their scores for a week or longer. When one looks at other

skills, like playing an instrument, instructors do not set up one recital a week. Instead,

students spend extensive time on drills, like playing scales, with instructors providing

immediate feedback to correct mistakes.

 28

If CS1 is taught only by an MSP approach, when will students learn to write

larger programs? Our thoughts:

• Majors will learn to write larger programs in CS2.

• Non-majors, if they need to program in their careers, are more likely to

have to write programs similar to the MSP lab activities, like writing a

small add-on function for a statistical analysis tool, for google docs, for a

database query, etc. If they need to write more substantial programs, they

will probably take a CS2 class (or more).

• With the above said, we note that we intentionally ran the experiment in a

more “extreme” manner, to see what effect would occur. Going forward,

our instructors plan to give one large assignment mid-quarter and one

large assignment end-of-quarter, with the other eight weeks using the MSP

approach.

Furthermore, we found that the MSP-trained students did just as well as the OLP-

trained students for the next term in CS2, which uses the traditional OLP approach and

does not allow collaboration. This analysis is discussed more in Section 3.9 and explored

in detail in Chapter 4.

We mention that the instructor who taught the experimental section stated that

they “are never going back.” The instructor has always had positive experiences teaching,

and (like the other CS1 instructors) has above-average student evaluations and positive

student comments. Still, the instructor said this was the best CS1 teaching experience

they had in 20 years.

 29

2.6 CONCLUSION

New technology, namely a program auto-grader with rapid/easy assignment

creation, enables replacing the traditional CS1 one large program approach by a many

small programs approach. The MSP approach involves numerous smaller, focused

programs due each week accompanied by a scoring threshold (in our case, 50 of 70 points

for the week yields full credit). The MSP approach is less intimidating for students.

Students can build confidence and skill on the easier lab activities and then work on the

harder ones; skipping around until they earn enough points. The MSP approach enabled

us to allow collaboration. The MSP approach allowed us to decrease the program

percentage and increase the exam percentage contribution to the total course grade, to be

better assured in testing what students know due to the controlled testing environment

(versus programming assignments where even with a no collaboration policy, instructors

cannot be certain who is doing the programming). The MSP approach led to significantly

greater satisfaction and less stress among the students. The approach also yielded

improved performance on the exams. The approach led to improved experiences for the

instructor and TA, including not having to spend any time on academic dishonesty. As a

result, our department switched all sections to primarily use the MSP approach, with

continued success. We encourage other departments to consider the approach.

 30

Chapter 3. AN ANALYSIS OF USING MANY SMALL PROGRAMS

IN CS1

3.1 INTRODUCTION

Our initial analysis [4] on using an MSP teaching approach in CS1 concluded that

such an approach could result in happier, less-stressed students without hurting student

performance. In fact, we saw that an MSP approach led to improved code-writing scores

on exams, likely due to students having more practice on focused concepts. After sharing

the results of our initial analysis, all CS1 courses at our university switched from an OLP

approach to an MSP approach the following fall 2018 quarter. Not only did our university

switch CS1 teaching approaches, other universities began incorporating an MSP

approach in their own CS1 classes as well -- many cloning our programming assignments

(with permission), and dozens of others have asked to view our MSP lab activities and

are considering adopting the approach. Since an MSP approach was becoming a large

part of our CS1 curriculum, we wanted to understand more about how students were

interacting with the new MSP lab activities. Chapter 3 seeks to answer common questions

related to MSP assignments.

3.2 METHODOLOGY

3.2.1 COURSE

The study was conducted in our CS1 at the University of California, Riverside

(UCR). UCR’s CS department typically ranks in the top 60 by U.S. News and World

Report. The university operates on the quarter system. Each academic year is divided into

 31

three "regular" 10-week quarters (fall, winter, spring) and one compressed 5-week

summer session. Throughout the academic year, the CS1 course serves around 300-500

students each quarter. The course is required for all computing majors and for various

engineering, science, and math majors, such that about half the students are computing

majors and half are non-computing majors. The course topics include basic input/output,

assignments, branches, loops, functions, and vectors. The weekly structure of the course

includes three hours of instructor-led lecture, two hours of TA-led labs, interactive online

readings, and auto-graded homework assignments. The course teaches C++ as the

programming language. The course has a midterm during week six and a final after week

10. Each exam's points come half from multiple choice questions and half from free-

response coding questions. The course uses active learning and peer learning in lectures.

3.2.2 DATA COLLECTION

We analyzed data from a Spring 2017 76-student section of our CS1 course that

used an MSP approach. Our CS1 used an online textbook published by zyBooks for all

class readings, activities, and lab activities. At the quarter's end, we collected all student

submits and develops for lab activities from zyBooks and combined them into one

spreadsheet. A submit is defined as when the student "turns in" their assignment for

grading. A develop is defined as when a student runs their code through the zyBooks

compiler for testing without grading (development was done in the built-in zyBooks

coding windows; students were not introduced to an external development environment).

Each student submit has metadata about the lab activity title, a userID (anonymized and

generated from zyBooks), the submit score, the max score possible for the submit, and a

 32

timestamp. A develop has the same metadata as a submit but without a score and a max

score. For this study, we collected data from the 76 students for 61 MSP lab activities. In

total, we collected 16,106 submits and 48,186 develops a total of 64,292.

3.3 HOW MUCH TIME DO STUDENTS SPEND WORKING ON MSP

ASSIGNMENTS?

We generally expect students to spend between 2-3 hours per week working on

their programming assignments. Our past surveys and analyses showed students on

average spending about 2 hours, the average pulled down by students who submit few or

no programs (of course some students spend more than 3 hours as well). We designed the

MSP assignments to take about the same total time per week as the traditional OLP

approach. We seek to answer the question: how much time do students spend working on

MSP assignments?

To calculate the total time students spent on MSP assignments, we used each

timestamp for a develop or submit, calculated the difference between each timestamp,

and summed the differences. We excluded a difference that exceeded 10 minutes,

assuming the student took a break. Note that our calculations are thus an underestimate,

as some breaks may have actually involved the student working or researching, and we

also cannot capture time spent understanding and working on the MSP assignments

before the first develop or submit.

Figure 3.1 summarizes the average time spent by students on MSP assignments

per week, as calculated above. The x-axis is the week number and the y-axis is the time

spent in minutes. On average, students spent 17 minutes per MSP lab activity and 120

 33

minutes per MSP assignments each week. This excludes week 1 (which had easy

introductory programs) and week 9 (which had fewer lab activities to complete). The two

most challenging weeks were week 4 covering loops, and week 8 covering vectors. The

dips in weeks 6 and 7 are due to several MSP lab activities having students rewrite earlier

MSP lab activities, but using user-defined functions.

Figure 3.1: Average time spent by students each week on MSP assignments. Students with 0 submits or 0

time spent were excluded from calculations.

We compared our analyses with a survey during lecture of week 8 that had 21

questions, one of which being "The average hours per week spent on all zyLab

programming assignments that week was?" with response options 1-2, 2-3, 3-4, …, 10+.

Figure 3.2 summarizes student responses. 67 students responded. A weighted average

yields about 5 hours per week, which is higher than our calculated time of 2 hours a

week. This higher value may be due to various factors including: our calculations being

an underestimate as mentioned earlier, students may overestimate or overreport time

 34

spent, the survey's options may bias students towards selecting higher values, and the

weighted sum may unintentionally round up.

Figure 3.2: CS1 Spring 2017 survey responses (67 students) for "The average hours per week spent on all

zyLab programming assignments that week was?" A weighted sum yields an average of 5 hours per week.

Figure 3.3 shows the time spent per MSP lab activity, using a box-and-whisker

plot. The x-axis is the MSP lab activity (61 total) and the y-axis is the time spent in

minutes. Dashed lines separate MSP assignments by week. The y-axis is capped at one

hour (60 minutes). Students who did not attempt the given MSP lab activity are excluded

from the calculations.

Figure 3.3: Box-and-whisker plot of student time spent for each MSP lab activity. On average, students

spent 17 minutes per MSP lab activity excluding weeks 1 and 9.

 35

3.4 HOW MANY DAYS BEFORE THE DUE DATE DO STUDENTS START MSP

ASSIGNMENTS?

We released each week's MSP assignment on Tuesday, due the following

Tuesday at 9:00 pm. That week's readings and lectures (Tuesday and Thursday, 80

minutes each) taught the concepts covered by that week's MSP lab activities. That week's

2-hour lab (Thursday) also taught those concepts, with about 30 minutes at the end for

students to work on the MSP lab activities and ask questions. We seek to answer the

question: how many days before the due date do students start working on MSP

assignments?

Figure 3.4 summarizes the average number of days students began working on

MSP assignments before the due date. The average was computed by finding students'

first submit for a lab activity belonging to the MSP assignment in the given week,

computing the days between the first submit and the assignment's due date, calculating

the percent of students that started T-7, T-6, …, T-0 days before the due date, and then

averaging across all MSP lab activities. The x-axis is the number of days prior to the due

date. Using "NASA countdown-like" terminology, we use "T-2" to mean two days before

the due date (or Sunday). The y-axis is the average percent of students that fall under

each category. Week 1 is excluded from these calculations since week 1 MSP lab

activities were very easy.

 36

Figure 3.4: Percent of students who began MSP lab activities each week T-X days prior to the due date -

Spring 2017.

To our pleasure, 37% of students (28) started 3 days ahead or more; however, the

other 63% of students started only 2 days ahead or less, with 35% of students (27)

starting on the due date. Students on average began 2.2 days ahead of the due date.

Figure 3.5 shows start times for the other two CS1 sections that quarter, which

used OLP assignments. Those students began on average 2.1 days ahead of the due date.

Only 28% (48) started 3 days ahead or more, and 25% (43) started on the due date. Note

that the due dates were different between the sections, but this comparison still gives

valuable insight.

 37

Figure 3.5: Percent of students who began OLP assignments each week T-X days prior to the due date -

Spring 2017.

We had hoped that MSP assignments' less-intimidating nature would have led to

earlier starts by most students. MSP assignments had a mild impact on students starting

earlier, but many students still started on or near the due date. We believe starting earlier

is good practice, and thus decided to try to encourage earlier starts. The MSP approach

made such encouragement easy. In our Fall 2018 course, we simply included the

following policy in our syllabus: "To discourage procrastination, you will be required to

complete at least 20 points out of the 50 points each week by Sunday at 10 pm", which is

2 days prior to the Tuesday, 10 pm deadline. That small change led to substantial

modification in student behavior, with start dates shifting from 2.5 (weeks 2 – 5) to 5.3

days before the due date.

 38

3.5 WHAT PERCENT OF MSP LAB ACTIVITIES DO STUDENTS COMPLETE

EACH DAY?

Section 3.4 showed when students started, defined as achieving at least 1 point on

the MSP lab activity (out of 10 points). In section 3.5 we analyze total completion

percent per day. We seek to answer the question: what percentage of MSP lab activities

do students complete each day?

Figure 3.6 summarizes the completion rate of MSP lab activities per day. The x-

axis is the number of days prior to the due date and the y-axis is the completion

percentage. The top bar is the percent completed on that day and the bottom bar is the

cumulative completion prior to that day. Recall that only 50 of 70 points (71%) were

required for full credit.

Figure 3.6: MSP lab activity completion T-X days prior to the due date. The top bar is the percent

completed on that day, and the bottom bar is the percent completed prior to that day.

Figure 3.6 shows a gradual increase in the completion rate throughout the week.

The completion rate increases 5-10% each day except for the last day (T-0) which has

 39

about a 20% increase. Because students need only complete 50 of 70 points, some MSP

lab activities have 0% completion, pulling down the averages shown.

3.6 WILL STUDENTS COMPLETE MORE MSP LAB ACTIVITIES THAN

REQUIRED?

Each week, students were assigned 7 MSP lab activities (10 points each) and were

only required to complete 50 points of 70 to score 100% on the MSP assignments for the

week. No extra credit was given for exceeding 50 points. We refer to the 50-point cutoff

as the full-credit threshold. We seek to answer the question: do students willingly

complete more MSP lab activities than required?

Figure 3.7 shows the percent of students that scored equal to or above the full-

credit threshold each week. The bottom bar is the students that completed above the

threshold and the top bar is the students that completed equal to the threshold. In weeks 1,

2, 3, and 6, a higher percentage of students scored above the threshold than equal to the

threshold. Across the quarter, an average of 40% of students scored above the threshold.

Figure 3.7: Percent of students who completed equal to or above the full-credit threshold each week.

 40

Figure 3.8 provides a more detailed analysis via a bubble chart. The x-axis is the

week number and the y-axis is the total points scored per week. The bubble size

represents the number of students that scored that number of points. For example, the

largest bubble in week 1 is labeled 53 because 53 students scored 70 points on MSP lab

activities for that week. Note that students who scored 0 points for the week are not

included because those students likely dropped the class or decided not to submit labs for

the week. The dashed line represents the full-credit threshold for each week. Note that

week 9's threshold is lower since only five MSP lab activities were given to students. On

average, students who scored more than the full-credit threshold scored an additional 13

points. As each MSP lab activity is worth 10 points, this translates to completing an

additional 1.3 MSP lab activities each week.

Figure 3.8: Points students scored each week. Students who scored 0 points for the week are excluded.

Dashed line indicates max points for the week.

We were pleased to find that so many students were able to meet the full-credit

threshold and that a substantial number were willing to do more than the minimum

 41

required work. The results from Figure 3.7 and Figure 3.8 suggest that students find MSP

lab activities helpful or enjoyable since they complete more than required even without

an extra credit opportunity.

3.7 DO STUDENTS TAKE ADVANTAGE OF SWITCHING AMONG MSP LAB

ACTIVITIES WHEN STUCK (PIVOT)?

Pivoting is when a student partially completes an MSP lab activity (e.g., scores 6

of 10 points) and then decides to work on a different MSP lab activity. Typically, with

traditional OLP programming assignments, students only have the option to work on the

program until completion. If stuck, a student has few or no options. With the MSP

approach, students can pivot to another lab activity while working to score additional

points or even learn from another lab activity to help themselves with the current lab

activity they are struggling on. We seek to answer the question: do students take

advantage of the opportunity to pivot, and if so, how often?

