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A well-run introductory CS1 course is essential for all students within CS 

education. CS1 is necessary to keep students in the major and important to attract non-

majors to the CS field. Unfortunately, there are many well-known issues that most CS1 

courses have in common: high drop rates, low retention, high student stress, student 

struggle, academic dishonesty, and low grades. In this work, we aim to address these 

issues and seek to improve CS1 courses by focusing on weekly programming 

assignments. Our work introduces a different teaching approach from the traditional One 

Large Program (OLP) teaching approach, to a Many Small Programs (MSP) teaching 

approach. Instead of assigning students one large programming assignment to complete 

each week, the MSP approach involves assigning students multiple smaller programming 

assignments, for example 5-7 programs each week, instead. Such an approach has 

become more feasible with the advent of program auto-graders with immediate feedback 

to students, partial credit, and resubmit capabilities. In this dissertation, we discuss the 
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conception of the MSP approach, provide insight into the process of transitioning from an 

OLP approach to an MSP approach, discuss various benefits that an MSP approach 

offers, discuss some pros and cons for using such an approach, present results from 

surveys and multiple analyses on various metrics related to an MSP approach, and 

discuss future use and improvements to the current MSP approach and tools used to 

analyze student interaction. This work shows that an MSP approach can lead to reduced 

student stress, can improve student grade performance, finds students making good use of 

the benefits an MSP approach offers, and shows that students are still well prepared for a 

CS2. Finally, we introduce a tool for instructors to upload their own MSP data sets to 

gain deep insight into their own students' behavior when using an MSP approach in their 

own classes. 
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Chapter 1. INTRODUCTION OF DISSERTATION 

1.1 IMPROVING CS1 

Student success in introductory programming courses (known as CS1) is critical 

to keeping students in the computer science (CS) major, training students in other majors 

who need some programming experience, and attracting students to CS. Unfortunately, 

CS1 courses have many well-known issues: high drop rates, low retention, high stress, 

academic dishonesty, and low grades [34][47][8][9]. In 2005, Beaubouef and Mason [7] 

reported that drop rates between 30%-40% is the norm for most CS programs. Similarly, 

in 2014 Watson and Li [67] reported that over a 30-year period between 1979 and 2013, 

CS1 courses have an average 30% non-passing rate. Figure 1.1 summarizes their 

findings. These issues have drawn the attention of education researchers to find ways to 

improve CS1. 

 

Figure 1.1: 2014 study by Watson and Li found that CS1 classes have a 30% non-passing rate over a 30-

year period from 1979 - 2013 [67]. 
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CS educational research is vast and as such, this dissertation focuses on one small 

aspect of CS1: weekly programming assignments. Weekly programming assignments 

form a large portion of the CS1 curriculum and thus have a high impact on students' 

experience in CS1. This dissertation introduces a Many Small Programs (MSP) teaching 

approach meant to improve the student experience while maintaining good student grade 

performance.  

The following chapters consist of: 

• A description of a Many Small Programs (MSP) teaching approach 

including details of creating, using, and analyzing MSP programming 

assignments. 

• An analysis of student grade performance and student stress after being 

taught CS1 via an MSP approach. 

• An examination of factors such as time spent, start time, pivot usage, 

student workflow, CS2 performance, and more as a result of using an MSP 

approach in CS1. 

• An introduction of student workflow charts and how to understand student 

behavior on weekly programming assignments. 

• An introduction of tools for other instructors to gain insight on their 

students' interaction and performance with weekly MSP assignments. 
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1.2 BACKGROUND ON CS1 EDUCATIONAL RESEARCH 

College-level CS1 education researchers are focused on finding ways to improve 

CS1 courses for students. Section 1.2 introduces and discusses seven CS1 research areas 

currently being analyzed. 

1.2.1 PAIR PROGRAMMING 

Researchers have examined how student collaboration and instruction affects the 

student experience. Pair programming is when at least two students collaborate on a 

single program; working on the same design, algorithm, etc. Pair programming offers 

benefits such as community building, stress reduction, active learning, and increased 

student support. Nagappan et al. [44] researched pair programming in their introductory 

programming courses and found an increase in the retention of students in CS, reduced 

burden on students since pairs help each other, and no loss in student performance. 

Rodriguez et al. [55] examined how pair programming and student collaboration affected 

learning outcomes, finding that if pair programming is done properly, collaboration 

increases learning and understanding. Blaheta [11] studied cooperative learning and 

found that students had a positive reaction. Simon et al. [51] found that peer instruction 

had a positive impact on student perception of learning. Porter and Simon [48] taught 

CS1 using three practices, media computation, pair programming, and peer instruction. 

They found an improvement in student retention in CS and a decrease in drop/fail rates. 

Porter et al. [52] reports that pair programming, contrary to the claim that some students 

may fail to learn since their partners do all the work, actually improves student grade 

performance. Williams et al. [70] found that pair programming leads to higher grades on 
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programming assignments, exams, and in the class overall. An added benefit is that pair 

programming also reduces the stress on instructors and teaching assistants since students 

get help from their peers. Work [37][53][59] continues to study the effects of peer 

collaboration, finding many benefits. 

1.2.2 PEER INSTRUCTION 

Peer instruction is a teaching approach where students engage in small group 

discussions and answer featured questions. This method adds interactivity to a traditional 

lecture and has shown increased student engagement in class. Porter et al. [49] evaluated 

10 years of instruction, looking at 16 courses that used peer instruction and concluded 

that peer instruction reduced the failure rate by 61%. Porter et al. [50] performed a 

similar study in upper division classes and found peer instruction did help students, 

showing that peer instruction is beneficial even in upper level classes. Simon et al. [60] 

performed a study of peer instruction in CS1 and CS1.5. Students were given clicker 

questions, then they answered individually, discussed with their peers, and answered 

again. The results found a 40% increase in the correct answer and found students felt peer 

instruction was valuable. Zingaro [71] notes that peer instruction increases self-efficacy 

in students while being enjoyable to both students and instructors. 

1.2.3 GAME DESIGN AND GAMIFICATION 

Gamification is defined as "the use of game design elements in non-game 

contexts" [19]. This could include having students play games in class to learn, creating 

programming assignments such that students are coding up a game, adding class 

leaderboards to increase competition, and more. Cliburn and Miller [13] gave students 
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three assignments with three project options each. The project options consisted of a 

game, "choose your own adventure," or a traditional project. 71% of projects submitted 

were the game option, although this choice did not have any statistical significance on 

overall grade performance. Leutenegger and Edgington [38] describe using a "game first" 

approach when teaching CS1. The course began teaching basic CS concepts like 

variables, loops, conditional statements in flash, then teaching C++ programming with 

pointers, concluding with graphics using OpenGL. Each assignment/project had a game-

like element or animation like moving a ball, creating a simulation, or designing a custom 

game. Surveys showed that students learned effectively, enrollment in CS courses 

increased, and retention of students in the game development CS class sequence 

increased as well. Soh [62] applied gamification to a multiagent system class designed for 

college seniors and graduate students. Students had to participate in several "game days" 

where the students would compete against one another in games related to various class 

concepts. Surveys showed students enjoyed the game days and thought that they were 

useful to their learning. 

1.2.4 FLIPPED CLASSROOM 

The idea of a flipped classroom has been used in classrooms for years already. 

Bishop and Verleger [10] define the flipped classroom as "an educational technique that 

consists of two parts: interactive group learning activities inside the classroom, and direct 

computer-based individual instruction outside the classroom." Instead of most of the 

learning taking place in the traditional lecture, the flipped classroom inverts this idea and 

suggests that most of the learning be done outside the classroom. Students are responsible 
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for doing the reading and primary learning at home, and the classroom will be used for 

problem solving, group activities, and group discussions. Findlay-Thompson and 

Mombourquette [24] add that the "intent is to create a more collaborative learning 

environment where students are focused on working through problems with both the 

guidance of their teachers and the support of their peers." Giannakos et al. [28] surveyed 

and summarized 32 peer-reviewed articles on flipped classrooms and reported benefits 

such as increased student performance, attitudes, and engagement in the class. Students 

reported to be more engaged with "authentic" learning due to the higher level of problem 

solving in the classroom; thus student perception of the quality of learning is increased. 

Additionally, the concept of a flipped classroom can be applied in many ways. Some 

instructors assign students quizzes to take outside the classroom [22], some make videos 

for students to watch outside the classroom [22], others give students additional online 

studying resources for additional learning [27]. Flipped classrooms have shown various 

benefits including improved performance, fewer drops, and happier students 

[25][29][42][56]. 

1.2.5 PROGRAMMING LANGUAGE AND APPLICATIONS 

Another area of educational research is to change the programming language or 

the programming applications that are being used to teach CS1. Norman and Adams [45] 

switched from C++ to Python, and also replaced weekly homework assignments with 

labs and online problem sets. As a result, they observed an improvement in scores for 

tests, lab exercises, the final exam, and the overall semester score. Layman et al. [36] 

note that students are more interested in practical and socially-relevant assignments. As a 
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follow-up, Layman et al. examined 200 CS1 programming assignments and found that 

only 34% had a practical or socially-relevant context. Thus, the authors recommend 

improving the applications of the programming assignments that instructors use. Guzdial 

[31] changed their CS1 course to focus on media applications. Guzdial describes a new 

course where students learn programming with Python and create programs for 

manipulating sound, images, and movies. 

1.2.6 AUTOMATED HOMEWORK GRADING SYSTEMS 

Most closely related to our work is the increase of automated homework grading 

systems and the introduction of small coding problems for homework or extra practice. 

Automated homework systems have benefits such as easy assignment creation and 

grading, quick and accurate feedback to students, and freeing of instructors' time. 

Universities and companies have built automated homework grading systems and are 

studying how to effectively use them [1][18][23][69]. In addition, smaller coding 

problems are being introduced into classrooms. Systems such as CloudCoder [14], 

CodingBat [15], Pearson's MyProgrammingLab [46], and Problets [54], help instructors 

design small coding problems used as homework, warm-up, or extra practice in the 

classroom. 

1.2.7 OTHER 

There are many other approaches that are being researched to improve CS1. 

Studio-based learning [32][33] emphasizes student communication, collaboration, and 

critical thinking skills; showing improvements in student attitude and content mastery. 

Denny [17] viewed exam question creation as a tool for learning and had students author 
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questions that could appear on their exam. Kumar [35] developed online tutors for their 

course and evaluated student experience, opinions on learning, and other feedback. 