A student run (either a submit or develop) is defined as a pivot if all following

rules are met:

• The current run is not the student's first run for the week

• The current run is for a different MSP lab activity than the previous run

• The current run is for an MSP lab activity that has not been completed

• The previous run has not been completed

• The current run and previous run are for the same MSP assignment

 42

Figure 3.9 shows the percent of students who pivoted at least once in a given

week. The x-axis is the week number and the y-axis is the percent of students that pivoted

that week.

Figure 3.9: Percentage of students who pivoted at least once in a given week. An average of 50% of

students pivoted at least once each week.

We found that students pivot on average 1.3 times each week. The highest

number of pivots was one student who pivoted 12 times in week 4. Week 1 had few

pivots due to the MSP lab activities being easy. With more challenging programs

beginning in week 2, students made much use of pivots. Students who pivoted at least

once a week pivoted on average 2.5 times.

For insight, we highlight three actual pivoting scenarios.

3.7.1 PIVOT AT 0% - WEEK 8 (VECTORS)

A student attempted MSP lab activity 5 (LA5) three times but received 0 points

on all submits. Instead of continuing LA5, the student switched to LA7 and scored 10

 43

points. The student did not return to complete LA5. The student scored 50 points on the

MSP assignment for the week, meeting the 50-point full-credit threshold.

3.7.2 SINGLE PIVOT - WEEK 3 (BRANCHES)

A student worked on MSP lab activity 4 (LA4) and scored 8 points. The student

switched to LA6 and scored 10 points. The student did not return to complete LA4. The

student scored 48 points on the MSP assignment for the week, nearly meeting the 50-

point full-credit threshold.

3.7.3 MULTIPLE PIVOTS (3 OR MORE) - WEEK 4 (LOOPS)

A student worked on MSP lab activity 4 (LA4) and scored 2 points. The student

switched to LA5 and scored 10 points. The student returned to LA4 and improved their

score from 2 points to 8. The student moved to LA7 and scored 9 points. The student then

worked on LA6 and scored 10 points. Finally, the student returned to LA4 and improved

their score from 8 points to 10. The student scored 69 points on the MSP assignment for

the week, exceeding the 50-point full-credit threshold and nearly hitting the 70-point

max.

Students seem to take advantage of the pivot benefit that an MSP approach offers,

especially when a threshold is used. 94% of students (71 students) pivoted at least once

throughout the 10-week quarter. As a result, we hope to do future work to investigate

whether students who pivot score higher than those who do not, whether there are any

detriments to pivoting, and whether students who pivot return and solve the MSP lab

activities they switched away from. A more in-depth analysis of pivoting can be found in

Chapter 8.

 44

3.8 DO STUDENTS USE MSP LAB ACTIVITIES TO STUDY FOR EXAMS?

Given that MSP lab activities are short, concise, and focus on a single concept, we

seek to answer the question: do students voluntarily redo MSP lab activities to prepare for

exams?

Given the dates for the midterm and final exams, we defined criteria to determine

if a student used an MSP lab activity for exam practice. We said that a student used an

MSP lab activity for exam practice if the student had, for that MSP lab activity, a submit

or develop timestamp that was after the MSP assignment's due date and within one week

prior to the exam. The midterm occurred during week six of the quarter and the final

occurred at the end of the quarter.

Table 3.1 shows the results of how many students used MSP lab activities for

practice and how many unique MSP lab activities were used to study. 54% of students

(41) used MSP lab activities to study for either the midterm or final. 98% of all MSP lab

activities (60) were used by at least one student to study for an exam.

Table 3.1: Student use of MSP lab activities for exam preparation.

Total number of students 76

Total number of MSP lab activities 61

% of students that used MSP lab activities to study for the midterm 38%

% of students that used MSP lab activities to study for the final 37%

% of students that used MSP lab activities to study for either exam 54%

% of MSP lab activities that were used to study for the midterm 97%

% of MSP lab activities that were used to study for the final 90%

% of MSP lab activities that were used to study for either exam 98%

 45

We are pleased to see many students using MSP lab activities to study for exams.

For comparison, we looked at the other two sections of CS1 from Spring 2017, which

used an OLP approach. Only 10% of students (17) used OLP assignments to study for

exams.

3.9 DO MSP-TRAINED STUDENTS DO POORLY IN A CS2 USING AN OLP

APPROACH?

A common concern regarding using an MSP approach in CS1 is the impact MSP

assignments will have on students when they reach CS2 using an OLP approach. We seek

to answer the question: how do students taught programming in CS1 via an MSP

approach (MSP-trained) fare in CS2, compared to students taught programming in CS1

via an OLP approach (OLP-trained)?

We gathered data from our CS2 course from Winter 2017 through Spring 2018 (5

quarters). We determined which students took CS1 using an MSP approach and which

took CS1 using an OLP approach. To be conservative, we excluded students who did not

take CS1 at our university. We found 241 students that took CS1 via an MSP approach

and 312 students that took CS1 using an OLP approach. In total, 553 students who took

CS2 at our university were considered in our analysis.

Figure 3.10 shows CS2 performance results. The x-axis shows the class work

categories we analyzed (participation activities, labs, programming assignments, midterm

exams, final exam, and total grade in the class) and the y-axis is student grade

performance. OLP-trained students are the light bars on the left and MSP-trained students

are the dark bars on the right.

 46

Figure 3.10: CS2 performance for MSP-trained students versus OLP-trained students. MSP-trained students

do no worse, and in fact do slightly better.

Figure 3.10 shows that MSP-trained students perform similarly, and in fact

slightly better, than OLP-trained students. Note that the purpose of this analysis is not to

claim an MSP approach in CS1 leads to better performance in CS2. Instead, the analysis

shows that an MSP approach does not harm students in CS2. We hope to do further

research to better understand the effects that using an MSP approach in CS1 has on

students in CS2.

3.10 CONCLUSION

Modern easy-to-use auto-graders enable new teaching approaches in CS1 courses,

like using an MSP approach instead of an OLP approach for weekly programming

assignments. Our previous research showed that using an MSP approach in CS1 yielded

happier students and better grades in the course. This paper analyzed how students use

MSP assignments. We conclude that students are making good use of MSP assignments

to aid in their learning process: Students spend sufficient time working on MSP

assignments each week, begin working on MSP lab activities earlier than for OLP

 47

assignments, complete more MSP lab activities than necessary with a full-credit

threshold, take advantage of pivoting between MSP lab activities, and use MSP lab

activities to study for exams. We also see that MSP-trained students do just as well, even

slightly better, than OLP-trained students in a CS2 that uses an OLP approach. Our

department now uses an MSP approach in all CS1 sections, and we are aware of dozens

of other schools that have switched to an MSP approach as well.

 48

Chapter 4. DOES A MANY SMALL PROGRAMS APPROACH IN

CS1 HURT STUDENT PERFORMANCE IN CS2?

4.1 INTRODUCTION

When hearing about using an MSP approach in CS1, a common criticism /

concern among instructors is that CS1 students who learn programming using an MSP

approach may do poorly in a CS2 course that requires students to complete larger

programs. Thus, Chapter 4 addresses the question, "Does an MSP approach in CS1 hurt

student performance in a CS2 requiring larger programs?"

Chapter 4 summarizes a study that considered five quarters of one university's

CS2 course, comparing performance of 417 CS1 students taught via an OLP approach

(OLP-trained) and 241 CS1 students taught via an MSP approach (MSP-trained) who

then took the CS2 course. The results show that MSP-trained students do not perform

worse than OLP-trained students in CS2, and in fact perform slightly better. These results

hold for programming assignments, midterms, finals, and more. The results also hold

when controlling for gaps between quarters, and hold equally for males and females. The

study suggests that instructors can embrace an MSP approach in CS1 to obtain happier,

less-stressed students, who may perform better in CS1 too, without fear of putting those

students at a disadvantage in CS2 (and who may gain a slight advantage).

 49

4.2 METHODOLOGY

4.2.1 COURSE

This study was conducted at the University of California, Riverside, whose CS

department typically ranks in the top 60 by U.S. News and World Report. The CS1 and

CS2 courses are offered quarterly (fall, winter, spring) in 10-week "regular" quarters, plus

during compressed 5-week summer sessions as well. The CS1 course serves about 300-

500 students per regular quarter, taken about equally by computing majors and by non-

majors who are mostly engineering, science, and math. The CS1 course uses C++ and

topics include basic input/output, assignments, branches, loops, functions, and vectors.

The CS2 course serves about 100-200 students per quarter, mostly computing majors and

some engineering, science, and math majors. The CS2 course also uses C++ and topics

include object-oriented programming, recursion, pointers, linked lists, abstract data types,

software development principles, and development of larger programs. Both the CS1 and

CS2 courses have three hours of lecture and two hours of TA-led labs per week, and

require weekly online interactive readings and auto-graded homeworks. Both have

midterm and final exams, each consisting of multiple choice and coding problems. Both

use active and peer learning techniques in lecture.

4.2.2 DATA COLLECTION AND ANALYSIS

We collected gradebooks with all students who took CS2 during the past five

regular quarters and did not drop/withdraw, totaling 658 students. We excluded the 36

students who did not take the final exam. For each included student, we determined

whether the student was trained from an OLP or MSP offering of our CS1, via rosters

 50

obtained from prior CS1 offerings. Figure 4.1 shows the CS1 and CS2 offerings that

contributed to the study. Note that in Spring 2017, CS1 had two OLP-trained sections and

one MSP-trained section. If we could not find the student in our CS1 rosters, that likely

means they took CS1 at another school (we have many transfer students), or took our

CS1 long ago. For those students, we assume they had an OLP training, which is almost

surely the case and consistent with our knowledge of CS1 classes taught by the

community colleges that mostly feed into our program. However, we also performed the

analysis excluding such students (105 students excluded) and found results to be the

same.

When our instructors switched to an MSP approach in Fall 2017, most decided to

include two larger programs, one in week 5 and one in week 10, with the other 8 weeks

having five MSP lab activities each. We have found no difference in CS2 student

performance for "pure" MSP-trained students and "predominantly" MSP-trained students.

Thus, we still use "MSP" to refer to an approach where nearly all weeks use MSP

assignments, but where 1-2 weeks may use OLP assignments.

Figure 4.1: CS1 and CS2 class offerings considered.

 51

4.3 MAIN RESULTS

4.3.1 CS2 PROGRAMMING ASSIGNMENTS

Figure 4.2 summarizes the main performance of CS2 students on the class' seven

weekly programming assignments (some assignments spanned multiple weeks). The left,

dark-blue bars represent OLP-trained students (417 students), and the right, light-blue

bars represent MSP-trained students (241 students).

Figure 4.2: CS2 student performance on all seven large CS2 programming assignments. MSP-trained

students did not perform worse than OLP-trained students (and in fact did slightly better). p-values are

shown above each column. p-values denoted with * are nearing significance (p < 0.05).

The data shown in Figure 4.2 shows that using an MSP approach in CS1 does not

hurt students in a CS2 requiring larger programs. In fact, MSP-trained students did

slightly better. As the research question was not whether MSP-trained students do better

in CS2, we do not focus on statistical significance; however, we do report p-values in

Figure 4.2. More importantly, as the commonly-voiced concern by instructors is that

MSP-trained students may do worse, the data shown in Figure 4.2 proves this concern to

be false.

 52

4.3.2 CS2 MIDTERM AND FINAL EXAMS, AND MORE

In addition to programming assignment performance, one may wonder how

students fared on other aspects of the course. Figure 4.3 shows performance on the

midterm and final exams, which consisted of multiple choice and coding questions.

Again, MSP-trained students did not do worse (and instead did slightly better).

Figure 4.3: CS2 student performance on midterm and final exams. MSP-trained students did not perform

worse (and in fact performed slightly better).

Likewise, Figure 4.4 shows student performance in other aspects of the course,

including completing online participation activities before lectures and small in-lab

"warm up" programming activities. For convenience, Figure 4.4 shows the programming

assignment and midterm/final data from above and ends with the students' total grade in

the CS2 course. The data shows MSP-trained students do no worse in any category.

 53

Figure 4.4: CS2 student performance on all aspects of the CS2 course. MSP-trained students do no worse in

any aspect.

Earlier, we mentioned that if we could not find a CS2 student in our CS1 rosters,

we assumed an OLP training. To be safe, we re-analyzed the data excluding such

students. Figure 4.5 shows that the results are nearly identical to when those students are

included.

Figure 4.5: CS2 student performance considering only students known to have taken CS1 at our university.

Results are the same: MSP-trained students perform no worse in any aspect.

 54

4.4 CONSIDERING GAPS BETWEEN CS1 AND CS2 TERMS

One threat to the study's validity is the following: Because the MSP approach CS1

offerings were all more recent than the OLP approach CS1 offerings (see Figure 4.1),

then the OLP-trained students' performance in CS2 may have been degraded due to gaps

between the quarters in which they took CS1 and CS2.

Thus, we reanalyzed the data by considering only students who had no gap -- they

took CS1, and then took CS2 in the next regular quarter, such as taking CS1 in Fall 2017

and then CS2 in Winter 2018. Figure 4.6 provides results, showing that MSP-trained

students did no worse in any categories (and in fact did slightly better).

Figure 4.6: CS2 performance for students having no gap between taking CS1 and CS2.

We further analyzed the data for students having a one-quarter gap, and also for a

two-quarter-or-more gap. The results, in Figure 4.7 and Figure 4.8, show MSP-trained

students generally did not do worse, and again improved in some class areas. As the point

is that MSP-trained students do not do worse, we do not analyze such improvements

further here, but the results suggest future work as to why MSP-trained students did

better -- perhaps the MSP approach's repetition lengthens retention of programming skill.

 55

Figure 4.7: CS2 performance for students having a one-quarter gap between CS1 and CS2.

Figure 4.8: CS2 performance for students having a two-quarter or more gap between CS1 and CS2.