Edgcomb et al. [21] replaced static textbooks with interactive textbooks at three 

universities and found substantial improvements in exam scores, project scores, and 

overall letter grades. Alfaro and Shavlovsky [2] created a system that allows students to 

submit and collaboratively review and grade homework. They found that students had a 

higher incentive to turn in higher quality work and homework reviews. Stone and 

Madigan [63] allowed their students to choose their course projects from a comparable 

set of alternatives. Allowing students to choose their projects increases student success 

rate and enhances student perception of understanding the material.  

1.3 MSP TEACHING APPROACH INTRODUCTION 

1.3.1 ONE LARGE PROGRAM (OLP) TEACHING APPROACH 

Traditionally, students are taught CS1 via a one large program (OLP) teaching 

approach. An OLP approach involves instructors giving students one large programming 

assignment each week to complete. This approach is manageable for instructors since 

they only need to create, maintain, and grade a small number of assignments each term. 

Typically, OLP programming assignments tend to share the following characteristics: 

they cover many concepts at once, may require students to complete multiple parts, 

usually have lots of text, and by nature, typically require a solution of 50 to 100 lines of 

code, or more.  

For example, our university has long taught CS1 by using an OLP approach. 

Figure 1.2 shows the lines of code (LOC) for OLP programming assignments given at 
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our university during the Spring 2017 quarter. We used 10 OLP programming 

assignments with an average of 101 LOC with our largest assignment having 210 LOC. 

For students who have never programmed before, such solution sizes can be intimidating, 

thus, increasing stress or procrastination. 

 

Figure 1.2: Instructor solution LOC for each OLP programming assignment from a CS1 course taught 

during Spring 2017. Average LOC is 101, max 210. 

For our university, and likely for most others, OLP programming assignments in 

CS1 often account for much of the class grade. Some instructors assign simpler warm-

up/practice programs and/or smaller coding homework problems, worth a smaller grade 

percentage. The weekly OLP programming assignments typically represent the hardest, 

most-stressful part of CS1 for students, and is also where much of the learning occurs. 

For this reason, we decided to focus our research on improving the way programming 

assignments are used in CS1.  

1.3.2 AUTO-GRADED PROGRAMS 

To begin improving weekly programming assignments, we took advantage of 

modern-day program auto-graders. A program auto-grader automatically runs students' 

programs against test cases, scoring each program. Many auto-graders let a student 
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directly submit a program and see score feedback immediately, including which test 

cases failed, with the student allowed to submit multiple times. Program auto-graders 

have existed for decades, such as CodeLab [65], Web-CAT [68], and numerous 

homegrown auto-graders at various universities [6][64]. However, most early auto-

graders required high expertise to create new auto-graded assignments, involving 

specialized scripting. In contrast, modern commercial auto-graders like zyBooks [72], 

Mimir [41], and Matlab Grader [39] enable creation of new assignments in minutes, 

entirely via web forms, with no specialized scripting. Due to the ease of use, there has 

been a dramatic increase in program auto-grader use in CS1 and other courses. For 

example, since zyBooks' auto-grader was released in 2016, over 250 courses (mostly 

CS1) have started using an auto-grader that did not before. 

1.3.3 MANY SMALL PROGRAMS (MSP) TEACHING APPROACH 

The ease of creating and grading new programming assignments in modern auto-

graders, coupled with the learning benefit of students getting immediate fine-grained 

score feedback, motivated us to consider a new teaching approach we refer to as the 

many small programs (MSP) teaching approach. Instead of assigning students one large 

programming assignment each week, we assign students multiple smaller programs, or 

lab activities, each week instead. Typically, we give students between 5-7 lab activities to 

complete each week. Figure 1.3 is a high-level depiction of an OLP programming 

assignment versus an MSP programming assignment. Without auto-graders, the extensive 

resources to grade so many programs deterred instructors from considering an MSP 
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approach. Or, with older auto-graders, the difficulty of creating and maintaining so many 

programs also deterred the approach. 

 

Figure 1.3: High level depiction of an OLP programming assignment versus an MSP programming 

assignment. 

Compared to an OLP programming assignment, MSP lab activities teach one 

specific concept at a time, are short in size, have short, concise prompts, and tend to have 

smaller solution sizes. Figure 1.4 shows the lines of code (LOC) for each MSP lab 

activity used at our university during the Spring 2017 quarter. 

 

Figure 1.4: Instructor solution LOC for each MSP lab activity from a 2017 CS1 course taught at our 

university. Horizontal lines have been added to separate weekly MSP assignments. Average is 32, max 90. 

Outliers in weeks 3 and 7 are due to tall if-elseif-else trees. 

MSP lab activities have several other immediate benefits. Students may find them 

less intimidating due to their small size. There may be less inertia to get started on the 

smaller programs, with students building confidence from the initial easier programs. 

Students may benefit from the option of moving on to another program if stuck, then 

coming back later to finish the incomplete program ("pivoting"). Finally, students get to 



   12 

have repeated but different learning experiences on the week's concepts (like "loops"), 

meaning more practice. 

1.3.4 MSP LAB ACTIVITY DETAILS 

For additional insight, Figure 1.5 shows a sample MSP lab activity. Each MSP lab 

activity consists of a title, a prompt, an instructor solution, and a set of test cases (with 

assigned points) to grade the submitted code by. The prompt is short and concise; never 

more than three sentences and contains specific instructions for the student to complete 

the assignment. Sometimes the prompt can include helpful hints for students as well. 

Instructor solutions are small and roughly between 10 - 50 LOC total with comments and 

proper code styling. Test cases are typically input/output tests such that the program 

expects an exact output for a given input. There is also the option to have unit tests where 

the auto-grader tests a student's function directly. Point values are assigned to each test 

case -- we found three to four test cases to be sufficient, typically totaling to 10 points per 

assignment. 
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Figure 1.5:  Sample MSP lab activity with a title, prompt, instructor solution, and test cases. 
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1.4 COMMON TERMS USED IN THIS DISSERTATION 

An OLP approach (One Large Program Teaching Approach) is the traditional 

teaching approach where students are given one larger programming assignment to 

complete each week.  

An MSP approach (Many Small Programs Teaching Approach) involves 

assigning students multiple lab activities (programming assignments) to complete each 

week. A weekly MSP assignment is a grouping of all MSP lab activities assigned to 

students for the given week. For example, we typically assign students 5-7 MSP lab 

activities each week, so all 5-7 lab activities collectively form an MSP assignment. 

Students that have taken a CS1 taught via an MSP approach are considered MSP-trained 

CS1 students. 

We primarily use zyBooks' auto-grader for all our weekly MSP assignments. A 

develop is when a student runs their code through zyBooks' compiler for testing without 

grading and a submit is when a student "turns in" their code for grading. An activity run, 

or run, is either a develop or a submit. 
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Chapter 2. WEEKLY PROGRAMS IN A CS1 CLASS: 

EXPERIENCES WITH AUTO-GRADED MANY SMALL PROGRAMS 

(MSPS)  

2.1 INTRODUCTION 

Weekly programming assignments form a large part of the students' experience in 

a CS1 course. At our university, our CS1 course followed the traditional one large 

programming assignment per week (OLP) model with a few small warm-up programs, 

for over 20 years. Our CS1 serves about 350 students per quarter (including majors and 

non-majors). We used a program auto-grader for the past 10 years. We also used 

commercial online auto-graded homework problems (which are even smaller coding 

exercises) for about 15 years. Students are encouraged to collaborate on the warm-ups 

and homework problems but are not permitted to collaborate on the weekly OLP 

assignments. Students may, however, get help during instructor or teaching assistant (TA) 

office hours or via discussion board posts to the class. We use pair programming at times 

as well. Our lectures have included small-group collaborative programming (a form of 

flipped classroom) since the late 1990s. Student evaluations indicate that the course is 

reasonably well-liked, though many students indicate that the course is hard, time-

consuming, and stressful. We also check for and detect overly-similar submissions using 

MOSS, a system for determining the similarity of programs [43]. Investigating and 

pursuing academic dishonesty (typically 10-20 per quarter) is a time-consuming and 

unpleasant part of the instructor’s job. 
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About 10 years ago, faced with increasing enrollments and shrinking funds, we 

developed an in-house program auto-grader. This dramatically reduced the time TAs 

spent grading; freeing TAs to spend more time teaching and handling larger class 

sections. Students also appreciated the immediate score feedback and the ability to 

resubmit right away for a higher score. The auto-grader did not improve student 

evaluations, exam performance, or academic dishonesty 

In 2016, zyBooks [72] released a web-based program auto-grading system that 

emphasized ease of use for both students (allows direct coding in the browser or file 

upload) and instructors (creating new assignments via a simple web interface; requiring 

no scripting or coding). With this system, any of our instructors or TAs could easily 

create new assignments with no training. Creating each weekly large programming 

assignment required only about 60-90 minutes; opposed to many hours in the past. Thus, 

we created a new set of weekly assignments and warm-up assignments for winter 2016. 

We continued revising assignments quarterly instead of yearly, or less. 

The ease of creating new program assignments coupled with students getting 

immediate, fine-grained score feedback enabled us to consider a new option. We 

implemented a teaching approach that involves assigning students multiple smaller 

assignments each week instead of the traditional OLP approach. We refer to this new 

method as the many small programs (MSP) teaching approach.  

Chapter 2 describes an experiment in which, for one of three class sections, we 

taught CS1 via an MSP approach and compared survey results and grade performance 

results to the other two class sections being taught via an OLP approach. We provide 
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results of student surveys showing significantly happier students. We provide exam 

results showing improved performance. Based on the results, our department changed all 

CS1 class sections to use an MSP approach for the following quarter. 

2.2 METHODOLOGY 

2.2.1 CS1 COURSE DETAILS 

The experiment was conducted in our CS1 course at the University of California, 

Riverside. The CS department is typically ranked in the top 60 by the U.S. News and 

World Report. The course usually serves about 350 students per quarter (three quarters 

per year, plus summer) with four class sections containing 80-100 students per section. In 

2013, our university made one class section completely online. The online section is run 

identically to the physical class sections with the lectures and lab sessions carried out via 

synchronized online meetings that require real-time attendance. Four instructors rotate to 

teach the course, all with over five years of experience and strongly-positive student 

evaluations. In a given quarter, two instructors teach the course, each with their own class 

sections. Each section consists of three hours of instructor-led "lecture" per week. A 

typical lecture consists of short talks, coding examples, and small-group coding activities. 

All sections have two scheduled-lab hours per week led by a TA. Instructors and TAs 

hold weekly office hours. An online discussion board is used for questions / answers. 

This experiment was conducted during the Spring 2017 quarter. The CS1 course had 

about 250 students split into three sections. Most students were non-computing majors. 
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2.2.2 THE EXPERIMENTAL GROUP 

The experimental group was one online section of our CS1 containing 76 

students. The control group was the other two in-person sections containing 166 students. 