4.5 CONSIDERING GENDER

Much recent emphasis has been on possible differential impact of classroom

approaches on females. Thus, we re-analyzed the data considering gender. We did not

have gender data in the gradebooks, and thus had to approximate gender based on names

that had a high probability of being male or female. We excluded names that were not

obviously male or female names. We understand this analysis is not perfect (especially

considering gender identity), but believe it is better than no analysis. Figure 4.9 shows

our findings.

 56

The analysis shows that females with OLP and MSP CS1 training displayed the

same general performance in CS2 as seen for the entire population of students, with

MSP-trained students again not doing worse (instead doing slightly better) in CS2.

Figure 4.9: CS2 student grade performance considering gender. Data shows that MSP-trained CS1 females

display similar performance in CS2, in fact performing slightly better.

We conducted a similar analysis for males, and for the non-obvious names

category too. The results match the above analyses. Thus, the effect of MSP versus OLP

CS1 training on CS2 performance seems to not have a strong gender component.

4.6 CONCLUSION

A many small programs (MSP) approach in CS1, largely enabled by modern

program auto-graders, was previously shown to lead to happier, less-stressed students,

who also performed better on the code-writing portion of exams, compared to the

common one large program (OLP) per week approach. However, numerous instructors

expressed concerns that MSP-trained students would do poorly in a CS2 requiring larger

programs. Our study of 5 quarters of CS2 performance, for 471 OLP-trained students and

241 MSP-trained students, showed the MSP-trained students do no worse in CS2 (and

 57

actually do slightly better), in CS2's programming assignments, exams, and all other

course aspects. The results hold even when considering gaps between CS1 and CS2

quarters and hold for either females or males. We conclude that an MSP approach can be

used in CS1 without fear of harming the students in CS2, and possibly helping them do

better in CS2. Future research may include quantifying those possible benefits in CS2,

and introducing an MSP approach in the beginning of CS2 for a smoother and stronger

start.

 58

Chapter 5. MANY SMALL PROGRAMS IN CS1: USAGE ANALYSIS

FROM MULTIPLE UNIVERSITIES

5.1 INTRODUCTION

In 2017, we introduced a many small programs (MSP) teaching approach at our

university. Instead of teaching via a one large programming assignment (OLP) each

week, the MSP approach allows for the instructor to assign multiple programming

assignments, for example 5 or more, each week instead. Our previous studies [4] have

shown that an MSP approach can improve the student experience by reducing stress and

increasing student satisfaction in the course. Furthermore, an MSP approach has been

shown to improve student grade performance in CS1, especially on the coding portion of

exams. In a follow-up study [5], we learned that students use MSP assignments in ways

beneficial to their learning: students spend sufficient time working on MSP assignments

each week, start working on MSP lab activities earlier, and more. We shared these

findings with universities around the nation; causing other universities to switch from

teaching CS1 using an OLP approach to an MSP approach. Given MSP lab activity data

from other universities we extend our analysis to include MSP lab activities from other

universities. We perform similar usage analyses and found that MSP-trained students

from other universities also benefit from an MSP approach.

5.2 CS1 UNIVERSITY METADATA

We looked at CS1 courses taught using an MSP approach from 10 universities. To

maintain anonymity of the universities included in this study, we do not include the name

 59

of the institutions. The universities varied in size with some having classes of more than

300 students, while others had a class size of 20 students. Many universities taught CS1

using C++, while others taught via Python and Java. Table 5.1 provides details about the

universities included in this study.

Table 5.1: Metadata on the 10 universities included in this study. Details include the programming

language being taught, number of students in the class, number of MSP lab activities given, number of

submits collected, and number of develops collected.

 Prog Language #Students # MSP lab

activities

Submits

collected

Develops

collected

University 1 C++ 20 98 3,177 5,635

University 2 Python 81 69 192,44 19,707

University 3 C++ 30 19 2,397 3,416

University 4 C++ 14 61 1,675 5,104

University 5 Java 11 51 643 3,535

University 6 C++ 234 77 21,451 40,573

University 7 Python 333 43 88,981 103,089

University 8 C++ 79 25 7,315 9,298

University 9 Java 56 59 7,454 18,505

University 10 Java 321 65 40,320 96,721

5.3 DATA COLLECTION

We analyzed data from 10 different CS1 classes taught at different universities.

Each university used an online textbook published by zyBooks for programming

assignments. After the course was completed, we collected all student run activity

(submits and develops) for each lab activity from zyBooks and consolidated them into a

single spreadsheet. A submit is defined as when the student "turns in" their assignment

for grading. A develop is defined as when a student runs their code through the zyBooks

compiler for testing without grading. Student submits have metadata that describes the

 60

lab title, a userID (anonymized and generated from zyBooks), the submit score, the max

score possible for the submit, and a timestamp with the date and time. A develop has the

same metadata as a submit but without a score and a max score. In this study, 1,179

students were considered with 567 MSP lab activities included. In total, we collected

192,657 submits and 302,406 develops.

5.4 HOW MUCH TIME DO STUDENTS SPEND WORKING ON MSP LAB

ACTIVITIES?

At the University of California, Riverside, we expect students to spend between 2-

3 hours each week working on MSP assignments. When using the MSP approach, we

assign students 7 MSP lab activities each week, requiring them to only earn 70% of the

points for a 100% score on programming assignments each week. With this setup, we

found that students generally spend 17 minutes on each MSP lab activity and thus spend

at least 85 minutes a week (~1.5 hours) working on MSP assignments. Additionally, we

found that many students tend to complete more MSP lab activities than required and

thus spend around 2 hours or more working each week. We created the MSP assignments

to take students about the same total time per week as the traditional OLP approach.

5.4.1 ANALYSIS AND PROCEDURE

To calculate the total time students spent on each MSP lab activity, we looked at

the timestamp metadata for each develop and submit. We calculated the time spent

between submits by calculating the difference between each timestamp and then summed

the differences. In our calculations, we excluded differences that exceeded 10 minutes,

assuming that the student took a break from working. Note that our calculations are thus

 61

an understatement, as some breaks may have been the student working or researching the

problem. Additionally, we cannot capture the time the students spent working or thinking

about a problem before the first submit or develop.

5.4.2 RESULTS

Figure 5.1 summarizes the average time spent by students on each MSP lab

activity. Note that since all MSP lab activities are considered in this calculation,

including the "easy" introductory MSP lab activities which require minimal time, the

averages are likely an undercalculation. The x-axis represents the university and the y-

axis is the time spent in minutes. Across all universities observed, students spend an

average of 12 minutes working on MSP lab activities with universities 1 and 6 slightly

pulling the averages down.

Figure 5.1:Average time spent by students on each MSP lab activity. Students with 0 submits or 0 time

spent were excluded from calculations.

Figure 5.1 shows that many universities share similar time spent averages.

Assuming that students are given 5 MSP lab activities each week, students should be

working on programming assignments for about 1.5 hours. There are a few exceptions,

 62

like universities 1 and 6, but a more detailed analysis is required to determine why the

average time spent per lab for universities 1 and 6 are much lower compared to the other

8 universities.

5.5 HOW MANY DAYS BEFORE THE DUE DATE DO STUDENTS START

WORKING ON MSP LAB ACTIVITIES?

For CS1 taught at our university, students were given one week to work on MSP

lab activities. Given this setup, we found that students began working about 2.5 days

before the due date. For example, if MSP lab activities were given to students on a

Tuesday (due the following Tuesday), students began working on Sunday. Our previous

study showed that MSP lab activities were helpful to get students to begin working

earlier, but is this the same for other CS1 courses?

5.5.1 ANALYSIS AND PROCEDURE

To calculate when a student began working on MSP lab activities, we first

determined each students’ first activity timestamp. Once we knew when the first activity

happened, using this in combination with knowing the MSP lab activity due date, we

computed the number of days each student began working on MSP lab activities before

the due date. Note that zyBooks does not keep track of MSP lab activity due dates, so we

had to calculate due dates based on student activity. We found the two most active dates

for runs (days that had the most submits and develops by unique users) and then chose

the later date as the due date for that MSP lab activity. We checked our due date

calculations by comparing our results with known due dates of prior MSP lab activities

and had ~90% accuracy. Most inaccuracies were +/- a day and affected MSP lab

 63

activities given at the beginning of the term -- likely caused by students adding/dropping

the course at the start of the term.

5.5.2 RESULTS

Figure 5.2 summarizes the average number of days students began working on

MSP lab activities before the due date. Using "NASA countdown" terminology, we use

"T-2" to mean two days before the due date. The x-axis is the university and the y-axis is

the number of days before due.

Figure 5.2: Average T-X days prior to the due date students began working on MSP lab activities.

Figure 5.2 shows that on average, students begin working on MSP lab activities

about 2 days before the due date, with the exception being university 1 which seems to

have most students starting on the due date. Note that this is the best approximation we

can make without specifically knowing the due dates for all MSP lab activities. Also note

that the data given could be slightly off as we do not know the duration students have to

work on MSP lab activities - one week, three days, etc.

 64

5.6 HOW DO STUDENTS SCORE ON MSP ASSIGNMENTS?

Though we want each MSP lab activity to be challenging, allowing students to

learn programming, we also need to be sure that the MSP lab activities are not

excessively challenging. We want to know how students are performing on each MSP lab

activity.

5.6.1 ANALYSIS AND PROCEDURE

To calculate student scores on each MSP lab activity, we used the metadata for

max score and current score. First, we found each students’ highest scoring submit for

each MSP lab activity and divided that value by the lab activity's max possible score.

This results in the highest submit percentage for each student. Finally, we average across

all students and all MSP lab activities.

5.6.2 RESULTS

Figure 5.3 summarizes the average percentage score on each MSP lab activity.

The x-axis is the university and the y-axis is the MSP lab activity's percentage score.

Figure 5.3: Average percentage score on MSP lab activities.

 65

We are pleased to see that students are performing well on MSP lab activities. On

average, across all universities, students score 91% on MSP lab activities. This high score

indicates that students are completing MSP lab activities and are (hopefully) learning

how to program successfully.

5.7 DISCUSSION

Based on the results of the analysis performed in this work, we can conclude that

MSP usage is similar across all universities. We can see that MSP-trained students at

other universities are getting the same benefits that we observed in the CS1 courses

taught at our university. Though we were only able to perform three different analyses,

compared with the several of our previous work, we still believe this to be a good

indication that an MSP approach can be used in CS1 and students will benefit. For future

work, we hope to extend this analysis and obtain the data necessary to perform the

additional analysis done in our other work. Given the large amount of data used in this

extension, we are now more confident in the previous results we obtained when only

considering our university.

5.8 CONCLUSION

In this work, we performed several analyses on MSP lab activities from other

universities. We found that the results we obtained in this work are similar to the results

we observed in our previous work only considering CS1 at our university. This analysis

improved our confidence that students are using MSP lab activities in beneficial ways.

We see that students are spending sufficient time working on weekly MSP assignments

(~1.5 hours), that students begin working about 2 days before the MSP lab activity's

 66

deadline, and students are scoring high grades on MSP lab activities (91% avg). Based on

the positive results of this work, we are encouraged to continue improving MSP lab

activities and studying them more in depth. Already, we have switched all CS1 offerings

at our university to using an MSP approach and we encourage others to consider using an

MSP approach in their CS1 course as well.

 67

Chapter 6. AN ANALYSIS OF USING CORAL MANY SMALL

PROGRAMS IN CS1

6.1 INTRODUCTION

Previous work [3] detailed in Chapter 5 showed that an MSP approach can work

across universities and across different programming languages. As we continued to

apply new intervention techniques to try and improve our CS1 even further, we decided

to incorporate a Coral-first approach alongside an MSP approach. Coral is an ultra-simple

programming language designed to look like pseudocode while resembling industry

programming languages like C++, Java, and Python. Coral was created specifically for

learners and thus, in 2019, our CS1 began teaching programming fundamentals with

Coral during the first 3 weeks before switching to C++ for the remainder of the term. Our

university already adapted an MSP approach which involves assigning students multiple

smaller assignments instead of only giving them one large assignment each week. In

Chapter 6, we share our experience using a hybrid Coral/C++ MSP approach versus a

pure C++ MSP approach. We summarize similarities and differences between student

performance and other metrics such as time spent, start date, and more. We found that

instructors can use a hybrid Coral/C++ approach to have an easier class startup while

maintaining high student grade performance.

6.2 CORAL PROGRAMMING LANGUAGE

In 2019, we tried another intervention technique: we taught our CS1 via a hybrid

approach of Coral and C++ together. Coral is an introductory web-based, pseudocode-

 68

like language designed to help learners [16]. Coral is free to use and resembles popular

commercial programming languages like C++, Java, and Python, allowing for a smooth

transition between languages.

Figure 6.1 shows an example of an introductory program written in C++, Java,

Python, and Coral. This program requires the student to prompt the user for an integer

input, declare a variable "wage" and assign the input to "wage", increment the input value

by 10, and then output the final result of "wage" to output. Although this is an intro

programming assignment, C++, Java, and Python have many nuances and intricacies that

a new programmer should not need to worry about -- function calls, strange symbols

(stream operators '<<', semicolons ';', braces '{}'), class methods ('Scanner.nextInt()'), and

more. Coral is simple to read and built to look like pseudocode so students can

understand the logic easier without focusing on language semantics.

Figure 6.1: Sample introductory program written in C++, Java, Python, and Coral (listed left to right).

The Coral language comes with a limited set of 7 instructions to help students

focus on the fundamentals of programming. Not only is Coral fully executable, it also

comes with a flow chart language to help visualize the execution of the code in real-time.

 69

Figure 6.2 shows the online, web-based Coral simulator. The simulator comes with an

area for coding on the left, and on the right are areas for real time variable values, user

input, and program output. There is also the option to execute the program immediately

or step through the program's execution to see real time updates to variable values. Figure

6.3 shows Coral's equivalent visual flow chart language.

Figure 6.2: Coral's online web-based simulator.

Figure 6.3: Coral's online web-based visual flowchart simulator.

The authors of Coral published an initial work showing Coral's ease of use and we

decided to apply the language in our CS1 [20]. We had considered using other

 70

introductory programming languages like Snap [61] or Scratch [58], but we found they

are not designed for a CS1 class. We began using Coral at the start of the class and then

switched to C++ after 3 weeks.

6.3 METHODOLOGY

6.3.1 COURSE

We analyze a Spring 2020 CS1 course taught at the University of California,

Riverside. The CS1 course typically serves around 300-500 students during a 10-week

quarter (fall, winter, spring) split into 3-5 sections of 80 students. All sections use the

same zyBooks interactive textbook and require students to complete the same weekly

participation activities (class readings), challenge activities (small coding homeworks),

and lab activities (programming assignments). The CS1 course regularly serves half

computing major students and half non-major students. The course is taught fully in C++

and covers basic input/output, variables, expressions, branches, loops, functions, and

vectors.

6.3.2 EXPERIMENT DETAILS

For one CS1 class section we taught Coral for the first 3 weeks and then switched

to C++ (hybrid Coral/C++ group) instead of the typical way of teaching C++ for all 10

weeks (pure C++ group). Other differences between each group include the instructors;

however, they both have a very similar teaching style and consistently earn similar marks

on the end-of-quarter student reviews and the midterm as the hybrid group had a few

additional Coral related questions. All other class components were the same, including

the lesson plan, interactive online textbook, assignment deadlines, etc.

 71

6.3.3 DATA COLLECTION

We asked zyBooks to provide us with a detailed log of all student activity for our

CS1 class. Student activity consists of develop runs, when a student tests their code using

zyBooks' automated system, and submit runs, when a student turns in their code for

grading. Each log entry includes the activity name, an anonymized user ID, a score, a

max score, and a timestamp.

6.4 STUDENT GRADE PERFORMANCE

We gathered gradebooks for each class section and to calculate average scores on

weekly MSP assignments we gathered all student activity. Students that did not submit

any code for grading in a given week were excluded from calculations.

6.4.1 RESULTS

Figure 6.4 shows our results. The pure C++ group data is shown on the left, dark-

blue bars and hybrid Coral/C++ group data is shown on the right, light-blue bars. The

grade percentage is on the y-axis and the week number is on the x-axis. A total grade

average column is added to the end of the chart. Table 6.1 summarizes the average grades

for all class categories.

Figure 6.4: Grade performance results: Both the pure C++ group (avg. 97%) and the hybrid Coral/C++

group (avg. 95%) scored equally well on MSP assignments.

 72

Table 6.1: Student grade performance on all categories of our CS1 class. Students that did not take the

midterm exam or the final exam are excluded from calculations. p-values denoted with * are nearing

significance (p < 0.05).

Class category Pure C++ Hybrid Coral/C++ p-value

Total class grade 89% 96% p < 0.001*

Final exam 86% 91% 0.009*

Midterm exam 84% 97% p < 0.001*

Participation activities 96% 96% 0.727

Challenge activities 95% 96% 0.875

Lab activities 97% 95% 0.066

Figure 6.4 shows that both the pure C++ group (97%) and the hybrid Coral/C++

group (95%) do equally well on weekly MSP assignments. Table 6.1 also shows that both

groups perform well in all categories of the class, with the hybrid C++/Coral group

slightly outperforming the pure C++ group.

6.5 TIME SPENT METRICS FOR WEEKLY MSP ASSIGNMENTS

We expect students to spend between 2-3 hours working on MSP assignments

each week. To measure student time spent, we summed the differences between each

activity timestamp; excluding differences greater than 10 minutes as we considered the

student to have taken a break or moved on something else. As such, this data is likely an

under-representation as students could have spent that time studying or testing their code

outside of the zyBooks IDE.

6.5.1 RESULTS

Figure 6.5 displays our results. The total time spent is on the y-axis and the week

number is on the x-axis. A total time spent average column is added at the end of the

chart. The pure C++ group data is shown on the left, dark-blue bars and the hybrid

 73

Coral/C++ group data is shown on the right, light-blue bars. Students that did not attempt

any MSP lab activities for the given week were excluded from the calculations.

Figure 6.5: Time spent results: The hybrid group (avg. 95 min) spends slightly more time working on MSP

assignments each week than the pure C++ group (avg. 81 min).

Figure 6.5 shows that the pure C++ group (81 minutes) spends less time working

on MSP assignments each week than the hybrid Coral/C++ group (95 minutes).

6.6 ACTIVITY RUN METRICS FOR WEEKLY MSP ASSIGNMENTS

We sought to understand how students develop their code and how frequently

students test (develop run) and check (submit run) their code while working. We gathered

all student activity and calculated the average number of develop runs and submit runs on

weekly MSP assignments.

6.6.1 RESULTS

Figure 6.6 displays our results. Develop runs are indicated by the dark-blue bars

at the bottom and the submit runs by the light-blue bars at the top. The total number of

develop/submit runs are on the y-axis and the week number is on the x-axis. A total

average column is added at the end of the chart. Students that did not attempt any MSP

lab activities for the given week were excluded from the calculations.

 74

Figure 6.6: Activity run results: The pure C++ group (avg. 48dev / 24sub) develops less and submits more

than the hybrid Coral/C++ group (avg. 67dev / avg. 16 sub).

Figure 6.6 shows that the pure C++ group develops less than the hybrid

Coral/C++ group, but submits more frequently. To fully understand the data, a more in-

depth analysis is required; however, since there are more develops than submits on

average, it seems like students show a healthy programming practice of testing their code

(developing) and then submitting.

6.7 START DATE METRICS FOR WEEKLY MSP ASSIGNMENTS

Each MSP assignment is due one week from the time it is assigned. We consider

starting at least 2 days prior to the assignment’s due date as healthy behavior. To

calculate students’ average start date each week, we found each students’ earliest activity

timestamp for a lab activity from the given MSP assignment, calculated the difference

between that and the due date, and averaged the differences.

6.7.1 RESULTS

Figure 6.7 displays our results. The number of days are on the y-axis and the

week number is on the x-axis. A total start date average column and an adjusted total

average column is added at the end of the chart to account for a 'grace period' (late

submissions allowed) during weeks 1 and 2. The pure C++ group data is shown on the

 75

left, dark-blue bars and the hybrid Coral/C++ group data is shown on the right, light-blue

bars. Students that did not attempt any MSP lab activities for the given week were

excluded from the calculations.

Figure 6.7: Start date results: The pure C++ group (avg. 4.5days / 4.8days adj.) begins working earlier than

the hybrid Coral/C++ group (avg. 4.6days / 3.9days adj.).

Figure 6.7 shows that both groups begin working about 4.5 days before the due

date. Removing weeks 1 and 2 to account for the ‘grace period’, Figure 6.7 shows that

the pure C++ students begin 4.6 days early whereas the hybrid Coral/C++ students begin

3.9 days early (see ‘Avg (adj)’ column).

6.8 PIVOT METRICS FOR WEEKLY MSP ASSIGNMENTS

A pivot is when a student switches from one lab activity to another without

completing (scoring 100%) the current one they are working on. Pivoting enables

students to score additional points when stuck or even use another lab activity to help

them solve the current problem they are facing.

6.8.1 RESULTS

Figure 6.8 displays our results. The total number of pivots are on the y-axis and

the week number is on the x-axis. A total pivot average column and total pivot average

adjusted column is added at the end of the chart to account for the midterm given in week

 76

6. The pure C++ group data is shown on the left, dark-blue bars and the hybrid

Coral/C++ group data is shown on the right, light-blue bars. Students that did not attempt

any MSP lab activities for the given week were excluded from the calculations.

Figure 6.8: Pivot results: The hybrid Coral/C++ group (avg. 2.4 / 2.2adj.) pivots more than the pure C++

group (avg. 1.3 / 1.5adj.) each week.

Figure 6.8 shows that the hybrid Coral/C++ group (2.4) pivots more frequently

each week than the pure C++ group (1.3). Even after removing week 6 from the

calculations to account for the midterm, the hybrid Coral/C++ group (2.2) still pivots

more than the pure C++ group (1.5).

6.9 DISCUSSION

This is the second time that we have taught CS1 via a hybrid coral-first approach

combined with an MSP approach. The first time was in Fall 2019 and overall things went

well but we had learned a lot from our experience. The first time we used a hybrid

approach, we had taught Coral for the first 5 weeks of the 10-week quarter and then

switched to C++ during the latter 5 weeks. Our major mistake was covering the entire

CS1 content first in Coral (i.e. cramming 10 weeks of material in 5 weeks) and then

covering the same content again in C++: input/output, variables, branches, loops,

functions, and vectors. By the time students were learning C++ during the second half of

 77

the quarter, they were exhausted as they were repeating the same content and had

additional lab activities to complete. Students were still performing well, but we noticed a

much smaller completion percentage of MSP assignments and class content during weeks

5-10 compared with the other class sections using a pure C++ MSP approach. We also

got lots of student feedback via surveys saying things like "It was a great way to

introduce concepts but I wish we spent more time using C++" or "Pros: I learned faster

for C++. Same concept so C++ similar to it were easy to understand. Con: Time

constraint. I think C++ needs more time to study instead of just 5 weeks." Our students

seemed to grasp the benefits Coral provided, however improvements needed to be made.

As such, this led us to improve our approach and use Coral for the first 3 weeks only and

then transition to C++ as described in Chapter 6.

6.10 CONCLUSION

In this work, we shared our experience using a hybrid Coral/C++ MSP approach

in our CS1 class. We found that using a hybrid Coral/C++ approach did not harm student

grade performance. We found that both groups spent a healthy amount of time working

on lab activities. We saw that students in the hybrid group developed their code more and

submitted their code less frequently than the pure C++ group. Both groups start working

about 4 days before the deadline and both groups make good use of pivoting. This work

is not meant to conclude that one teaching approach is better, but rather to show that both

approaches work. Using a Coral/C++ approach to begin a CS1 class does not harm

students but can offer benefits such as having an easier time teaching programming

 78

fundamentals when the class begins. As such, we will likely continue using this approach

in our CS1, and we encourage others to try this approach as well.

 79

Chapter 7. CONCISE GRAPHICAL REPRESENTATIONS OF

STUDENT EFFORT ON WEEKLY MANY SMALL PROGRAMS

7.1 INTRODUCTION

Beyond seeing final submissions, many instructors want insight into how students

went about the process of writing their code -- when did they start, how often did they

test, how correct was their code along the way, how much time did they spend overall,

etc. As such, some now require students to use version control software like github, to at

least see some versions of the code during development. However, program auto-graders

provide a distinct opportunity for such insight, having grown tremendously in use in

recent years, including new commercial tools like zyBooks [72], Gradescope [30], Mimir

[41], Vocareum [66], CodeLab [65], and MyProgrammingLab [46]. Some of those also

have development environments so that all a student's programming activity can be

recorded: "develop" runs while the student is still developing and testing their code, and

"submit" runs where they submit code for auto-grading. Non-commercial systems also

record develop runs and/or submit runs, like Runestone [57] and BlueJ [12]. Such

recording opens new possibilities for instructors to gain the desired insight in student

coding.

Meanwhile, hundreds of schools, including ours, have converted to an MSP

approach (zyBooks alone reports over 200 schools; many more exist). Thus, not only do

we want insight into our students' programming process, but we want that for multiple

MSP lab activities per week -- to see which they started on, how they switched between

 80

programs, and so on. A table of statistics is too hard for an instructor to process and loses

too much information. Thus, in 2018, we began developing a script to process the log

files from the popular auto-grader that we use and convert to a graphical representation

that we call "programming workflow charts". We have found those charts provide

instructors with tremendous insight, allowing a quick determination of how a class is

doing (starting on time? spending sufficient time?), but also to quickly see a particular

student's effort (such as when a student comes to office hours for help, or is requesting an

extension) -- and even to detect some cheating cases. We even pull up the charts for the

class and use them as a springboard to dive into a particular student's code (if they offer).

Students find the workflow charts "cool", and we believe such charts, if used properly in

a class, may even reduce some cheating in the future due to showing students that

instructors can see their effort.

Chapter 7 describes the goals of such a representation, the evolution of our

representation to its current status, various design trade-offs, our current usage, and

numerous possible future uses in CS1 classes. We plan to create a website for any

instructor to upload such log files to gain insight on their own class' performance.

7.2 METHODS

7.2.1 DATA COLLECTION

To collect the data required to generate our workflow charts, we obtained from

zyBooks log files for all MSP assignments. The file was in csv format and contained all

develop and submit runs for every lab activity in our class. A develop run is when a

student tests their code in the built-in IDE without receiving a grade. A submit run is

 81

when the student submits their code for grading. Each student activity entry contains

metadata such as the title of the lab activity, the user ID, a timestamp, a link to the source

code for that run, and for submit runs also contains a score, a max score, and a list of test

cases including which were passed or failed.

7.2.2 TIME SPENT CALCULATIONS

An integral calculation for all workflow charts is the time spent by students on

each lab activity. To calculate time spent, we gathered all student activity and calculated

the difference between timestamps. Each difference was then summed together to yield a

final calculation of the total time spent. Note, that if the difference between two

timestamps exceeded 10-minutes, we excluded the time from our calculations to be

conservative as the student likely took a break or went to work on something else.

Furthermore, we cannot capture the time a student spent working before their first

activity. As such, our data is likely an understatement.

7.2.3 CONSTRUCTION OF PROGRAMMING WORKFLOW CHARTS

To generate each programming workflow chart, we first gathered all student

activity for the quarter. From the metadata, using a combination of userID, labID, time

spent, and knowing the week each lab activity was assigned, we grouped student activity

to do the necessary calculations. To determine time spent see process listed in Section

7.2.2. To compute the number of develops and submits, we counted each activity and if

there is a score associated with the activity, then the activity is counted as a submit,

otherwise a develop. We calculate the percent scored by finding the highest submit score

among all activities for that program. Finally, we separate activity by "workflow blocks,"

 82

indicating that the student switched working between lab activities or there was a 10-

minute gap observed between activity (10 minutes was chosen arbitrarily).