Most features were kept the same for all three sections except the weekly programming 

assignments, the midterm percentage, and allowing collaboration as described in 2.2.6. 

All sections took the same midterm and final exams. 

2.2.3 COURSE TASKS AND GRADES 

In all class sections, students were assigned three tasks each week. (1) Reading 

tasks that consisted of completing small activities and answering questions (multiple 

choice, true/false, short-answer) found in our online textbook. Readings were due before 

lecture. (2) Homework tasks were small auto-graded coding exercises, typically about 15-

20 per week, usually typing a few lines of code in a template program, like writing an if-

else statement or a for loop. (3) Programming assignments required students to apply that 

week’s topics by writing one or more full programs. 

The control and experimental groups had the same grade percentage points for 

reading tasks (7.5%), homework tasks (7.5%), in-class participation (5%), and the final 

exam (35%). Grade percentage points differed for programming assignments (control 

25% vs. experimental 15%) and the midterm exam (control 20% vs. experimental 30%). 

The experimental group was given 7 MSP lab activities per week versus the usual 

one large programming assignment per week (plus warm-ups) in the control group. 

Students could earn 0-10 points, per MSP lab activity, depending on how many test cases 

their program passed. Students in the experimental group were told that 50 points yielded 
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100% for the week. No extra credit was given for earning more than 50 points in a week. 

Both groups used the same program auto-grader with immediate score feedback. Neither 

group had limits on the number or rate of submissions. 

2.2.4 PROGRAM AUTO-GRADER 

We used a program auto-grader published by zyBooks [72]. zyBooks’ auto-grader 

is a fully web-based system that makes creating and grading assignments simple. An 

instructor creates a new lab activity by clicking a button that opens a web form. The 

instructor enters a title and a text specification (with some formatting available). The 

instructor chooses some configuration options such as compiler flags, number of submits 

allowed (we selected unlimited), and whether submits are metered (we did not meter). A 

code template can be provided for students as well (we usually provided a basic template 

having includes and the main() function). 

Next, the instructor creates test cases. An “input/output” test case involves typing 

input values paired with expected output values. For example, if a program should square 

its input, an “input/output” test case might have an input of -5 and an output of 25. The 

instructor can create any number of test cases and assign any point value to each test 

case. Test cases can also be configured to ignore output whitespace, indicate that the 

output need only start with the expected output (or end with it), and more. Another kind 

of test case is a unit test where a student’s function/method can be called directly to check 

the returned result. Figure 2.1 shows a sample MSP lab activity generated via zyBooks' 

program auto-grader. The specification section details the MSP lab activity's prompt and 

title, the template code section is where sample code is provided and where the students 
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interact with zyBooks' IDE, and the assessment section is where all the test cases are 

located. 

 

Figure 2.1: Sample MSP lab activity generated via zyBooks' program auto-grader. 

2.2.5 MANY SMALL PROGRAM (MSP) ASSIGNMENTS 

The course covered input/output, variables/assignments, branches, loops, 

functions, and vectors. C++ was the language used in the course. All these topics were 

taught within nine weeks (the 10th week covered various topics not involving 

programming assignments). Solution sizes ranged from 10-50 lines of code. Each week's 

MSP assignment consisted of 2 easy, 3-4 medium, and 1-2 hard MSP lab activities. 

2.2.6 COLLABORATION ON MANY SMALL PROGRAMS 

With each MSP lab activity being lower stakes in the experimental group vs. the 

control group, the experimental group was told that they could collaborate versus the 

control group whose students were allowed to discuss programs conceptually, but not to 

show their programs to each other. The experimental group was told that similar or 
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identical submissions were allowed (though they should indicate collaborators or other 

helpers in comments). The only thing considered academic dishonesty would be having 

someone else write their program. They were told that half the midterm and final exams 

consisted of short coding problems of similar difficulty as the programming assignments, 

and were given sample midterm and final exams illustrating that fact. 

2.3 CS1 STUDENT SURVEY RESULTS 

Our main goal was to improve student experience; hoping to reduce attrition and 

attract students to computing majors. To gauge student satisfaction, we created a "stress 

survey" to learn more about the students' experience in CS1. This survey asked 18 

questions based on a 6-point Likert scale, with responses ranging from Strongly agree (6) 

to Strongly disagree (1); no option of "Neither agree nor disagree" was given. To reduce 

bias, some questions were asked such that a more agreeable answer was favorable ("I 

enjoy the class") and others such that a less agreeable answer was favorable ("I am often 

anxious about the class"). Questions such that a higher response number is favorable are 

listed above the bolded line and questions such that a lower response number is favorable 

are listed below the bolded line. The questions are shown in Table 2.1. Note that the 

questions were asked to the students in an intermixed order. The survey was given in the 

8th week of a 10-week quarter. 
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Table 2.1: Results of the “stress survey” for Spring 2017. p-values denoted by * are nearing significance (p 

< 0.05) and p-values denoted by ** are significant under the Bonferroni correction (p < 0.0028). Most 

favored the experimental group. 

Question Control  

group avg. 

Experimental 

group avg. 

p-value 

I enjoy the class 4.53 4.87 0.046* 

This class is an appropriate amount of work per week for the 

number of units 

3.73 4.09 0.073 

I was prepared for the midterm exam 3.63 4.18 0.004* 

I feel prepared for the final exam 2.78 2.84 0.414 

The weekly programming assignments were enjoyable 3.37 4.13 0.001** 

The weekly programming assignments contributed to my success 

in the course 

4.58 4.87 0.058 

I learned a lot from the weekly programming assignments 4.58 4.94 0.029* 

I frequently collaborated with others on the weekly programming 

assignments 

2.74 2.66 0.397 

I feel confident in my ability to write a small (< 50 line) useful 

program 

3.98 4.32 0.087 

I am often anxious about the class 3.72 3.15 0.020* 

I spend a lot of time in the class figuring out system issues rather 

than learning programming 

2.99 2.43 0.022* 

The number of tools and websites for this class are somewhat 

overwhelming 

3.15 2.50 0.010* 

I have missed a deadline because I thought it was another time 2.48 2.75 0.202 

I have looked for class info but couldn't find it 2.19 1.94 0.174 

I felt anxious about the midterm exam 4.25 4.18 0.396 

I feel anxious about the final exam 4.89 4.37 0.020* 

The weekly programming assignments were stressful 4.31 3.93 0.058 

The weekly programming assignments were frustrating 4.34 3.99 0.078 
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In addition, we conducted a combined analysis. Per question, we z-scored all 

responses. We concatenated the z-scores from the control group into one list, and 

separately, the experimental group into another list. We compared the lists with the 

student's T-test using two tails, yielding a p-value of 1.68E-69, which is smaller than the 

Bonferroni correction value of 0.0028 (0.05 / 18), and thus interpreted as significant. 

We converted the average of each list, control group's z-score average was -

0.0707 and experimental group's z-score was 0.1563, into a percentage difference via (1) 

calculating the absolute difference between the average of each list, yielding 0.2270; (2) 

converting the difference into a percentage using an online tool by Measuring U [40] 

(two-sided); (3) dividing the resulting percentage by 2 to get the difference from the 50th 

percentile. In conclusion, we found that the experimental group preferred the class 9% 

more (p-value = 1.68E-69) than the control group. 

We did not expect the experimental group to spend more time on programming 

assignments per week since although more programs existed, they were smaller. We 

expect all CS1 students to spend about 2-3 hours per week on their weekly programs and 

our in-class surveys confirmed that both groups spent about that time. In Table 2.1, the 

experimental group students indicated they felt the class was an appropriate amount of 

work per week for the number of units (even more so than the control group, but not quite 

statistically significant). 

We also sought to compare the students’ experiences between the current 

experimental group and the previous time that same instructor taught the course. This was 

to determine whether the instructor alone might account for the differences. The 
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instructor provided their teaching evaluations for their previous offering (55 students 

completed the form) and for Spring 2017 (44 students completed the form). The 

“Assignments contributed to my learning” response went from 4.4 of 5 (department 

average was 4.2) to a high 4.72 (dept. avg. was 4.33) in the spring. In fact, nearly all 

scores went up, including the university’s highest priority question “The instructor was 

effective,” which improved from 4.3 (dept. avg. was 4.2) to 4.67 (dept. avg. was 4.25). In 

fact, the course evaluations were in the 85th percentile for the entire university (30,000 

students), which is unusual for a required CS class for non-majors. This data further 

supports that the change to an MSP approach had a strong positive impact on the 

students’ experiences. 

2.4 CS1 STUDENT GRADE PERFORMANCE 

We sought to improve the student experience without worsening student 

performance. We thus compared the experimental and control groups’ performance on 

exams and other course tasks. The exams were half multiple-choice questions and half 

short coding questions (both in terms of points and approximate time). Table 2.2 shows 

that the experimental group performed significantly better than the control group on the 

midterm and final coding questions and slightly better on the multiple choice questions. 

The experimental group and the control group performed similarly on reading activities 

and weekly programming assignments. The control group performed better than the 

experimental group on homework activities. 
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Table 2.2: Control vs. experimental group averages on exams and other course tasks for Spring 2017. p-

values denoted with * are nearing significance (p < 0.05) and p-values denoted with ** are significant 

under the Bonferroni correction (p < 0.0056). 

 Control group % Experimental group % p-value 

Final 70.1% 75.7% 0.009* 

    Final multiple choice 72.9% 75.4% 0.097 

    Final coding 67.2% 75.9% 0.003** 

Midterm 68.2% 79.9% p < 0.001** 

    Midterm multiple choice 84.4% 86.5% 0.075 

    Midterm coding 53.6% 73.4% p < 0.001** 

Reading activities 97.1% 95.3% 0.153 

Homework activities 94.2% 87.6% 0.002** 

Weekly programming assignments 88.4% 87.1% 0.317 

 

Although we had no reason to believe that online students would do better, one 

might question whether the section being online led to the higher scores. Thus, we 

analyzed the scores for the past three offerings of the CS1 course. Table 2.3 shows that 

the online section traditionally does not outperform the in-person sections, and in fact, 

typically performs worse on the exams. 

Table 2.3: In-person versus online averages for Spring 2016, Fall 2016, and Winter 2017, for about 1,000 

physical and 300 online students, showing the online section traditionally performs worse on exams 

compared with the in-person section. P-values denoted with a * are nearing significance (p < 0.05). 

 Physical Online p-value 

Final 81.1% 78.3% 0.390 

Midterm 81.5% 78.3% 0.001* 

Reading activities 93.1% 93.0% 0.964 

Homework activities 94.3% 92.0% 0.030* 

Weekly programming activities 89.1% 83.2% p < 0.001 

 

We also note that the instructor who taught the experimental group section had 

taught some of the online sections in the past (three times over the past three years). 
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These instructor’s previous online sections never outperformed the other sections; instead 

usually performed slightly worse; consistent with Table 2.3. This data increases our 

confidence that the improvements seen in the online section of Spring 2017 is indeed due 

to the introduction of an MSP approach. 