7.3 THE EVOLUTION OF OUR WORKFLOW CHARTS

Our motivation for creating these representations was to understand how students

were interacting with the MSP assignments. Based on end-of-the-quarter grades, we had

seen that students were earning good grades and doing well on exams, but we lacked

insight on questions like: How much time are students working on MSP assignments

each week? What days did they work? Were students working on MSP lab activities in

the order we listed them, or were they jumping among them? How often were they

developing versus submitting?

We decided to pursue a graphical representation of the data to gain quick and

concise insights into student effort on weekly MSP assignments. We used a Gantt chart

as the initial motivation behind developing our workflow charts. A Gantt chart is a visual

view of tasks scheduled over time [26]. Such a chart highlights important information

like the start of a task, the end of a task, and the time spent per task in a single view.

In these workflow charts, we are able to see the time students spend per lab

activity, the total number of develops and submits per lab activity, the score earned per

working session, a summary of all activity for the week, and the pivot patterns students

displayed.

Note that some figures in Section 7.3 that show the evolution of our charts may

differ in example as we do not have records of all previously used iterations.

 83

7.3.1 VERSION 1 -- CALENDAR VIEW

Figure 7.1 shows Version 1 of our workflow chart. Our initial thought was to

display the data using a weekly calendar view to see data on all weekly lab activities for

each student each week.

Figure 7.1: Version 1 of the workflow chart. An expanded calendar view with lab activities on the y-axis

and days on the x-axis. Horizontal lines added to indicate when students worked.

As we were using the MSP approach, we had assigned students 7 lab activities per

week. On the workflow chart, the lab activities are listed on the y-axis in ascending order

and dates for the week are listed on the x-axis in ascending order. Horizontal lines are

added to indicate the times students spent working on each lab activity. Each chart has a

title with the student ID (anonymized) and the week the chart was generated for.

Unfortunately, upon initial inspection, the data is very hard to read and at a quick

glance, it may even seem like the student did no work for the given week. In actuality, the

data is present, but since the chart covers 7-days, the time increments in which the

student worked are so small in comparison that they are almost not even visible on the

 84

chart. Using the calendar view did not work as we intended, and we needed a better way

to represent the data in a compressed way.

7.3.2 VERSION 2 -- COMPRESSED CHART

For Version 2, we needed a better way to represent the data for a given week. We

compressed the chart by considering total time spent during the week instead of

spreading out the data across the entire week as in Version 1. Lab activities are still

shown on the y-axis, but the x-axis is now total time spent. Horizontal lines were still

used to indicate time spent per each lab activity. Additionally, we put a percentage above

each horizontal line to indicate the highest score a student earned after that session of

working on that lab. Each chart has a title that summarizes data for the week, including

the student's ID, the total time spent working on lab activities for the week, and the total

number of develop runs (D) and submit runs (S). Each chart is read from left to right and

from top to bottom. Figure 7.2 shows Version 2 of the workflow chart.

Figure 7.2: Version 2 of the workflow chart. Compressed chart only considering total time spent

represented by a black horizontal line per lab activity and a completion score above.

 85

Version 2 of the workflow chart provided insight into a students' workflow (how

they worked on each lab activity during the week), but we soon found ways to get more

information onto the chart while maintaining readability.

7.3.3 VERSION 3 -- COLOR / SCORE PER SUBMIT RUN / STATISTICS PER LAB ACTIVITY

Version 3 of the workflow chart improved clarity and readability. We added color

to distinguish data for each lab activity, so when looking at charts for multiple students,

an instructor could get a quick sense of which lab took most time -- if seeing a lot of

purple, an instructor might know that lab activity 2 was the most time consuming. Next,

we added labels on the right of the chart to summarize data for each lab activity,

including the lab activity's final score, the time spent, and the total number of develop

and submit runs. We added a grid to enable more accurate readings. Finally, we made a

change to the way we considered student work sessions throughout the week. This

change is represented in the chart by some horizontal lines having multiple final score

percentages listed above them. This is explained later in the following paragraphs. The

title of each chart was changed for improved readability. Figure 7.3 shows Version 3 of

the workflow charts.

 86

Figure 7.3: Version 3 of the workflow chart, adding color, summary statistics on the right, gridlines, and

more submit scores.

Version 3 of the workflow chart required many design considerations. First, when

thinking about how to clearly denote which data corresponded to each specific lab

activity, we thought of using color, line styles, or a combination of both. Different line

styles proved to yield a cluttered appearance, and some were hard to distinguish. They

also didn't enable easily seeing the most/least time-consuming labs across multiple

students. A tradeoff here relates to some people potentially having less ability to

distinguish color, and loss of info when printed in black and white. A second design

consideration was related to the grid. Adding the grid added more clarity to the chart, but

in earlier iterations, the grid also decreased data visibility. We initially set the grid color

to be too dark and also with a higher volume of tick marks that were unnecessary. After

testing different color shades and tick mark frequencies, we chose a lighter color for the

grid and reduced the tick marks to achieve the accuracy we wanted.

 87

Finally, we changed the way we thought about how to represent students working

on each lab activity, referred to as student work sessions. At first, we considered a student

work session to end when the student began working on a different lab activity i.e.

submitted code for lab activity 1 and then developed code for lab activity 2. Upon deeper

analysis, we recognized a common scenario where students would begin working on a lab

activity, leave to take a break, and then return to work on the same lab activity. We

consider this scenario important to denote, so we considered a work session to also end if

the time between two activities was more than a 10-minute threshold. We thus showed

the score at the end of every session, which is why the figure above shows multiple 60%

values on a single bar of lab activity 2, for example. This distinction does lead to some

clutter if the student has many work sessions back-to-back (as can be seen in Figure 7.3

for lab activity 7), but we felt the distinction helped instructors to better understand

student workflow patterns.

7.3.4 VERSION 4 -- MORE DEVELOP/SUBMIT DETAILS

Version 3 provided the foundation for all the following updates of our workflow

chart. As we used these charts for analysis in our teaching each quarter, we noticed a lack

of insight on student behavior during each work session. Version 3 summarized data for

each lab activity at the end of the week, but not during the week. As such, in Version 4,

we wanted our chart to add further insight into student develop and submit runs during

work sessions. To accomplish this, we added indicators on the time spent data lines for

when a submit took place. These are indicated in a few different styles as seen in Figure

7.4 and Figure 7.5. We also added text data on the number of develop and submit runs

 88

during each work session underneath each time spent line. Finally, we made minor

adjustments to the labels on the right of the chart such that each feature was on it's own

line for additional clarity.

Figure 7.4: Version 4a. Used large filled in points to indicate a submit run, added text to summarize student

activity per work session, minor adjustments to chart labels.

Version 4a shown in Figure 7.4 uses large filled in points to indicate submit runs.

Using this indication style made it easy to see submit runs but added clutter due to the

size of the points. Also, this indication did not show develop runs.

Another approach we took, seen in Figure 7.5 Version 4b, uses a small point with

a tail and a character label listed below to denote a develop or submit run. A develop run

is indicated with the 'D' character and a submit run is indicated by the 'S' character. By

reducing the size of the point and adding a character, the clutter was lessened and the

distinction was clear. Unfortunately, with the additional markings, it became difficult to

visually separate an 'S' from a 'D.'

 89

Figure 7.5: Version 4b. Used small points with a 'S' label to indicate a submit run and a 'D' label to indicate

a develop run. Other updates are similar to Figure 7.4.

We also experimented using other shapes as indicators like squares, diamonds,

stars, 'X's,' and open points, but none worked out. In both versions, the text indications

for total develop and submit runs below the data lines were helpful. There were some

situations where this data would overlap, making some content difficult to read, but this

didn't happen very often.

7.3.5 VERSION 5 -- TICK MARKS FOR DEVELOP AND SUBMIT RUNS

In Version 5, we effectively displayed develop runs and submit runs during

weekly work sessions. Instead of using points to indicate a develop run or a submit run,

we used small tick marks: A tick below the line indicates a develop and a tick above the

line indicates a submit run. This indication is simple and quickly understood. Even with a

high density of student activity, the chart was still readable. Figure 7.6 shows Version 5.

There was one other design consideration we tested for Version 5. Before putting

straight tick marks above and below the data line, we used straight and diagonal tick

 90

marks to indicate a develop run and submit run respectively. This worked when the

density of activity was low but became difficult to differentiate a straight tick from a

diagonal tick when the density was high.

Figure 7.6: Version 5. Added tick marks below the time lines to indicate develop runs, and tick marks

above the time lines to indicate submit runs.

7.3.6 VERSION 6 -- PIVOT INDICATORS

Version 6 introduces the ability to identify pivots. One unique benefit of the MSP

approach is the ability to pivot, which is when a student switches from one lab activity to

another before scoring 100% on the lab activity being worked on. If a student gets stuck

on a lab activity, they can just move on to another, often coming back to finish the earlier

lab activity (or having gotten help in the meantime). We added arrows on the workflow

chart to indicate when pivoting occurs. Figure 7.7 shows Version 6 of our workflow

chart.

 91

Figure 7.7: Version 6. Added arrows to indicate pivots.

In Figure 7.7, the first pivot can be seen on lab activity 1 since the student only

scored 80% and then switched to work on lab activity 2. Pivoting arrows are useful if an

instructor is interested in them, but adds a small amount of clutter. As such, we added a

flag to control generation of these pivot arrows on the workflow chart.

7.3.7 VERSION 7 -- DUAL TIME AND WEEKLY VIEW CHARTS / CLASSIFICATION

FEATURES

In Spring 2021, we updated our workflow charts to Version 7. Version 7

combines a time-like view with a weekly-calendar view. Version 6 showed how long

students were working on MSP lab activities but was missing information on when in the

week students were working. Are students completing all 5-7 lab activities in one day or

are they spreading them out over a couple days? Initially, we solved this issue by having

two separate charts and we would compare them side-by-side. One chart displayed time

on the x-axis as seen in Figure 7.7 and another would display weekly days on the x-axis

 92

like Figure 7.1. Version 7 combines these two views to now see how long students are

working and when students are working.

Furthermore, we introduced simple classification features and also include them

in the bottom half of the chart. Some other details that changed in Version 7 are now the

charts only show the score when it either improves or at the end of a work session which

improves clarity. For the bottom chart, the same colors are used between both charts to

indicate which lab activities are shared between the views and a vertical dotted line is

added on the weekly-view chart to indicate the deadline for the MSP assignment.

Features currently included in this chart are:

• Start: when the student begins working on more than 10% of their total

activity [early, on time, late, day of]

• End: when the student finishes working on more than 90% of their total

activity [early, on time, late, day of]

• Work type: if the student completes all their work during one day or spreads

their work out over more than 2 days [sprint, marathon]

• # Subs: the number of submits the student has compared to the rest of the

class [low Q1, avg Q2, high Q3]

• Time spent: the time spent working on the MSP assignment compared to the

rest of the class [low Q1, avg Q2, high Q3]

• Suspicious: if the student scores 100% of their points in under 15 minutes

[true, false]

Figure 7.8 shows Version 7 of our programming workflow charts.

 93

Figure 7.8: Version 7. Time view combined with a weekly view and addition of workflow classification

features.

7.4 CURRENT USES AND DISCUSSION

Version 6 (Version 7 as of Spring 2021) of the workflow charts has the

information we desired, available at a quick glance. We can see summary data for the

week, specific data for each lab activity, and can even see special information like pivots.

Section 7.4 discusses our primary uses of these workflow charts.

7.4.1 UNDERSTANDING STUDENT EFFORT

From the beginning, our motivation was to create a visual representation of data

to understand student effort on our MSP assignments. These workflow charts help us see

lots of meaningful data quickly and accurately in a single location. We can pick any week

of the quarter and any student and see why they may be struggling or even performing

 94

better than other students in the class. For example, Figure 7.9 is what we consider a

'healthy' workflow chart. The student spent a good amount of time working on the MSP

assignments (94 minutes), they scored 71% of the total points (which is considered 100%

score for the week using a 70% threshold), and they worked linearly through each MSP

lab activity, starting on lab activity 1 and ending on lab activity 5.

Figure 7.9: 'Healthy' programming workflow chart from a CS1 class.

Figure 7.10 in contrast, shows a student that is likely struggling on MSP

assignment 2, specifically on lab activity 2. The student spent 88 minutes (almost half the

time) of the total 195 minutes solely working on lab activity 2 but still scored 0%, they

pivoted multiple times while working and still did not improve their score, and they

ended the week with a 57% instead of the required 70%.

 95

Figure 7.10: Programming workflow chart showing a student likely struggling with lab activity 2.

At our university, we primarily only use an MSP approach in CS1, however, some

instructors include a few OLP assignments as well. Figure 7.11 shows that the workflow

charts can also provide insight into OLP assignments too. We have already used these

charts for many analyses regarding research, individual student considerations, and to

generally improve our MSP lab activities and our CS1.

 96

Figure 7.11: Programming workflow chart for an OLP assignment in a CS1 class.

7.4.2 DETECTING UNALLOWED COLLABORATION

In 2017, we began allowing our students to collaborate when working on lab

activities. We allow students to collaborate only if they do a majority of the work and

they indicate on their submissions who they worked with. We have a variety of ways to

ensure each student is submitting ethical work, and among them are using these workflow

charts to visually notice any irregularities. Figure 7.12 shows a potentially 'suspicious'

programming workflow chart. This chart is suspicious because the student scored 71%

(full credit with a 70% threshold) with only spending 5 minutes total on the given MSP

assignment. It is possible that the student had previous experience and was actually able

to complete the assignment very quickly, as this is from week 2 when lab activities are

fairly simple, or they could have completed their coding outside of the zyBooks IDE and

copied their solution in. Either way, instructors can quickly see which workflow charts

 97

need attention and investigate as needed. Recently, we started showing students these

generated charts and having them call out any charts that look 'weird' as a class exercise.

Figure 7.12: Potentially 'suspicious' programming workflow chart in a CS1 class.

7.4.3 STUDENT CLASSIFICATIONS

One other way that we have begun using these charts is to create student

classifications to help us identify students that may be struggling. In a 10-week quarter,

we typically generate over 1,000 workflow charts. If we can use these charts to make

meaningful and accurate classifications, then we can identify struggling students early

and provide additional resources that will help them succeed. Some classifications that

we currently use are when do students begin working, do students complete all lab

activities in a single day or spread them out, and how much time do students take to

complete all lab activities.

 98

7.4.4 INTERACTIVE WEB PAGE

We are creating a tool to generate a web page to share these workflow charts with

our students and the community. Instructors can upload the auto-grader's log files for a

week's lab activities, and the charts are automatically generated on an interactive web

page. Although our university uses zyBooks' program auto-grader to produce csv log

files, our tool can work with any auto-grader so long as it can produce a log file with the

same format as needed by the tool. Figure 7.13 shows a high-level description of this

process.

Figure 7.13: High level description of the process to get a log file from a program auto-grader and use the

file to automatically generate workflow charts on a web page using our tool.

The current iteration of our website has sorting functionality so instructors can

point out key features like students who spend the most amount of time working or

students who complete the assignment with the least number of develops or submits. The

website also has search functionality to find data for particular students quickly and

supports a textual view for quick results and a visual view to see all workflow charts. In

 99

the future, we may investigate integrations directly with the auto-grader so that no log file

uploading is necessary. Figure 7.14 is a screenshot of the summary table at the top of the

web page, Figure 7.15 is a screenshot of the textual view of the web page, and Figure

7.16 is a screenshot of the visual view of the web page. Figure 7.17 is a small subsection

of all the programming workflow charts shown on the web page to understand the vast

number of charts we generate and display. The tool is still in beta and only accessible to

us and a few instructors at our university.

Figure 7.14: Screenshot of the current interactive programming workflow chart website: summary analysis

table.

Figure 7.15: Screenshot of the current interactive programming workflow chart website: textual view.

 100

Figure 7.16: Screenshot of the current interactive programming workflow chart website: visual view.

Figure 7.17: Screenshot of multiple programming workflow charts to see the vast number of charts we

generate and display.

7.4.5 FUTURE IMPROVEMENTS

These workflow charts have evolved since 2018, but we are still working on

further improvements. First, we would like to add an indication of when students began

struggling with lab activities compared to their peers. This would make comparison

analysis easier when looking at a single week for an entire class. Second, we would like

to further develop and use the classification system for these charts. As of now, we are

using basic classifications, but if they could be more robust and accurate, we could create

impactful intervention techniques for struggling students.

 101

7.5 CONCLUSION

We described the evolution of a graphical representation, called "programming

workflow charts", of student effort on weekly MSP assignments. We have used these

charts in our teaching each quarter, to help provide insight into our class, get a quick feel

for a particular student's effort when they come to office hours (for example), and even to

help us decide to investigate potential cheating when a student's workflow chart shows

almost no effort but high scores. Chapter 7 focuses on introducing the concept of such

charts as a tool for instructors and showing the evolution of the design; that evolution

may be of interest in itself, as more education-focused tools focus not necessarily on

algorithms or traditional considerations but rather focus heavily on design considerations.

We have found such charts quite useful in our teaching, but we encourage future work

(and plan to conduct some ourselves) that demonstrate specific benefits, like detecting

struggling students, or reducing cheating.

 102

Chapter 8. ANALYZING PIVOTING AMONG WEEKLY MANY

SMALL PROGRAMS IN A CS1 COURSE

8.1 INTRODUCTION

A unique benefit of the MSP approach is the ability for students to pivot, meaning

to switch among lab activities if they get stuck. Chapter 8 investigates such pivoting and

seeks to answer common questions related to pivoting. We analyze how many students

pivot and the number of pivots done each week. Given a full-credit threshold (50 of 70

points on 7 MSP lab activities worth 10 points each with partial credit possible), we

examine how students complete the subset of required points. We compare pivot data

between a class with a full-credit threshold and a class without. We examine whether

students who pivot eventually return to the program from which they pivoted, or if they

leave the program unsolved. Finally, we analyze student workflow to observe various

pivot patterns. By analyzing student pivot behavior, we hope the community can better

understand the pros and cons of pivoting, to help decide whether to adopt an MSP

approach and possibly a full-credit threshold.

8.2 METHODOLOGY

8.2.1 COURSE

This study was conducted at the University of California, Riverside, whose CS

department typically ranks in the top 60 by U.S. News and World Report. The university

operates on the quarter system. Each academic year is divided into three "regular" 10-

week quarters (fall, winter, spring) and one compressed 5-week summer session.

 103

Throughout the academic year, the CS1 course serves around 300-500 students each

quarter. The course is required for all computing majors and for various engineering,

science, and math majors, such that about half the students are computing majors and half

are non-computing majors. The course topics include basic input/output, assignments,

branches, loops, functions, and vectors. The weekly structure of the course includes three

hours of instructor-led lecture, three hours of TA-led labs, interactive online readings,

and auto-graded homework assignments. The course teaches C++ as the programming

language. The course has a midterm during week six and a final after week 10. Each

exam's points come half from multiple choice questions and half from free-response

coding questions. The course uses active learning and peer learning in lectures.

8.2.2 DATA COLLECTION

We analyzed data from a Winter 2019 CS1 course section that was taught using

an MSP approach. In total, 78 students were in the section used for this analysis. Our CS1

used an online textbook published by zyBooks for all class readings, activities, and

programming assignments. At the end of the quarter, we collected all student develops

and submits for every lab activity from the class zyBook. A develop is when a student

runs their code through the zyBooks compiler for testing without grading and a submit is

when the student "turns in" their assignment for grading. Note that all development was

done in the built-in zyBooks coding windows; students were not introduced to an external

development environment. Each develop has metadata on the lab title, a chapter section, a

userID (anonymized and generated from zyBooks), and a timestamp. A submit has the

same metadata as a develop, with additional metadata on the score the student earned on

 104

the submit and the max score possible for the lab. In total, we collected data from 78

students for 65 MSP lab activities. We collected 34,316 develops and 14,774 submits for

a total of 49,090.

8.3 MSP STUDENT PIVOTING

With the MSP approach, students are assigned multiple lab activities to complete

each week. For this class section, students were assigned 7 lab activities, each being

worth 10 points, for a total of 70 possible points in a given week. Students were told that

they only needed to earn 50 points of 70 each week to earn full credit. We refer to this

50-point cutoff as the full-credit threshold. Since students are given a set of lab activities

to complete, they have the unique ability to pivot, or switch among lab activities while

working.

A pivot is when a student partially completes a lab activity (e.g., scores 8 of 10

points) and then chooses to work on a different lab activity. More specifically, an activity

run (submit/develop) is defined as a pivot if the activity meets all 5 of the following

criteria.

• The activity is not the student's first activity for the week

• The activity is for a different lab activity than the previous activity

• The activity is for a lab activity that has not been completed

• The previous activity is for a lab activity that has not been completed

• The activity and previous activity are for lab activities assigned in the

same week

 105

8.4 HOW MANY TIMES DO STUDENTS PIVOT EACH WEEK?

Each week, students were assigned 7 lab activities to complete; each focusing on

the topic taught during that week. For example, week 3 teaches while-loops, so students

were given 7 lab activities that focused on loop creation, loop starting/ending conditions,

etc. A key question is "How many times do students pivot each week?"

8.4.1 ANALYSIS AND PROCEDURE

To answer this question, we first used the rules defined in Section 8.3 to count

how many times each student pivoted during each week of the course. To best understand

pivot behavior, for each week, we computed the average number of pivots, the minimum,

the maximum, the value of the 1st and 3rd quartiles, and the standard deviation. Finally,

we computed an average across all weeks to determine the average times students pivot

each week. Only nine weeks were included in our calculations since week 10 has no MSP

assignments. Students who did not attempt any of the lab activities for a given week were

excluded from weekly calculations.

8.4.2 RESULTS

Figure 8.1 is a box-and-whisker plot that summarizes the number of pivots

students did each week. Above each whisker are the average number of pivots and the

standard deviation. The average number of pivots across all weeks is shown in the top-

right corner. The x-axis is the week number and the y-axis is the average number of

pivots.

 106

Figure 8.1: Box-and-whisker plot to show the pivots each week with a full-credit threshold. The average

pivots and standard deviation appear above each whisker (avg, stdev). Total average pivots is 2.2 per week.

Figure 8.1 shows students pivoted an average of 2.2 times each week. Week 1 has

a much lower pivot rate, due to the lab activities being easier. Week 4 has the most pivots

(3.7 on average), likely due to students being taught while-loops for the first time, one of

the most difficult concepts in the course. The standard deviation is larger in weeks 2-4

when students learn expressions, branches, and loops, and lower later when learning

functions and vectors.

8.5 WHAT PERCENT OF STUDENTS PIVOT EACH WEEK?

Section 8.4 analyzed the average pivots each week. Additionally, we wanted to

analyze the percentage of students that pivoted each week. A key question is "What

percent of students pivot each week?"

8.5.1 ANALYSIS AND PROCEDURE

To calculate the average percentage of students that pivoted each week, we first

determined how many students pivoted at least once for each week in the quarter. If the

 107

student pivoted at least once, they were counted as pivoting for that week. Next, we

computed the percentage of students that pivoted each week. Finally, we averaged across

all the weeks to calculate the average percentage of students that pivoted during the entire

quarter. Students that did not attempt any lab activities for a given week were not

included in the calculations for that week.

8.5.2 RESULTS

Figure 8.2 summarizes the average percent of students that pivoted each week.

The x-axis is the week number and the y-axis is the percent of students.

Figure 8.2: Percent of students that pivot each week.

Figure 2 shows that on average, 65% of students pivoted at least once each week.

Week 1 has the lowest percent of students that pivoted, likely due to the lab activities for

week 1 being quite easy -- students would complete each without getting stuck. Across

the remainder of the term, the percent of students that pivoted seems to be consistent.

Across the quarter, 95% of the students in the class (74) pivoted at least once on a

program.

 108

8.6 WHAT ARE SOME OBSERVED PIVOT PATTERNS?

Recognizing the ways in which students pivot is important to understand how

students utilize the ability to pivot among lab activities each week. To take a closer look

at student pivot patterns, we use programming workflow charts to visibly see how

students worked on weekly MSP assignments. In Section 8.6, we show multiple

programming charts to visually represent how students worked on their MSP assignments

during various weeks. A key question is "What are some observed pivot patterns?"

8.6.1 ANALYSIS AND PROCEDURE

See Section 7.2.3 to see how each programming workflow chart is constructed.

8.6.2 RESULTS

Section 8.6.2 presents three different workflow charts that demonstrate various

student workflow patterns. Each chart summarizes the number of submits and develops,

the total time spent, and the total score earned. Analyzing a combination of details about

each activity also provides insight on student pivot patterns. Each line in the chart is

color-coded to represent a different lab activity for the week. Since students were given 7

lab activities to complete each week, there are 7 different lines on each chart. The x-axis

is the time spent in minutes and the y-axis is the lab activity number. Note, the time

reported in all the charts is an understatement as previously discussed.

8.6.2.1 STUDENT PATTERN 1: 0 PIVOTS

Figure 8.3 shows a student workflow chart from week 5. During week 5, students

were being taught for-loops. This student worked straight through all 7 lab activities,

from LA1 (lab activity 1) to LA7. The student spent the least time on LA1, and the most

 109

time working on LA4. On average, excluding LA1, the student spent about 13 minutes

working on each lab activity. This student did not pivot while working on this MSP

assignment.

Figure 8.3: Programming workflow chart for a student during week 5.

8.6.2.2 STUDENT PATTERN 2: 3 PIVOTS

Figure 8.4 shows a student workflow chart from week 4. During week 4, students

were being taught while-loops. This student began working on LA1 (lab activity 1) and

scored 100%. They moved to LA2 and scored 100% after almost 2 hours of working.

Next, the student scored 80% on LA3 and decided to pivot away to LA4. The student

struggled with LA4, only being able to earn 40% of the points. The student then decided

to pivot to LA5, but scored 0% the first time around. The student then pivoted and

returned to LA4 and improved their score from 40% to 100%. The student then returned

to LA5 and improved their score from 0% to 100% after around 25 minutes of working.

They then completed LA6 and returned to work on LA3, improving their score from 80%

 110

to 100%. The student finally attempted LA7, scoring 0 points, and stopped working

entirely after that. In total, this student pivoted 3 times; indicated by the arrows in the

chart.

Figure 8.4: Programming workflow chart for a student during week 4.

8.6.2.3 STUDENT PATTERN 3: 10 PIVOTS

Figure 8.5 shows a student workflow chart from week 8. During week 8, students

were being taught vectors. This student spent around 3 hours in total working on lab

activities for the week. To summarize, this student spent most of their time working on

LA1 (lab activity 1), LA2, and LA5. In total, this student pivoted 10 times on this week's

MSP assignment. Although the student scored 0% on many of their first attempts, they

were still able to pivot between each lab activity and score the needed points to earn

100% for the week.

 111

Figure 8.5: Programming workflow chart for a student during week 8.

These workflow charts provide insight into student behavior when working on

weekly MSP assignments. Based on these charts, we see that some students do not need

to pivot, and can work through all the material straight through, and yet we also see other

students make heavy use of pivoting when working on their lab activities. Overall, we

can see that a student may initially struggle, but given time and the ability to pivot, they

can learn from other lab activities and help themselves improve when returning to

previously attempted lab activities for the week.

8.7 DO STUDENTS PIVOT MORE OR LESS GIVEN A FULL-CREDIT

THRESHOLD?

The class section used in this analysis was given 7 lab activities to complete each

week (each worth 10 points, 70 points for the week total), but they only needed to

complete 70% of the points to get full credit for the week. We refer to the 70% cutoff as

the full-credit threshold.

 112

During Winter 2019, two other sections of CS1 were taught without using a full-

credit threshold. The other two sections assigned students 7 lab activities each week, 5

required and 2 optional. Each required lab activity was worth 10 points (50 points total

for the week), and the optional lab activities were worth 0 points (no extra credit). A key

question is "Does having a full-credit threshold change pivot behavior?"