2.5 DISCUSSION 

The experimental group had three related changes: MSP approach versus an OLP 

approach, allowing collaboration on those programs, and those programs being worth 

15% rather than 25% (with more weight on the midterm). One might ask if one of the 

latter two factors caused the different survey and performance results. However, we had 

previously experimented with lowering the program percentage points and increasing 

exam percentage points, but such a change was highly unpopular. Students complained 

they spent too much time on programs worth little. We also experimented with 

collaboration before but saw drops in exam scores as students over-relied on their 

classmates for help. 

Instead, we view the three changes as tightly interrelated. The MSP lab activities 

are less intimidating, meaning students are less likely to seek inappropriate help and more 

likely to attempt the programs themselves. The MSP lab activities are more focused, 

allowing students to see their skills improving (e.g., each loop gets easier to write) and to 

see how those skills will help on exams. Those factors enabled us to allow collaboration 

since students would not immediately cheat such a system, instead first making attempts 

because the programs are approachable and their usefulness clearer. (One might note that 

the experimental group’s answer to the survey question “I frequently collaborated…” is 
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not higher than the control group). Likewise, those factors allowed us to reduce the 

program percentage, without students getting upset as in the past. 

We note that, although the experimental group only needed 50 of 70 points or 

71% program completion, the group obtained 87% completion, nearly identical to the 

control group’s 88%. Students voluntarily completed more than necessary, further 

suggesting students found the MSP lab activities approachable and useful. Also, no 

student asked for an extension. 

One might ask, given the rampant cheating common in CS1, is allowing 

collaboration really going in the right direction? We think so. We believe most students 

want to learn and will do so given what they understand to be a fair and valuable learning 

experience. The positive benefits of student collaboration are well known and we wish to 

encourage such collaboration in CS1. 

Ultimately, we believe this is a case of technology enabling a new approach and 

perspective. The traditional OLP model may never have been best for students but was 

what instructors could manage. When programs were graded by hand (and when creating 

auto-graded assignments was time-consuming), instructors could not conceive of giving 

so many program assignments per week. Plus, with students not getting scores back 

immediately, the idea of “you only need 50 out of 70 points” was less feasible since 

students would not know their scores for a week or longer. When one looks at other 

skills, like playing an instrument, instructors do not set up one recital a week. Instead, 

students spend extensive time on drills, like playing scales, with instructors providing 

immediate feedback to correct mistakes. 
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If CS1 is taught only by an MSP approach, when will students learn to write 

larger programs? Our thoughts: 

• Majors will learn to write larger programs in CS2. 

• Non-majors, if they need to program in their careers, are more likely to 

have to write programs similar to the MSP lab activities, like writing a 

small add-on function for a statistical analysis tool, for google docs, for a 

database query, etc. If they need to write more substantial programs, they 

will probably take a CS2 class (or more). 

• With the above said, we note that we intentionally ran the experiment in a 

more “extreme” manner, to see what effect would occur. Going forward, 

our instructors plan to give one large assignment mid-quarter and one 

large assignment end-of-quarter, with the other eight weeks using the MSP 

approach. 

Furthermore, we found that the MSP-trained students did just as well as the OLP-

trained students for the next term in CS2, which uses the traditional OLP approach and 

does not allow collaboration. This analysis is discussed more in Section 3.9 and explored 

in detail in Chapter 4. 

We mention that the instructor who taught the experimental section stated that 

they “are never going back.” The instructor has always had positive experiences teaching, 

and (like the other CS1 instructors) has above-average student evaluations and positive 

student comments. Still, the instructor said this was the best CS1 teaching experience 

they had in 20 years. 
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2.6 CONCLUSION 

New technology, namely a program auto-grader with rapid/easy assignment 

creation, enables replacing the traditional CS1 one large program approach by a many 

small programs approach. The MSP approach involves numerous smaller, focused 

programs due each week accompanied by a scoring threshold (in our case, 50 of 70 points 

for the week yields full credit). The MSP approach is less intimidating for students. 

Students can build confidence and skill on the easier lab activities and then work on the 

harder ones; skipping around until they earn enough points. The MSP approach enabled 

us to allow collaboration. The MSP approach allowed us to decrease the program 

percentage and increase the exam percentage contribution to the total course grade, to be 

better assured in testing what students know due to the controlled testing environment 

(versus programming assignments where even with a no collaboration policy, instructors 

cannot be certain who is doing the programming). The MSP approach led to significantly 

greater satisfaction and less stress among the students. The approach also yielded 

improved performance on the exams. The approach led to improved experiences for the 

instructor and TA, including not having to spend any time on academic dishonesty. As a 

result, our department switched all sections to primarily use the MSP approach, with 

continued success. We encourage other departments to consider the approach. 
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Chapter 3. AN ANALYSIS OF USING MANY SMALL PROGRAMS 

IN CS1 

3.1 INTRODUCTION 

Our initial analysis [4] on using an MSP teaching approach in CS1 concluded that 

such an approach could result in happier, less-stressed students without hurting student 

performance. In fact, we saw that an MSP approach led to improved code-writing scores 

on exams, likely due to students having more practice on focused concepts. After sharing 

the results of our initial analysis, all CS1 courses at our university switched from an OLP 

approach to an MSP approach the following fall 2018 quarter. Not only did our university 

switch CS1 teaching approaches, other universities began incorporating an MSP 

approach in their own CS1 classes as well -- many cloning our programming assignments 

(with permission), and dozens of others have asked to view our MSP lab activities and 

are considering adopting the approach. Since an MSP approach was becoming a large 

part of our CS1 curriculum, we wanted to understand more about how students were 

interacting with the new MSP lab activities. Chapter 3 seeks to answer common questions 

related to MSP assignments. 

3.2 METHODOLOGY 

3.2.1 COURSE 

The study was conducted in our CS1 at the University of California, Riverside 

(UCR). UCR’s CS department typically ranks in the top 60 by U.S. News and World 

Report. The university operates on the quarter system. Each academic year is divided into 
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three "regular" 10-week quarters (fall, winter, spring) and one compressed 5-week 

summer session. Throughout the academic year, the CS1 course serves around 300-500 

students each quarter. The course is required for all computing majors and for various 

engineering, science, and math majors, such that about half the students are computing 

majors and half are non-computing majors. The course topics include basic input/output, 

assignments, branches, loops, functions, and vectors. The weekly structure of the course 

includes three hours of instructor-led lecture, two hours of TA-led labs, interactive online 

readings, and auto-graded homework assignments. The course teaches C++ as the 

programming language. The course has a midterm during week six and a final after week 

10. Each exam's points come half from multiple choice questions and half from free-

response coding questions. The course uses active learning and peer learning in lectures. 

3.2.2 DATA COLLECTION 

We analyzed data from a Spring 2017 76-student section of our CS1 course that 

used an MSP approach. Our CS1 used an online textbook published by zyBooks for all 

class readings, activities, and lab activities. At the quarter's end, we collected all student 

submits and develops for lab activities from zyBooks and combined them into one 

spreadsheet. A submit is defined as when the student "turns in" their assignment for 

grading. A develop is defined as when a student runs their code through the zyBooks 

compiler for testing without grading (development was done in the built-in zyBooks 

coding windows; students were not introduced to an external development environment). 

Each student submit has metadata about the lab activity title, a userID (anonymized and 

generated from zyBooks), the submit score, the max score possible for the submit, and a 
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timestamp. A develop has the same metadata as a submit but without a score and a max 

score. For this study, we collected data from the 76 students for 61 MSP lab activities. In 

total, we collected 16,106 submits and 48,186 develops a total of 64,292. 

3.3 HOW MUCH TIME DO STUDENTS SPEND WORKING ON MSP 

ASSIGNMENTS? 

We generally expect students to spend between 2-3 hours per week working on 

their programming assignments. Our past surveys and analyses showed students on 

average spending about 2 hours, the average pulled down by students who submit few or 

no programs (of course some students spend more than 3 hours as well). We designed the 

MSP assignments to take about the same total time per week as the traditional OLP 

approach. We seek to answer the question: how much time do students spend working on 

MSP assignments? 

To calculate the total time students spent on MSP assignments, we used each 

timestamp for a develop or submit, calculated the difference between each timestamp, 

and summed the differences. We excluded a difference that exceeded 10 minutes, 

assuming the student took a break. Note that our calculations are thus an underestimate, 

as some breaks may have actually involved the student working or researching, and we 

also cannot capture time spent understanding and working on the MSP assignments 

before the first develop or submit.  

Figure 3.1 summarizes the average time spent by students on MSP assignments 

per week, as calculated above. The x-axis is the week number and the y-axis is the time 

spent in minutes. On average, students spent 17 minutes per MSP lab activity and 120 
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minutes per MSP assignments each week. This excludes week 1 (which had easy 

introductory programs) and week 9 (which had fewer lab activities to complete). The two 

most challenging weeks were week 4 covering loops, and week 8 covering vectors. The 

dips in weeks 6 and 7 are due to several MSP lab activities having students rewrite earlier 

MSP lab activities, but using user-defined functions. 

 

Figure 3.1: Average time spent by students each week on MSP assignments. Students with 0 submits or 0 

time spent were excluded from calculations. 

We compared our analyses with a survey during lecture of week 8 that had 21 

questions, one of which being "The average hours per week spent on all zyLab 

programming assignments that week was?" with response options 1-2, 2-3, 3-4, …, 10+. 

Figure 3.2 summarizes student responses. 67 students responded. A weighted average 

yields about 5 hours per week, which is higher than our calculated time of 2 hours a 

week. This higher value may be due to various factors including: our calculations being 

an underestimate as mentioned earlier, students may overestimate or overreport time 
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spent, the survey's options may bias students towards selecting higher values, and the 

weighted sum may unintentionally round up. 

 

Figure 3.2: CS1 Spring 2017 survey responses (67 students) for "The average hours per week spent on all 

zyLab programming assignments that week was?" A weighted sum yields an average of 5 hours per week. 

Figure 3.3 shows the time spent per MSP lab activity, using a box-and-whisker 

plot. The x-axis is the MSP lab activity (61 total) and the y-axis is the time spent in 

minutes. Dashed lines separate MSP assignments by week. The y-axis is capped at one 

hour (60 minutes). Students who did not attempt the given MSP lab activity are excluded 

from the calculations. 