8.7.1 ANALYSIS AND PROCEDURE

To answer this question, we ran similar analyses as presented in Section 8.4 and

Section 8.5, but for the other two sections of CS1 offered during Winter 2019. We used

these analyses to calculate the average number of pivots each week and the percent of

students that pivot when there is not a full-credit threshold. For this analysis, we collected

data from the other two class sections being taught. In total, we collected an additional

50,655 submits and 91,774 develops from 182 students over 47 MSP lab activities.

Since we collected data from another class section, there are some potential

threats to validity. The other class sections did have a different instructor which could

lead to instructor bias. Aside from this, all other class variables were kept the same - they

used the same online textbook, used a subset of the same MSP lab activities, followed the

same course pacing, and took the same exams.

8.7.2 RESULTS

Figure 8.6 is a box-and-whisker plot that shows the number of pivots students did

each week without a full-credit threshold. Above each whisker are the average number of

pivots and the standard deviation. Students without a full-credit threshold pivot an

average of 1.6 times each week compared to an average of 2.2 pivots each week by the

 113

full-credit threshold students. The x-axis is the week number and the y-axis is the average

number of pivots.

Figure 8.6: Box-and-whisker plot to show the pivots each week without a full-credit threshold. The average

pivots and standard deviation appear above each whisker (avg, stdev). Total average pivots is 1.6 per week.

Figure 8.7 shows the average percent of students that pivoted each week in a class

without a full-credit threshold. The x-axis is the week number and the y-axis is the

percent of students. On average, 48% of students without a full-credit threshold pivot

each week compared with an average of 65% by students with a full-credit threshold.

Figure 8.7: Average percent of students that pivot each week without full-credit threshold.

 114

Although both groups had the option to complete 7 lab activities each week,

Figure 8.2 compared with Figure 8.7 show that more students pivot when given a full-

credit threshold (65% vs. 48%) while Figure 8.1 and Figure 8.6 show that students pivot

more frequently when given a full-credit threshold (2.2 vs. 1.6). On first thought, this is

likely due to the fact that without a full-credit threshold, students know they need to

complete all required lab activities eventually, so they work through all lab activities until

completion, but more analysis must be done to confirm. One question for further research

is "Does giving students a full-credit threshold increase student agency?"

8.8 DO STUDENTS RETURN TO COMPLETE THE ORIGINAL LAB ACTIVITY

THEY PIVOT FROM?

One common critique we hear when sharing data on pivoting is that allowing

students to pivot could encourage behavior such that students complete the "easy" points

of each lab activity, pivot away, and skip the "difficult" parts, thus allowing students to

not fully learn programming. To see if this concern is true, one key question is "Do

students typically return to the original lab activity they switch from?"

8.8.1 ANALYSIS AND PROCEDURE

To address this question, we first define some terminology to categorize student

pivot behavior.

• Pivot none (N): student did not pivot from the lab activity

• Pivot away (P): student pivoted from the lab activity and did not return

• Pivot return (PR): student pivoted, returned to the lab activity, but made

no improvement in score

 115

• Pivot improve (PI): student pivoted, returned to the lab activity, and

improved their previous score

• Pivot complete (PC): student pivoted, returned to the lab activity, and

completed the lab activity fully (scored 100%)

We keep track of all activity runs for each lab activity, and then once all activity

runs are completed, we can look at all activity runs as a whole to apply the mentioned

categories. We isolate the students who pivoted, what they did after pivoting, and if they

worked again once they returned. By doing so, we are able to better understand specific

pivot behavior.

8.8.2 RESULTS

In total, students completed 4,596 lab activities over the quarter. Of those total lab

activities completed, students pivoted on 20% of them. Figure 8.8 is a pie chart that

summarizes pivot categories for the subset of lab activities that were pivoted from.

Figure 8.8: Pie chart summarizing student pivot categories.

To summarize, students returned to 11.7% of lab activities, returned and improved

on 9.4% of lab activities, and returned to complete 42.4% of lab activities. Overall,

 116

students pivoted away from 36.6% of lab activities and never returned. Figure 8.8 shows

that students come back to work on 63.4% of lab activities and improve their score for

51.6% of lab activities. Since students return to a majority of attempted lab activities, this

finding shows that students do use pivoting in helpful ways, not harmful to avoid the

"hard" parts in a lab activity. Likely, students use pivoting when stuck to either get ahead

on other problems, or they are able to self-enlighten themselves by learning from other

lab activities and then return to work on the lab activities they were previously stuck on.

8.9 STUDENT FEEDBACK

We surveyed students during week 5 (midway through the quarter) to gather their

thoughts on the ability to pivot between lab activities. Using a 4-point Lickert scale (4 is

"Strongly agree", 3 is "Slightly agree, 2 is "Slightly disagree, and 1 is "Strongly

disagree") we asked students "I find the ability to jump between programming

assignments helpful." The average response was 3.23, indicating that students on average

were between "Slightly agree" and "Strongly agree."

8.10 THREATS TO VALIDITY

8.10.1 DIFFERENT INSTRUCTORS

In Section 8.7, we look at the other class sections of CS1 being taught without

using a full-credit threshold to compare pivoting behavior between students. Since we

collected data from other class sections, there could be an instructor bias as the instructor

who taught the full-credit threshold group was different from the instructor who taught

the other sections. Although there could be a threat to validity, we note that both

instructors are very similar in personality, teaching style, previous evaluations, etc. Both

 117

have been teaching for many years together and typically have weekly meetings to share

and ensure the class is being run in virtually the same way. Furthermore, all other class

variables were kept the same - all sections used the same online textbook, the same lab

activities, followed the same course pacing, and took the same exams.

8.10.2 DIFFERENT STYLE OF AN MSP APPROACH

In Section 8.7, we look at the other sections of CS1 being taught during Fall 2019.

The other class sections used a slightly different style of an MSP approach, such that

instead of assigning students 7 lab activities and allowing them to choose which ones to

complete for their weekly points, the other class section assigned 7 lab activities with 5

being required, offering the other 2 for additional practice (but no extra credit). Although

these two methods are slightly different, we do not believe this to have much impact on

the results of our experiment.

8.10.3 OUTSIDE CODE DEVELOPMENT

Although our students were only introduced to the zyBooks in-book IDE, this

doesn't mean that students could not use their own IDEs to develop their code outside of

zyBooks. If this were the case, we would be missing some important data on activity runs

as we would have no way to track their develops. Knowing this, it is possible that some

of our analysis numbers are slightly off. However, since this is an introductory CS1

course, and most students who take this class are new to programming, it's likely that

most students did use the zyBooks' in-book IDE primarily to code. Even if this wasn't

true, our numbers would be an understatement and we would expect most of our numbers

to increase (i.e. more activities could lead to more pivots, time spent, etc.)

 118

8.11 CONCLUSION

One way we have tried to improve our CS1 course is the use of an MSP approach.

A unique benefit of using an MSP approach is that students can pivot, meaning to switch

among lab activities when stuck. Since all MSP assignments relate to a core topic each

week, pivoting is a unique benefit that allows students to gain insight from other lab

activities and then apply that knowledge to solving the previous problems they were

stuck on. This paper addressed many common questions about pivoting. We found that

students on average pivot 2.2 times each week with most students (65%) making use of

pivoting when working on lab activities each week. We explored various pivoting

patterns and saw that students can use pivots to solve problems they previously could not.

We showed that students, given a full-credit threshold, do pivot more than students not

given a full-credit threshold. Finally, we showed that when a student pivots away from a

lab activity, they usually return to work on the lab activity again. There is still much more

analysis to be done on the ability to pivot using an MSP approach, but this work has

shown that students are making good use of the benefits that an MSP approach and

pivoting have to offer.

 119

Chapter 9. CONTRIBUTIONS

We introduced a many small programs (MSP) teaching approach for the first time

in Spring 2017 with a goal to improve the students' experience in our CS1 without

harming grade performance. Four years later, our university only teaches CS1 via an

MSP approach and we've gotten positive feedback from instructors, teaching assistants,

and most importantly the students.

Over the past 4 years, we have implemented, studied, and improved the way we

use an MSP approach in our CS1 classes. Compared to an OLP approach, we have seen

that an MSP approach can be used to increase student satisfaction in CS1 and reduce

student stress without worsening their grade performance in class. In fact, we have seen

that an MSP approach can also yield overall better grade performance, mainly on coding

assessments like the midterm and final exams. Furthermore, we have seen students make

good use of weekly MSP assignments in regards to their learning. When using an MSP

approach, students spend a healthy amount of time working on programming each week,

students begin working on their weekly assignments earlier in the week, students

purposefully complete additional MSP lab activities when given a full-credit threshold

even though no extra credit is given, students use MSP lab activities to prepare for

exams, and most importantly MSP-trained students still perform well in a CS2 that

assigns large programming assignments under an OLP approach. Through our research,

we have seen that an MSP approach can be used across universities and across

programming languages with equal success. Finally, we have experimented and can

 120

conclude that an MSP approach can yield positive results when used in conjunction with

a Coral-first approach in a CS1 class.

Since implementing our MSP approach, we have designed, created, and

maintained over 100 unique C++ MSP programming assignments. With the increased

usage of an MSP approach at our university and the growing usage of an MSP approach

at other universities across the nation (over 250 that we know about as reported by

zyBooks in 2020), we built tools to help analyze and understand how students interact

with MSP content. One of the most helpful tools we created is used to generate

programming workflow charts to gain a visual understanding of how students work

through weekly MSP assignments. Given a log file provided by zyBooks (or any other

program auto-grader), we can quickly and automatically generate thousands of workflow

charts -- one for every student for every weekly MSP assignment. These tools are readily

available to us, but we hope to make them available to all instructors to use to better

understand their students and their classes. As such, we are expanding the workflow chart

generation tool to create an interactive web page for instructors to upload their own log

files to generate and display their classes' programming workflow charts. The web page

has search functionality, sorting functionality, and comes with two data views: a textual

view that quickly summarizes the data in a table and a visual view to see all workflow

charts. This tool is currently in beta and is being worked on by other students. We hope

that a stable version will be completed by the end of this year. Currently, the tool can be

used by instructors at our university and some others by invitation, but we plan to make it

broadly available to all instructors soon.

 121

Our initial goal of improving student experience in CS1 has been made possible

due to this MSP approach. Instructors, teaching assistants, and students have all provided

good feedback on using this approach in their classrooms. As of 2020, we are aware of

hundreds of CS1 classes that have adopted an MSP approach to weekly programming

assignments. Since 2017, our university has switched all CS1 classes to an MSP approach

and there is no sign of going back to a traditional OLP approach.

On a final note, we compare our CS1 DFW rates when teaching via an OLP

approach and via an MSP approach. We collected CS1 DFW data from Fall 2007 - Fall

2019. Comparing DFW rates between a CS1 OLP approach (Fall 2007 - Spring 2017) to

a CS1 MSP approach (Spring 2017 - Fall 2019) we see a statistically significant decrease

from 15% to 8.4% (p<0.001) when using an MSP approach. As Fall 2007 was over 10

years ago and our CS1 has generally improved over the years, we do a similar

comparison only including CS1 OLP approach data from Fall 2014 - Spring 2017 (same

number of CS1 MSP approach quarters analyzed). With a more recent comparison, we

still see a reduced DFW rate from 9.6% to 8.4% (p=0.35), although not significant. Based

on the success we have had in our own CS1 class and based on all the benefits we have

seen an MSP approach offer, we encourage CS1 instructors to try incorporating an MSP

approach in their CS1 as well.

 122

References

[1] Ahoniemi, T., E. Lahtinen, and T. Reinikainen, "Improving pedagogical feedback and

objective grading," SIGCSE Technical Symposium on Computer Science Edu. pp.

72-76, 2008.

[2] Alfaro, L.de and M. Shavlovsky. 2014. CrowdGrader: a tool for crowdsourcing the

evaluation of homework assignments. In Proceedings of the 45th ACM technical

symposium on Computer science education (SIGCSE '14). ACM, New York, NY,

USA, 415-420. DOI: https://doi.org/10.1145/2538862.2538900

[3] Allen, J.M. and F. Vahid. An Analysis of Using Coral Many Small Programs in CS1,

Journal of Computing Sciences in Colleges, 2021.

[4] Allen, J.M., F. Vahid, K. Downey, and A. Edgcomb. 2018. Weekly Programs in a

CS1 Class: Experiences with Auto-graded Many-small Programs (MSP). In

Proceedings of 2018 ASEE Annual Conference & Exposition. DOI:

https://peer.asee.org/31231

[5] Allen, J.M., F. Vahid, A. Edgcomb, K. Downey, and K. Miller. 2019. An Analysis of

Using Many Small Programs in CS1. In Proceedings of the 50th ACM technical

symposium on Computer science education (SIGCSE '19). ACM, New York, NY,

USA, 415-420. DOI: https://doi.org/10.1145/3287324.3287466.

[6] Autolab. http://www.autolabproject.com/. Accessed: July, 2018

[7] Beaubouef, T. and J. Mason. Why the high attrition rate for computer science

students: some thoughts and observations. SIGCSE Bull. 37, 2 (June 2005), 103-106,

2005. DOI: http://dx.doi.org/10.1145/1083431.1083474

[8] Bennedsen, J. and M. E. Casperson, "Failure rates in introductory programming: 12

years later," in ACM Inroads, 2019.

[9] Bergin, S. and R. G. Reilly, "The Influence of Motivation and Comfort-Level on

Learning to Program," in PPIG, 2005.

[10] Bishop, J.L. and M.A. Verleger. 2013. The Flipped Classroom: A Survey of the

Research. In Proceedings of ASEE Annual Conference, 2013. Atlanta, Georgia.

https://peer.asee.org/22585

[11] Blaheta, D., "Reinventing homework as cooperative, formative assessment,"

ACM Technical Symposium on Computer Science Education, pp. 301-306, 2014.

https://doi.org/10.1145/2538862.2538900
https://peer.asee.org/31231
https://doi.org/10.1145/3287324.3287466
http://dx.doi.org/10.1145/1083431.1083474
https://peer.asee.org/22585

 123

[12] BlueJ. https://bluej.org/. Accessed: August, 2020.