 

Figure 3.3: Box-and-whisker plot of student time spent for each MSP lab activity. On average, students 

spent 17 minutes per MSP lab activity excluding weeks 1 and 9. 
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3.4 HOW MANY DAYS BEFORE THE DUE DATE DO STUDENTS START MSP 

ASSIGNMENTS? 

We released each week's MSP assignment on Tuesday, due the following 

Tuesday at 9:00 pm. That week's readings and lectures (Tuesday and Thursday, 80 

minutes each) taught the concepts covered by that week's MSP lab activities. That week's 

2-hour lab (Thursday) also taught those concepts, with about 30 minutes at the end for 

students to work on the MSP lab activities and ask questions. We seek to answer the 

question: how many days before the due date do students start working on MSP 

assignments? 

Figure 3.4 summarizes the average number of days students began working on 

MSP assignments before the due date. The average was computed by finding students' 

first submit for a lab activity belonging to the MSP assignment in the given week, 

computing the days between the first submit and the assignment's due date, calculating 

the percent of students that started T-7, T-6, …, T-0 days before the due date, and then 

averaging across all MSP lab activities. The x-axis is the number of days prior to the due 

date. Using "NASA countdown-like" terminology, we use "T-2" to mean two days before 

the due date (or Sunday). The y-axis is the average percent of students that fall under 

each category. Week 1 is excluded from these calculations since week 1 MSP lab 

activities were very easy. 
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Figure 3.4: Percent of students who began MSP lab activities each week T-X days prior to the due date - 

Spring 2017. 

To our pleasure, 37% of students (28) started 3 days ahead or more; however, the 

other 63% of students started only 2 days ahead or less, with 35% of students (27) 

starting on the due date. Students on average began 2.2 days ahead of the due date.  

Figure 3.5 shows start times for the other two CS1 sections that quarter, which 

used OLP assignments. Those students began on average 2.1 days ahead of the due date. 

Only 28% (48) started 3 days ahead or more, and 25% (43) started on the due date. Note 

that the due dates were different between the sections, but this comparison still gives 

valuable insight. 
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Figure 3.5: Percent of students who began OLP assignments each week T-X days prior to the due date - 

Spring 2017. 

We had hoped that MSP assignments' less-intimidating nature would have led to 

earlier starts by most students. MSP assignments had a mild impact on students starting 

earlier, but many students still started on or near the due date. We believe starting earlier 

is good practice, and thus decided to try to encourage earlier starts. The MSP approach 

made such encouragement easy. In our Fall 2018 course, we simply included the 

following policy in our syllabus: "To discourage procrastination, you will be required to 

complete at least 20 points out of the 50 points each week by Sunday at 10 pm", which is 

2 days prior to the Tuesday, 10 pm deadline. That small change led to substantial 

modification in student behavior, with start dates shifting from 2.5 (weeks 2 – 5) to 5.3 

days before the due date.  
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3.5 WHAT PERCENT OF MSP LAB ACTIVITIES DO STUDENTS COMPLETE 

EACH DAY? 

Section 3.4 showed when students started, defined as achieving at least 1 point on 

the MSP lab activity (out of 10 points). In section 3.5 we analyze total completion 

percent per day. We seek to answer the question: what percentage of MSP lab activities 

do students complete each day? 

Figure 3.6 summarizes the completion rate of MSP lab activities per day. The x-

axis is the number of days prior to the due date and the y-axis is the completion 

percentage. The top bar is the percent completed on that day and the bottom bar is the 

cumulative completion prior to that day. Recall that only 50 of 70 points (71%) were 

required for full credit. 

 

Figure 3.6: MSP lab activity completion T-X days prior to the due date. The top bar is the percent 

completed on that day, and the bottom bar is the percent completed prior to that day. 

Figure 3.6 shows a gradual increase in the completion rate throughout the week. 

The completion rate increases 5-10% each day except for the last day (T-0) which has 
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about a 20% increase. Because students need only complete 50 of 70 points, some MSP 

lab activities have 0% completion, pulling down the averages shown. 

3.6 WILL STUDENTS COMPLETE MORE MSP LAB ACTIVITIES THAN 

REQUIRED? 

Each week, students were assigned 7 MSP lab activities (10 points each) and were 

only required to complete 50 points of 70 to score 100% on the MSP assignments for the 

week. No extra credit was given for exceeding 50 points. We refer to the 50-point cutoff 

as the full-credit threshold. We seek to answer the question: do students willingly 

complete more MSP lab activities than required?  

Figure 3.7 shows the percent of students that scored equal to or above the full-

credit threshold each week. The bottom bar is the students that completed above the 

threshold and the top bar is the students that completed equal to the threshold. In weeks 1, 

2, 3, and 6, a higher percentage of students scored above the threshold than equal to the 

threshold. Across the quarter, an average of 40% of students scored above the threshold. 

 

Figure 3.7: Percent of students who completed equal to or above the full-credit threshold each week. 
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Figure 3.8 provides a more detailed analysis via a bubble chart. The x-axis is the 

week number and the y-axis is the total points scored per week. The bubble size 

represents the number of students that scored that number of points. For example, the 

largest bubble in week 1 is labeled 53 because 53 students scored 70 points on MSP lab 

activities for that week. Note that students who scored 0 points for the week are not 

included because those students likely dropped the class or decided not to submit labs for 

the week. The dashed line represents the full-credit threshold for each week. Note that 

week 9's threshold is lower since only five MSP lab activities were given to students. On 

average, students who scored more than the full-credit threshold scored an additional 13 

points. As each MSP lab activity is worth 10 points, this translates to completing an 

additional 1.3 MSP lab activities each week. 

 

Figure 3.8: Points students scored each week. Students who scored 0 points for the week are excluded. 

Dashed line indicates max points for the week. 

We were pleased to find that so many students were able to meet the full-credit 

threshold and that a substantial number were willing to do more than the minimum 
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required work. The results from Figure 3.7 and Figure 3.8 suggest that students find MSP 

lab activities helpful or enjoyable since they complete more than required even without 

an extra credit opportunity.  

3.7 DO STUDENTS TAKE ADVANTAGE OF SWITCHING AMONG MSP LAB 

ACTIVITIES WHEN STUCK (PIVOT)? 

Pivoting is when a student partially completes an MSP lab activity (e.g., scores 6 

of 10 points) and then decides to work on a different MSP lab activity. Typically, with 

traditional OLP programming assignments, students only have the option to work on the 

program until completion. If stuck, a student has few or no options. With the MSP 

approach, students can pivot to another lab activity while working to score additional 

points or even learn from another lab activity to help themselves with the current lab 

activity they are struggling on. We seek to answer the question: do students take 

advantage of the opportunity to pivot, and if so, how often? 

A student run (either a submit or develop) is defined as a pivot if all following 

rules are met: 

• The current run is not the student's first run for the week 

• The current run is for a different MSP lab activity than the previous run 

• The current run is for an MSP lab activity that has not been completed 

• The previous run has not been completed 

• The current run and previous run are for the same MSP assignment 
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Figure 3.9 shows the percent of students who pivoted at least once in a given 

week. The x-axis is the week number and the y-axis is the percent of students that pivoted 

that week. 

 

Figure 3.9: Percentage of students who pivoted at least once in a given week. An average of 50% of 

students pivoted at least once each week. 

We found that students pivot on average 1.3 times each week. The highest 

number of pivots was one student who pivoted 12 times in week 4. Week 1 had few 

pivots due to the MSP lab activities being easy. With more challenging programs 

beginning in week 2, students made much use of pivots. Students who pivoted at least 

once a week pivoted on average 2.5 times. 

For insight, we highlight three actual pivoting scenarios. 

3.7.1 PIVOT AT 0% - WEEK 8 (VECTORS) 

A student attempted MSP lab activity 5 (LA5) three times but received 0 points 

on all submits. Instead of continuing LA5, the student switched to LA7 and scored 10 
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points. The student did not return to complete LA5. The student scored 50 points on the 

MSP assignment for the week, meeting the 50-point full-credit threshold. 

3.7.2 SINGLE PIVOT - WEEK 3 (BRANCHES) 

A student worked on MSP lab activity 4 (LA4) and scored 8 points. The student 

switched to LA6 and scored 10 points. The student did not return to complete LA4. The 

student scored 48 points on the MSP assignment for the week, nearly meeting the 50-

point full-credit threshold. 

3.7.3 MULTIPLE PIVOTS (3 OR MORE) - WEEK 4 (LOOPS) 

A student worked on MSP lab activity 4 (LA4) and scored 2 points. The student 

switched to LA5 and scored 10 points. The student returned to LA4 and improved their 

score from 2 points to 8. The student moved to LA7 and scored 9 points. The student then 

worked on LA6 and scored 10 points. Finally, the student returned to LA4 and improved 

their score from 8 points to 10. The student scored 69 points on the MSP assignment for 

the week, exceeding the 50-point full-credit threshold and nearly hitting the 70-point 

max. 

Students seem to take advantage of the pivot benefit that an MSP approach offers, 

especially when a threshold is used. 94% of students (71 students) pivoted at least once 

throughout the 10-week quarter. As a result, we hope to do future work to investigate 

whether students who pivot score higher than those who do not, whether there are any 

detriments to pivoting, and whether students who pivot return and solve the MSP lab 

activities they switched away from. A more in-depth analysis of pivoting can be found in 

Chapter 8. 
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3.8 DO STUDENTS USE MSP LAB ACTIVITIES TO STUDY FOR EXAMS? 

Given that MSP lab activities are short, concise, and focus on a single concept, we 

seek to answer the question: do students voluntarily redo MSP lab activities to prepare for 

exams? 

Given the dates for the midterm and final exams, we defined criteria to determine 

if a student used an MSP lab activity for exam practice. We said that a student used an 

MSP lab activity for exam practice if the student had, for that MSP lab activity, a submit 

or develop timestamp that was after the MSP assignment's due date and within one week 

prior to the exam. The midterm occurred during week six of the quarter and the final 

occurred at the end of the quarter. 

Table 3.1 shows the results of how many students used MSP lab activities for 

practice and how many unique MSP lab activities were used to study. 54% of students 

(41) used MSP lab activities to study for either the midterm or final. 98% of all MSP lab 

activities (60) were used by at least one student to study for an exam. 

Table 3.1: Student use of MSP lab activities for exam preparation. 

Total number of students 76 

Total number of MSP lab activities 61 

% of students that used MSP lab activities to study for the midterm 38% 

% of students that used MSP lab activities to study for the final 37% 

% of students that used MSP lab activities to study for either exam 54% 

% of MSP lab activities that were used to study for the midterm 97% 

% of MSP lab activities that were used to study for the final 90% 

% of MSP lab activities that were used to study for either exam 98% 
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We are pleased to see many students using MSP lab activities to study for exams. 