[13] Cliburn, D.C. and S. Miller. Games, stories, or something more traditional: the

types of assignments college students prefer. In Proceedings of the 39th SIGCSE

technical symposium on Computer science education (SIGCSE '08). ACM, New

York, NY, USA, 138-142, 2008. DOI: https://doi.org/10.1145/1352135.1352184

[14] CloudCoder. https://www.cloud-coder.com/. August 2017.

[15] CodingBat. http://codingbat.com/about.html. August 2017.

[16] Coral. https://corallanguage.org/ Accessed: August, 2020.

[17] Denny, P. "Generating Practice Questions as a Preparation Strategy for

Introductory Programming Exams". In Proceedings of the 46th ACM Technical

Symposium on Computer Science Education (SIGCSE '15). ACM, New York, NY,

USA, 278-283, 2015. DOI: https://doi.org/10.1145/2676723.2677253

[18] Denny, P., A. Luxton-Reilly, E. Tempero, J. Hendrickx, "CodeWrite: supporting

student- driven practice of java," ACM Technical Symposium on Comp. Science

Edu., pp. 471-476, 2011.

[19] Deterding S., D. Dixon, R. Khaled, and L. Nacke. From game design elements to

gamefulness: defining "gamification". In Proceedings of the 15th International

Academic MindTrek Conference: Envisioning Future Media Environments

(MindTrek '11). ACM, New York, NY, USA, 9-15, 2011. DOI:

https://doi.org/10.1145/2181037.2181040

[20] Edgcomb, A.D, F. Vahid, and R. Lysecky. "Coral: An ultra-simple language for

learning to program." ASEE Annual Conference and Exposition, Conference

Proceedings. 2019.

[21] Edgcomb, A., F. Vahid, R. Lysecky, A. Knoesen, R. Amirtharajah, and M.L.

Dorf. 2014. Student Performance Improvement using Interactive Textbooks: A

Three-University Cross-Semester Analysis. In Proceedings of ASEE Annual

Conference, 2015. DOI: https://doi.org/10.18260/p.24760

[22] Enfield, J. 2013. Looking at the Impact of the Flipped Classroom Model of

Instruction on Undergraduate Multimedia Students at CSUN. TechTrends. 57, 6

(November/December 2013), 14-27. DOI: https://doi.org/10.1007/s11528-013-0698-1

[23] Falkner, N., R. Vivian, D. Piper, K. Falkner, "Increasing the effectiveness of

automated assessment by increasing marking granularity and feedback units," ACM

Technical Symposium on Computer Science Education, pp. 9-14, 2014.

https://doi.org/10.1145/1352135.1352184
http://codingbat.com/about.html.%20August%202017
https://doi.org/10.1145/2676723.2677253
https://doi.org/10.1145/2181037.2181040
https://doi.org/10.18260/p.24760
https://doi.org/10.1007/s11528-013-0698-1

 124

[24] Findlay, S. and P. Mombourquette. Evaluation of a flipped classroom in an

undergraduate business course. Business Education & Accreditation. 6. 63-71, 2014.

[25] Findlay-Thompson, S. and P. Mombourquette, "Evaluation of a Flipped

Classroom in an Undergraduate Business Course," Business Education &

Accreditation, v. 6 (1) p. 63-71, 2014.

[26] Gannt Chart. https://www.projectmanager.com/gantt-chart. Accessed: August,

2020.

[27] Gaughan, J.E. 2014. The Flipped Classroom in World History. The History

Teacher. 47, 2 (February 2014), 221-244.

[28] Giannakos, M.N., J. Krogstie, and N. Chrisochoides. 2014. Reviewing the flipped

classroom research: reflections for computer science education. In Proceedings of the

Computer Science Education Research Conference (CSERC '14), Erik Barendsen and

Valentina Dagiené (Eds.). ACM, New York, NY, USA, 23-29. DOI:

http://dx.doi.org/10.1145/2691352.2691354

[29] Gilboy, M.B., S. Heinerichs, G. Pazzaglia, "Student Engagement Using the

Flipped Classroom," Journal of Nutrition Education and Behavior, 47(1), 109–114,

2014.

[30] Gradescope. https://www.gradescope.com/. Accessed: August, 2020.

[31] Guzdial, M.,. 2003. A media computation course for non-majors. In Proceedings

of the 8th annual conference on Innovation and technology in computer science

education (ITiCSE '03), David Finkel (Ed.). ACM, New York, NY, USA, 104-108.

DOI: http://dx.doi.org/10.1145/961511.961542

[32] Hendrix, D., L. Myneni, H. Narayanan, M. Ross, "Implementing studio-based

learning in CS2," ACM technical symposium on Computer science education, 2010.

[33] Hundhausen, C., A. Agrawal, D. Fairbrother, M. Trevisan, "Does studio-based

instruction work in CS 1?: an empirical comparison with a traditional approach,"

SIGCSE ACM technical symposium on Computer science education, pp. 500-504,

2010.

[34] Kinnunen, P. and L. Malmi, "Why students drop out CS1 course?". In

Proceedings of the second international workshop on Computing education research

(ICER '06). ACM, New York, NY, USA, 97-108, 2006. DOI:

http://dx.doi.org/10.1145/1151588.1151604

http://dx.doi.org/10.1145/2691352.2691354
http://dx.doi.org/10.1145/961511.961542
http://dx.doi.org/10.1145/1151588.1151604

 125

[35] Kumar, A.N., 2004. Using Online Tutors for Learning - What do Students Think?

In Proceedings of the 34th Annual Frontiers in Education (FIE '04). DOI:

https://doi.org/10.1109/fie.2004.1408540

[36] Layman, L., L. Williams, and K. Slaten. 2007. Note to self: make assignments

meaningful. In Proceedings of the 38th SIGCSE technical symposium on Computer

science education (SIGCSE '07). ACM, New York, NY, USA, 459-463. DOI:

https://doi.org/10.1145/1227310.1227466

[37] Lee, C.B., S. Garcia, L. Porter, "Can peer instruction be effective in upper-

division computer science courses?," ACM Transactions on Computing Education

(TOCE) - Special Issue on Alternatives to Lecture in the Computer Science

Classroom, Vol. 13 Issue 3, Art. No. 12, 2013.

[38] Leutenegger, S. and J. Edgington. A games first approach to teaching introductory

programming. In Proceedings of the 38th SIGCSE technical symposium on Computer

science education (SIGCSE '07). ACM, New York, NY, USA, 115-118, 2007. DOI:

https://doi.org/10.1145/1227310.1227352

[39] Matlab Grader. https://grader.mathworks.com/. Accessed: January, 2019.

[40] Measuring U. https://measuringu.com/pcalcz/. Accessed: November 2018.

[41] Mimir. https://www.mimirhq.com/. Accessed: August, 2018.

[42] Mok, H.N., "Teaching Tip: The Flipped Classroom," Journal of Information

Systems Education, 25(1), 7-11, 2014.

[43] MOSS. https://theory.stanford.edu/~aiken/moss/. Accessed: August 2017.

[44] Nagappan, N., Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang, Carol

Miller, and Suzanne Balik. Improving the CS1 experience with pair programming. In

Proceedings of the 34th SIGCSE technical symposium on Computer science

education (SIGCSE '03). ACM, New York, NY, USA, 359-362. 2003. DOI:

https://doi.org/10.1145/611892.612006

[45] Norman, V.T. and J.C. Adams. 2015. Improving Non-CS Major Performance in

CS1. In Proceedings of the 46th ACM Technical Symposium on Computer Science

Education (SIGCSE '15). ACM, New York, NY, USA, 558-562. DOI:

https://doi.org/10.1145/2676723.2677214

[46] Pearson's MyProgrammmingLab

https://www.pearsonmylabandmastering.com/northamerica/myprogramminglab/.

Accessed: August, 2020.

https://doi.org/10.1109/fie.2004.1408540
https://doi.org/10.1145/1227310.1227466
https://doi.org/10.1145/1227310.1227352
https://doi.org/10.1145/611892.612006
https://doi.org/10.1145/2676723.2677214

 126

[47] Petersen, A., M. Craig, J. Campbell, and A.Tafliovich, " Revisiting why students

drop CS1". In Proceedings of the 16th Koli Calling International Conference on

Computing Education Research (Koli Calling '16). ACM, New York, NY, USA, 71-

80, 2016. DOI: https://doi.org/10.1145/2999541.2999552

[48] Porter, L. and B. Simon. Retaining nearly one-third more majors with a trio of

instructional best practices in CS1. In Proceeding of the 44th ACM technical

symposium on Computer science education (SIGCSE '13). ACM, New York, NY,

USA, 165-170, 2013. DOI: http://dx.doi.org/10.1145/2445196.2445248

[49] Porter, L., C.B. Lee, and B.Simon. Halving fail rates using peer instruction: a

study of four computer science courses. In Proceeding of the 44th ACM technical

symposium on Computer science education (SIGCSE '13). ACM, New York, NY,

USA, 177-182, 2013. DOI: http://dx.doi.org/10.1145/2445196.2445250

[50] Porter, L., C.B. Lee, B. Simon, and D. Zingaro. Peer instruction: do students

really learn from peer discussion in computing?. In Proceedings of the seventh

international workshop on Computing education research (ICER '11). ACM, New

York, NY, USA, 45-52, 2011. DOI: http://dx.doi.org/10.1145/2016911.2016923

[51] Porter, L., D. Bouvier, Q. Cutts, S. Grissom, C. Lee, R. McCartney, D. Zingaro,

B. Simon, "A Multi-institutional Study of Peer Instruction in Introductory

Computing," SIGCSE ACM Technical Symposium on Computing Science

Education, pp. 358-363, 2016.

[52] Porter, L., M. Guzdial, C. McDowell, and B. Simon. Success in introductory

programming: what works?. Commun. ACM 56, 8 (August 2013), 34-36, 2013. DOI:

https://doi.org/10.1145/2492007.2492020

[53] Porter, L., S. Garcia, J. Glick, A. Matusiewicz, C. Taylor, "Peer Instruction in

Computer Science at Small Liberal Arts Colleges," ITiCSE ACM conference on

Innovation and technology in computer science education, 129-134, 2013.

[54] Problets. http://problets.org/. August 2017

[55] Rodríguez, F.J., K.M. Price, K.E. Boyer, "Exploring the Pair Programming

Process: Characteristics of Effective Collaboration," ACM SIGCSE Technical

Symposium on Computer Science Education, pp. 507-512, 2017.

[56] Roehl, A., "The Flipped Classroom: An Opportunity To Engage Millennial

Students Through Active Learning Strategies," Journal of Family and Consumer

Sciences, 2013.

https://doi.org/10.1145/2999541.2999552
http://dx.doi.org/10.1145/2445196.2445248
http://dx.doi.org/10.1145/2445196.2445250
http://dx.doi.org/10.1145/2016911.2016923
https://doi.org/10.1145/2492007.2492020

 127

[57] Runestone.

https://runestone.academy/runestone/default/user/login?_next=/runestone/default/inde

x. Accessed: August, 2020.

[58] Scratch. https://scratch.mit.edu/ Accessed: August, 2020

[59] Simon, B., J. Parris, J. Spacco, "How We Teach Impacts Student Learning: Peer

Instruction vs. Lecture in CS0," SIGCSE technical symposium on Computer science

edu., pp. 41-46, 2013.

[60] Simon, B., M. Kohanfars, J. Lee, K. Tamayo, and Q. Cutts. Experience report:

peer instruction in introductory computing. In Proceedings of the 41st ACM technical

symposium on Computer science education (SIGCSE '10). ACM, New York, NY,

USA, 341-345, 2010. DOI: http://dx.doi.org/10.1145/1734263.173438

[61] Snap. https://snap.berkeley.edu/ Accessed: August, 2020.

[62] Soh, L. Using game days to teach a multiagent system class. In Proceedings of the

35th SIGCSE technical symposium on Computer science education (SIGCSE '04).

ACM, New York, NY, USA, 219-223, 2004. DOI:

https://doi.org/10.1145/971300.971378

[63] Stone, J.A. and E.M. Madigan. 2008. The impact of providing project choices in

CS1. SIGCSE Bull. 40, 2 (June 2008), 65-68. DOI:

https://doi.org/10.1145/1383602.1383637

[64] Submitty. http://submitty.org/. Accessed: July, 2018.

[65] Turing's Craft: CodeLab. https://www.turingscraft.com/. Accessed: July, 2018.

[66] Vocareum. https://www.vocareum.com/. Accessed: August, 2020.

[67] Watson, C. and F.W.B. Li, "Failure rates in introductory programming revisited".

In Proceedings of the 2014 conference on Innovation & technology in computer

science education (ITiCSE '14). ACM, New York, NY, USA, 39-44, 2014. DOI:

http://dx.doi.org/10.1145/2591708.2591749

[68] Web-CAT. http://web-cat.org/. Accessed: July, 2018.

[69] Wilcox, C., "Testing Strategies for the Automated Grading of Student Programs,"

ACM Technical Symposium on Computing Science Education, pp. 437-442, 2016.

http://dx.doi.org/10.1145/1734263.173438
https://doi.org/10.1145/971300.971378
https://doi.org/10.1145/1383602.1383637
http://dx.doi.org/10.1145/2591708.2591749

 128

[70] Williams, L., K. Yang, E. Wiebe, M. Ferzli, and C. Miller. Pair Programming in

an Introductory Computer Science. OOPSLA Educator's Symposium, Seattle, WA,

2002. DOI: https://doi.org/10.1076/csed.12.3.197.8618

[71] Zingaro, D. Peer instruction contributes to self-efficacy in CS1. In Proceedings of

the 45th ACM technical symposium on Computer science education (SIGCSE '14).

ACM, New York, NY, USA, 373-378, 2014. DOI:

http://dx.doi.org/10.1145/2538862.2538878

[72] zyBooks. https://www.zybooks.com/catalog/zylabs-programming/. Accessed:

August, 2018.

https://doi.org/10.1076/csed.12.3.197.8618
http://dx.doi.org/10.1145/2538862.2538878