For comparison, we looked at the other two sections of CS1 from Spring 2017, which 

used an OLP approach. Only 10% of students (17) used OLP assignments to study for 

exams. 

3.9 DO MSP-TRAINED STUDENTS DO POORLY IN A CS2 USING AN OLP 

APPROACH? 

A common concern regarding using an MSP approach in CS1 is the impact MSP 

assignments will have on students when they reach CS2 using an OLP approach. We seek 

to answer the question: how do students taught programming in CS1 via an MSP 

approach (MSP-trained) fare in CS2, compared to students taught programming in CS1 

via an OLP approach (OLP-trained)?  

We gathered data from our CS2 course from Winter 2017 through Spring 2018 (5 

quarters). We determined which students took CS1 using an MSP approach and which 

took CS1 using an OLP approach. To be conservative, we excluded students who did not 

take CS1 at our university. We found 241 students that took CS1 via an MSP approach 

and 312 students that took CS1 using an OLP approach. In total, 553 students who took 

CS2 at our university were considered in our analysis. 

Figure 3.10 shows CS2 performance results. The x-axis shows the class work 

categories we analyzed (participation activities, labs, programming assignments, midterm 

exams, final exam, and total grade in the class) and the y-axis is student grade 

performance. OLP-trained students are the light bars on the left and MSP-trained students 

are the dark bars on the right. 
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Figure 3.10: CS2 performance for MSP-trained students versus OLP-trained students. MSP-trained students 

do no worse, and in fact do slightly better. 

Figure 3.10 shows that MSP-trained students perform similarly, and in fact 

slightly better, than OLP-trained students. Note that the purpose of this analysis is not to 

claim an MSP approach in CS1 leads to better performance in CS2. Instead, the analysis 

shows that an MSP approach does not harm students in CS2. We hope to do further 

research to better understand the effects that using an MSP approach in CS1 has on 

students in CS2. 

3.10 CONCLUSION 

Modern easy-to-use auto-graders enable new teaching approaches in CS1 courses, 

like using an MSP approach instead of an OLP approach for weekly programming 

assignments. Our previous research showed that using an MSP approach in CS1 yielded 

happier students and better grades in the course. This paper analyzed how students use 

MSP assignments. We conclude that students are making good use of MSP assignments 

to aid in their learning process: Students spend sufficient time working on MSP 

assignments each week, begin working on MSP lab activities earlier than for OLP 
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assignments, complete more MSP lab activities than necessary with a full-credit 

threshold, take advantage of pivoting between MSP lab activities, and use MSP lab 

activities to study for exams. We also see that MSP-trained students do just as well, even 

slightly better, than OLP-trained students in a CS2 that uses an OLP approach. Our 

department now uses an MSP approach in all CS1 sections, and we are aware of dozens 

of other schools that have switched to an MSP approach as well. 
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Chapter 4. DOES A MANY SMALL PROGRAMS APPROACH IN 

CS1 HURT STUDENT PERFORMANCE IN CS2? 

4.1 INTRODUCTION 

When hearing about using an MSP approach in CS1, a common criticism / 

concern among instructors is that CS1 students who learn programming using an MSP 

approach may do poorly in a CS2 course that requires students to complete larger 

programs. Thus, Chapter 4 addresses the question, "Does an MSP approach in CS1 hurt 

student performance in a CS2 requiring larger programs?"  

Chapter 4 summarizes a study that considered five quarters of one university's 

CS2 course, comparing performance of 417 CS1 students taught via an OLP approach 

(OLP-trained) and 241 CS1 students taught via an MSP approach (MSP-trained) who 

then took the CS2 course. The results show that MSP-trained students do not perform 

worse than OLP-trained students in CS2, and in fact perform slightly better. These results 

hold for programming assignments, midterms, finals, and more. The results also hold 

when controlling for gaps between quarters, and hold equally for males and females. The 

study suggests that instructors can embrace an MSP approach in CS1 to obtain happier, 

less-stressed students, who may perform better in CS1 too, without fear of putting those 

students at a disadvantage in CS2 (and who may gain a slight advantage). 
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4.2 METHODOLOGY 

4.2.1 COURSE 

This study was conducted at the University of California, Riverside, whose CS 

department typically ranks in the top 60 by U.S. News and World Report. The CS1 and 

CS2 courses are offered quarterly (fall, winter, spring) in 10-week "regular" quarters, plus 

during compressed 5-week summer sessions as well. The CS1 course serves about 300-

500 students per regular quarter, taken about equally by computing majors and by non-

majors who are mostly engineering, science, and math. The CS1 course uses C++ and 

topics include basic input/output, assignments, branches, loops, functions, and vectors. 

The CS2 course serves about 100-200 students per quarter, mostly computing majors and 

some engineering, science, and math majors. The CS2 course also uses C++ and topics 

include object-oriented programming, recursion, pointers, linked lists, abstract data types, 

software development principles, and development of larger programs. Both the CS1 and 

CS2 courses have three hours of lecture and two hours of TA-led labs per week, and 

require weekly online interactive readings and auto-graded homeworks. Both have 

midterm and final exams, each consisting of multiple choice and coding problems. Both 

use active and peer learning techniques in lecture. 

4.2.2 DATA COLLECTION AND ANALYSIS 

We collected gradebooks with all students who took CS2 during the past five 

regular quarters and did not drop/withdraw, totaling 658 students. We excluded the 36 

students who did not take the final exam. For each included student, we determined 

whether the student was trained from an OLP or MSP offering of our CS1, via rosters 



   50 

obtained from prior CS1 offerings. Figure 4.1 shows the CS1 and CS2 offerings that 

contributed to the study. Note that in Spring 2017, CS1 had two OLP-trained sections and 

one MSP-trained section. If we could not find the student in our CS1 rosters, that likely 

means they took CS1 at another school (we have many transfer students), or took our 

CS1 long ago. For those students, we assume they had an OLP training, which is almost 

surely the case and consistent with our knowledge of CS1 classes taught by the 

community colleges that mostly feed into our program. However, we also performed the 

analysis excluding such students (105 students excluded) and found results to be the 

same.  

When our instructors switched to an MSP approach in Fall 2017, most decided to 

include two larger programs, one in week 5 and one in week 10, with the other 8 weeks 

having five MSP lab activities each. We have found no difference in CS2 student 

performance for "pure" MSP-trained students and "predominantly" MSP-trained students. 

Thus, we still use "MSP" to refer to an approach where nearly all weeks use MSP 

assignments, but where 1-2 weeks may use OLP assignments.  

 

Figure 4.1: CS1 and CS2 class offerings considered. 



   51 

4.3 MAIN RESULTS 

4.3.1 CS2 PROGRAMMING ASSIGNMENTS 

Figure 4.2 summarizes the main performance of CS2 students on the class' seven 

weekly programming assignments (some assignments spanned multiple weeks). The left, 

dark-blue bars represent OLP-trained students (417 students), and the right, light-blue 

bars represent MSP-trained students (241 students). 

 

Figure 4.2: CS2 student performance on all seven large CS2 programming assignments. MSP-trained 

students did not perform worse than OLP-trained students (and in fact did slightly better). p-values are 

shown above each column. p-values denoted with * are nearing significance (p < 0.05). 

The data shown in Figure 4.2 shows that using an MSP approach in CS1 does not 

hurt students in a CS2 requiring larger programs. In fact, MSP-trained students did 

slightly better. As the research question was not whether MSP-trained students do better 

in CS2, we do not focus on statistical significance; however, we do report p-values in 

Figure 4.2. More importantly, as the commonly-voiced concern by instructors is that 

MSP-trained students may do worse, the data shown in Figure 4.2 proves this concern to 

be false.  
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4.3.2 CS2 MIDTERM AND FINAL EXAMS, AND MORE 

In addition to programming assignment performance, one may wonder how 

students fared on other aspects of the course. Figure 4.3 shows performance on the 

midterm and final exams, which consisted of multiple choice and coding questions. 

Again, MSP-trained students did not do worse (and instead did slightly better). 

 

Figure 4.3: CS2 student performance on midterm and final exams. MSP-trained students did not perform 

worse (and in fact performed slightly better). 

Likewise, Figure 4.4 shows student performance in other aspects of the course, 

including completing online participation activities before lectures and small in-lab 

"warm up" programming activities. For convenience, Figure 4.4 shows the programming 

assignment and midterm/final data from above and ends with the students' total grade in 

the CS2 course. The data shows MSP-trained students do no worse in any category.  
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Figure 4.4: CS2 student performance on all aspects of the CS2 course. MSP-trained students do no worse in 

any aspect.  

Earlier, we mentioned that if we could not find a CS2 student in our CS1 rosters, 

we assumed an OLP training. To be safe, we re-analyzed the data excluding such 

students. Figure 4.5 shows that the results are nearly identical to when those students are 

included. 

 

Figure 4.5: CS2 student performance considering only students known to have taken CS1 at our university. 

Results are the same: MSP-trained students perform no worse in any aspect. 
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4.4 CONSIDERING GAPS BETWEEN CS1 AND CS2 TERMS 

One threat to the study's validity is the following: Because the MSP approach CS1 

offerings were all more recent than the OLP approach CS1 offerings (see Figure 4.1), 

then the OLP-trained students' performance in CS2 may have been degraded due to gaps 

between the quarters in which they took CS1 and CS2.  

Thus, we reanalyzed the data by considering only students who had no gap -- they 

took CS1, and then took CS2 in the next regular quarter, such as taking CS1 in Fall 2017 

and then CS2 in Winter 2018. Figure 4.6 provides results, showing that MSP-trained 

students did no worse in any categories (and in fact did slightly better).  

 

Figure 4.6: CS2 performance for students having no gap between taking CS1 and CS2. 

We further analyzed the data for students having a one-quarter gap, and also for a 

two-quarter-or-more gap. The results, in Figure 4.7 and Figure 4.8, show MSP-trained 

students generally did not do worse, and again improved in some class areas. As the point 

is that MSP-trained students do not do worse, we do not analyze such improvements 

further here, but the results suggest future work as to why MSP-trained students did 

better -- perhaps the MSP approach's repetition lengthens retention of programming skill.  
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Figure 4.7: CS2 performance for students having a one-quarter gap between CS1 and CS2. 

 

Figure 4.8: CS2 performance for students having a two-quarter or more gap between CS1 and CS2.  

4.5 CONSIDERING GENDER 

Much recent emphasis has been on possible differential impact of classroom 

approaches on females. Thus, we re-analyzed the data considering gender. We did not 

have gender data in the gradebooks, and thus had to approximate gender based on names 

that had a high probability of being male or female. We excluded names that were not 

obviously male or female names. We understand this analysis is not perfect (especially 

considering gender identity), but believe it is better than no analysis. Figure 4.9 shows 

our findings. 
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The analysis shows that females with OLP and MSP CS1 training displayed the 

same general performance in CS2 as seen for the entire population of students, with 

MSP-trained students again not doing worse (instead doing slightly better) in CS2.  

 

Figure 4.9: CS2 student grade performance considering gender. Data shows that MSP-trained CS1 females 

display similar performance in CS2, in fact performing slightly better. 

We conducted a similar analysis for males, and for the non-obvious names 

category too. The results match the above analyses. Thus, the effect of MSP versus OLP 

CS1 training on CS2 performance seems to not have a strong gender component.  

4.6 CONCLUSION 

A many small programs (MSP) approach in CS1, largely enabled by modern 

program auto-graders, was previously shown to lead to happier, less-stressed students, 

who also performed better on the code-writing portion of exams, compared to the 

common one large program (OLP) per week approach. However, numerous instructors 

expressed concerns that MSP-trained students would do poorly in a CS2 requiring larger 

programs. Our study of 5 quarters of CS2 performance, for 471 OLP-trained students and 

241 MSP-trained students, showed the MSP-trained students do no worse in CS2 (and 
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actually do slightly better), in CS2's programming assignments, exams, and all other 

course aspects. The results hold even when considering gaps between CS1 and CS2 

quarters and hold for either females or males. We conclude that an MSP approach can be 

used in CS1 without fear of harming the students in CS2, and possibly helping them do 

better in CS2. Future research may include quantifying those possible benefits in CS2, 

and introducing an MSP approach in the beginning of CS2 for a smoother and stronger 

start. 
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Chapter 5. MANY SMALL PROGRAMS IN CS1: USAGE ANALYSIS 

FROM MULTIPLE UNIVERSITIES 

5.1 INTRODUCTION 

In 2017, we introduced a many small programs (MSP) teaching approach at our 

university. Instead of teaching via a one large programming assignment (OLP) each 

week, the MSP approach allows for the instructor to assign multiple programming 

assignments, for example 5 or more, each week instead. Our previous studies [4] have 

shown that an MSP approach can improve the student experience by reducing stress and 

increasing student satisfaction in the course. Furthermore, an MSP approach has been 

shown to improve student grade performance in CS1, especially on the coding portion of 

exams. In a follow-up study [5], we learned that students use MSP assignments in ways 

beneficial to their learning: students spend sufficient time working on MSP assignments 

each week, start working on MSP lab activities earlier, and more. We shared these 

findings with universities around the nation; causing other universities to switch from 

teaching CS1 using an OLP approach to an MSP approach. Given MSP lab activity data 

from other universities we extend our analysis to include MSP lab activities from other 

universities. We perform similar usage analyses and found that MSP-trained students 

from other universities also benefit from an MSP approach.  

5.2 CS1 UNIVERSITY METADATA 

We looked at CS1 courses taught using an MSP approach from 10 universities. To 

maintain anonymity of the universities included in this study, we do not include the name 
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of the institutions. The universities varied in size with some having classes of more than 

300 students, while others had a class size of 20 students. Many universities taught CS1 

using C++, while others taught via Python and Java. Table 5.1 provides details about the 

universities included in this study. 

Table 5.1: Metadata on the 10 universities included in this study. Details include the programming 

language being taught, number of students in the class, number of MSP lab activities given, number of 

submits collected, and number of develops collected. 

 Prog Language #Students # MSP lab 

activities 

# Submits 

collected 

# Develops 

collected 

University 1 C++ 20 98 3,177 5,635 

University 2 Python 81 69 192,44 19,707 

University 3 C++ 30 19 2,397 3,416 

University 4 C++ 14 61 1,675 5,104 

University 5 Java 11 51 643 3,535 

University 6 C++ 234 77 21,451 40,573 

University 7 Python 333 43 88,981 103,089 

University 8 C++ 79 25 7,315 9,298 

University 9 Java 56 59 7,454 18,505 

University 10 Java 321 65 40,320 96,721 

 

5.3 DATA COLLECTION 

We analyzed data from 10 different CS1 classes taught at different universities. 

Each university used an online textbook published by zyBooks for programming 

assignments. After the course was completed, we collected all student run activity 

(submits and develops) for each lab activity from zyBooks and consolidated them into a 

single spreadsheet. A submit is defined as when the student "turns in" their assignment 

for grading. A develop is defined as when a student runs their code through the zyBooks 

compiler for testing without grading. Student submits have metadata that describes the 
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lab title, a userID (anonymized and generated from zyBooks), the submit score, the max 

score possible for the submit, and a timestamp with the date and time. A develop has the 

same metadata as a submit but without a score and a max score. In this study, 1,179 

students were considered with 567 MSP lab activities included. In total, we collected 

192,657 submits and 302,406 develops. 

5.4 HOW MUCH TIME DO STUDENTS SPEND WORKING ON MSP LAB 

ACTIVITIES? 

At the University of California, Riverside, we expect students to spend between 2-

3 hours each week working on MSP assignments. When using the MSP approach, we 

assign students 7 MSP lab activities each week, requiring them to only earn 70% of the 

points for a 100% score on programming assignments each week. With this setup, we 

found that students generally spend 17 minutes on each MSP lab activity and thus spend 

at least 85 minutes a week (~1.5 hours) working on MSP assignments. Additionally, we 

found that many students tend to complete more MSP lab activities than required and 

thus spend around 2 hours or more working each week. We created the MSP assignments 

to take students about the same total time per week as the traditional OLP approach. 

5.4.1 ANALYSIS AND PROCEDURE 

To calculate the total time students spent on each MSP lab activity, we looked at 

the timestamp metadata for each develop and submit. We calculated the time spent 

between submits by calculating the difference between each timestamp and then summed 

the differences. In our calculations, we excluded differences that exceeded 10 minutes, 

assuming that the student took a break from working. Note that our calculations are thus 
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an understatement, as some breaks may have been the student working or researching the 

problem. Additionally, we cannot capture the time the students spent working or thinking 

about a problem before the first submit or develop. 

5.4.2 RESULTS 

Figure 5.1 summarizes the average time spent by students on each MSP lab 

activity. Note that since all MSP lab activities are considered in this calculation, 

including the "easy" introductory MSP lab activities which require minimal time, the 

averages are likely an undercalculation. The x-axis represents the university and the y-

axis is the time spent in minutes. Across all universities observed, students spend an 

average of 12 minutes working on MSP lab activities with universities 1 and 6 slightly 

pulling the averages down. 

 

Figure 5.1:Average time spent by students on each MSP lab activity. Students with 0 submits or 0 time 

spent were excluded from calculations. 

Figure 5.1 shows that many universities share similar time spent averages. 

Assuming that students are given 5 MSP lab activities each week, students should be 

working on programming assignments for about 1.5 hours. There are a few exceptions, 



   62 

like universities 1 and 6, but a more detailed analysis is required to determine why the 

average time spent per lab for universities 1 and 6 are much lower compared to the other 

8 universities. 

5.5 HOW MANY DAYS BEFORE THE DUE DATE DO STUDENTS START 

WORKING ON MSP LAB ACTIVITIES? 

For CS1 taught at our university, students were given one week to work on MSP 

lab activities. Given this setup, we found that students began working about 2.5 days 

before the due date. For example, if MSP lab activities were given to students on a 

Tuesday (due the following Tuesday), students began working on Sunday. Our previous 

study showed that MSP lab activities were helpful to get students to begin working 

earlier, but is this the same for other CS1 courses? 

5.5.1 ANALYSIS AND PROCEDURE 

To calculate when a student began working on MSP lab activities, we first 

determined each students’ first activity timestamp. Once we knew when the first activity 

happened, using this in combination with knowing the MSP lab activity due date, we 

computed the number of days each student began working on MSP lab activities before 

the due date. Note that zyBooks does not keep track of MSP lab activity due dates, so we 

had to calculate due dates based on student activity. We found the two most active dates 

for runs (days that had the most submits and develops by unique users) and then chose 

the later date as the due date for that MSP lab activity. We checked our due date 

calculations by comparing our results with known due dates of prior MSP lab activities 

and had ~90% accuracy. Most inaccuracies were +/- a day and affected MSP lab 
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activities given at the beginning of the term -- likely caused by students adding/dropping 

the course at the start of the term. 

5.5.2 RESULTS 

Figure 5.2 summarizes the average number of days students began working on 

MSP lab activities before the due date. Using "NASA countdown" terminology, we use 

"T-2" to mean two days before the due date. The x-axis is the university and the y-axis is 

the number of days before due. 

 

Figure 5.2: Average T-X days prior to the due date students began working on MSP lab activities. 

Figure 5.2 shows that on average, students begin working on MSP lab activities 

about 2 days before the due date, with the exception being university 1 which seems to 

have most students starting on the due date. Note that this is the best approximation we 

can make without specifically knowing the due dates for all MSP lab activities. Also note 

that the data given could be slightly off as we do not know the duration students have to 

work on MSP lab activities - one week, three days, etc. 
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5.6 HOW DO STUDENTS SCORE ON MSP ASSIGNMENTS? 

Though we want each MSP lab activity to be challenging, allowing students to 

learn programming, we also need to be sure that the MSP lab activities are not 

excessively challenging. We want to know how students are performing on each MSP lab 

activity.  

5.6.1 ANALYSIS AND PROCEDURE 

To calculate student scores on each MSP lab activity, we used the metadata for 

max score and current score. First, we found each students’ highest scoring submit for 

each MSP lab activity and divided that value by the lab activity's max possible score. 

This results in the highest submit percentage for each student. Finally, we average across 

all students and all MSP lab activities. 

5.6.2 RESULTS 

Figure 5.3 summarizes the average percentage score on each MSP lab activity. 

The x-axis is the university and the y-axis is the MSP lab activity's percentage score. 

 

Figure 5.3: Average percentage score on MSP lab activities. 
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We are pleased to see that students are performing well on MSP lab activities. On 

average, across all universities, students score 91% on MSP lab activities. This high score 

indicates that students are completing MSP lab activities and are (hopefully) learning 

how to program successfully. 

5.7 DISCUSSION 

Based on the results of the analysis performed in this work, we can conclude that 

MSP usage is similar across all universities. We can see that MSP-trained students at 

other universities are getting the same benefits that we observed in the CS1 courses 

taught at our university. Though we were only able to perform three different analyses, 

compared with the several of our previous work, we still believe this to be a good 

indication that an MSP approach can be used in CS1 and students will benefit. For future 

work, we hope to extend this analysis and obtain the data necessary to perform the 

additional analysis done in our other work. Given the large amount of data used in this 

extension, we are now more confident in the previous results we obtained when only 

considering our university. 

5.8 CONCLUSION 

In this work, we performed several analyses on MSP lab activities from other 

universities. We found that the results we obtained in this work are similar to the results 

we observed in our previous work only considering CS1 at our university. This analysis 

improved our confidence that students are using MSP lab activities in beneficial ways. 

We see that students are spending sufficient time working on weekly MSP assignments 

(~1.5 hours), that students begin working about 2 days before the MSP lab activity's 
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deadline, and students are scoring high grades on MSP lab activities (91% avg). Based on 

the positive results of this work, we are encouraged to continue improving MSP lab 

activities and studying them more in depth. Already, we have switched all CS1 offerings 

at our university to using an MSP approach and we encourage others to consider using an 

MSP approach in their CS1 course as well. 
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Chapter 6. AN ANALYSIS OF USING CORAL MANY SMALL 

PROGRAMS IN CS1 

6.1 INTRODUCTION 

Previous work [3] detailed in Chapter 5 showed that an MSP approach can work 

across universities and across different programming languages. As we continued to 

apply new intervention techniques to try and improve our CS1 even further, we decided 

to incorporate a Coral-first approach alongside an MSP approach. Coral is an ultra-simple 

programming language designed to look like pseudocode while resembling industry 

programming languages like C++, Java, and Python. Coral was created specifically for 

learners and thus, in 2019, our CS1 began teaching programming fundamentals with 

Coral during the first 3 weeks before switching to C++ for the remainder of the term. Our 

university already adapted an MSP approach which involves assigning students multiple 

smaller assignments instead of only giving them one large assignment each week. In 

Chapter 6, we share our experience using a hybrid Coral/C++ MSP approach versus a 

pure C++ MSP approach. We summarize similarities and differences between student 

performance and other metrics such as time spent, start date, and more. We found that 

instructors can use a hybrid Coral/C++ approach to have an easier class startup while 

maintaining high student grade performance.  

6.2 CORAL PROGRAMMING LANGUAGE 

In 2019, we tried another intervention technique: we taught our CS1 via a hybrid 

approach of Coral and C++ together. Coral is an introductory web-based, pseudocode-
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like language designed to help learners [16]. Coral is free to use and resembles popular 

commercial programming languages like C++, Java, and Python, allowing for a smooth 

transition between languages.  

Figure 6.1 shows an example of an introductory program written in C++, Java, 

Python, and Coral. This program requires the student to prompt the user for an integer 

input, declare a variable "wage" and assign the input to "wage", increment the input value 

by 10, and then output the final result of "wage" to output. Although this is an intro 

programming assignment, C++, Java, and Python have many nuances and intricacies that 

a new programmer should not need to worry about -- function calls, strange symbols 

(stream operators '<<', semicolons ';', braces '{}'), class methods ('Scanner.nextInt()'), and 

more. Coral is simple to read and built to look like pseudocode so students can 

understand the logic easier without focusing on language semantics.  

 

Figure 6.1: Sample introductory program written in C++, Java, Python, and Coral (listed left to right). 

The Coral language comes with a limited set of 7 instructions to help students 

focus on the fundamentals of programming. Not only is Coral fully executable, it also 

comes with a flow chart language to help visualize the execution of the code in real-time. 
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Figure 6.2 shows the online, web-based Coral simulator. The simulator comes with an 

area for coding on the left, and on the right are areas for real time variable values, user 

input, and program output. There is also the option to execute the program immediately 

or step through the program's execution to see real time updates to variable values. Figure 

6.3 shows Coral's equivalent visual flow chart language.  

 

Figure 6.2: Coral's online web-based simulator. 

 

Figure 6.3: Coral's online web-based visual flowchart simulator. 

The authors of Coral published an initial work showing Coral's ease of use and we 

decided to apply the language in our CS1 [20]. We had considered using other 
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introductory programming languages like Snap [61] or Scratch [58], but we found they 

are not designed for a CS1 class. We began using Coral at the start of the class and then 

switched to C++ after 3 weeks. 

6.3 METHODOLOGY 

6.3.1 COURSE 

We analyze a Spring 2020 CS1 course taught at the University of California, 

Riverside. The CS1 course typically serves around 300-500 students during a 10-week 

quarter (fall, winter, spring) split into 3-5 sections of 80 students. All sections use the 

same zyBooks interactive textbook and require students to complete the same weekly 

participation activities (class readings), challenge activities (small coding homeworks), 

and lab activities (programming assignments). The CS1 course regularly serves half 

computing major students and half non-major students. The course is taught fully in C++ 

and covers basic input/output, variables, expressions, branches, loops, functions, and 

vectors. 

6.3.2 EXPERIMENT DETAILS 

For one CS1 class section we taught Coral for the first 3 weeks and then switched 

to C++ (hybrid Coral/C++ group) instead of the typical way of teaching C++ for all 10 

weeks (pure C++ group). Other differences between each group include the instructors; 

however, they both have a very similar teaching style and consistently earn similar marks 

on the end-of-quarter student reviews and the midterm as the hybrid group had a few 

additional Coral related questions. All other class components were the same, including 

the lesson plan, interactive online textbook, assignment deadlines, etc. 
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6.3.3 DATA COLLECTION 

We asked zyBooks to provide us with a detailed log of all student activity for our 

CS1 class. Student activity consists of develop runs, when a student tests their code using 

zyBooks' automated system, and submit runs, when a student turns in their code for 

grading. Each log entry includes the activity name, an anonymized user ID, a score, a 

max score, and a timestamp. 

6.4 STUDENT GRADE PERFORMANCE 

We gathered gradebooks for each class section and to calculate average scores on 

weekly MSP assignments we gathered all student activity. Students that did not submit 

any code for grading in a given week were excluded from calculations.  

6.4.1 RESULTS 

Figure 6.4 shows our results. The pure C++ group data is shown on the left, dark-

blue bars and hybrid Coral/C++ group data is shown on the right, light-blue bars. The 

grade percentage is on the y-axis and the week number is on the x-axis. A total grade 

average column is added to the end of the chart. Table 6.1 summarizes the average grades 

for all class categories. 

 

Figure 6.4: Grade performance results: Both the pure C++ group (avg. 97%) and the hybrid Coral/C++ 

group (avg. 95%) scored equally well on MSP assignments. 
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Table 6.1: Student grade performance on all categories of our CS1 class. Students that did not take the 

midterm exam or the final exam are excluded from calculations. p-values denoted with * are nearing 

significance (p < 0.05). 

Class category  Pure C++  Hybrid Coral/C++ p-value 

Total class grade 89% 96% p < 0.001* 

Final exam 86% 91% 0.009* 

Midterm exam 84% 97% p < 0.001* 

Participation activities 96% 96% 0.727 

Challenge activities 95% 96% 0.875 

Lab activities 97% 95% 0.066 

 

Figure 6.4 shows that both the pure C++ group (97%) and the hybrid Coral/C++ 

group (95%) do equally well on weekly MSP assignments. Table 6.1 also shows that both 

groups perform well in all categories of the class, with the hybrid C++/Coral group 

slightly outperforming the pure C++ group. 

6.5 TIME SPENT METRICS FOR WEEKLY MSP ASSIGNMENTS 

We expect students to spend between 2-3 hours working on MSP assignments 

each week. To measure student time spent, we summed the differences between each 

activity timestamp; excluding differences greater than 10 minutes as we considered the 

student to have taken a break or moved on something else. As such, this data is likely an 

under-representation as students could have spent that time studying or testing their code 

outside of the zyBooks IDE. 

6.5.1 RESULTS 

Figure 6.5 displays our results. The total time spent is on the y-axis and the week 

number is on the x-axis. A total time spent average column is added at the end of the 

chart. The pure C++ group data is shown on the left, dark-blue bars and the hybrid 
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Coral/C++ group data is shown on the right, light-blue bars. Students that did not attempt 

any MSP lab activities for the given week were excluded from the calculations.  

 

Figure 6.5: Time spent results: The hybrid group (avg. 95 min) spends slightly more time working on MSP 

assignments each week than the pure C++ group (avg. 81 min). 

Figure 6.5 shows that the pure C++ group (81 minutes) spends less time working 

on MSP assignments each week than the hybrid Coral/C++ group (95 minutes).  

6.6 ACTIVITY RUN METRICS FOR WEEKLY MSP ASSIGNMENTS 

We sought to understand how students develop their code and how frequently 

students test (develop run) and check (submit run) their code while working. We gathered 

all student activity and calculated the average number of develop runs and submit runs on 

weekly MSP assignments. 

6.6.1 RESULTS 

Figure 6.6 displays our results. Develop runs are indicated by the dark-blue bars 

at the bottom and the submit runs by the light-blue bars at the top. The total number of 

develop/submit runs are on the y-axis and the week number is on the x-axis. A total 

average column is added at the end of the chart. Students that did not attempt any MSP 

lab activities for the given week were excluded from the calculations. 
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Figure 6.6: Activity run results: The pure C++ group (avg. 48dev / 24sub) develops less and submits more 

than the hybrid Coral/C++ group (avg. 67dev / avg. 16 sub). 

Figure 6.6 shows that the pure C++ group develops less than the hybrid 

Coral/C++ group, but submits more frequently. To fully understand the data, a more in-

depth analysis is required; however, since there are more develops than submits on 

average, it seems like students show a healthy programming practice of testing their code 

(developing) and then submitting.  

6.7 START DATE METRICS FOR WEEKLY MSP ASSIGNMENTS 

Each MSP assignment is due one week from the time it is assigned. We consider 

starting at least 2 days prior to the assignment’s due date as healthy behavior. To 

calculate students’ average start date each week, we found each students’ earliest activity 

timestamp for a lab activity from the given MSP assignment, calculated the difference 

between that and the due date, and averaged the differences. 

6.7.1 RESULTS 

Figure 6.7 displays our results. The number of days are on the y-axis and the 

week number is on the x-axis. A total start date average column and an adjusted total 

average column is added at the end of the chart to account for a 'grace period' (late 

submissions allowed) during weeks 1 and 2. The pure C++ group data is shown on the 
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left, dark-blue bars and the hybrid Coral/C++ group data is shown on the right, light-blue 

bars. Students that did not attempt any MSP lab activities for the given week were 

excluded from the calculations. 

 

Figure 6.7: Start date results: The pure C++ group (avg. 4.5days / 4.8days adj.) begins working earlier than 

the hybrid Coral/C++ group (avg. 4.6days / 3.9days adj.). 

Figure 6.7 shows that both groups begin working about 4.5 days before the due 

date. Removing weeks 1 and 2 to account for the ‘grace period’, Figure 6.7 shows that 

the pure C++ students begin 4.6 days early whereas the hybrid Coral/C++ students begin 

3.9 days early (see ‘Avg (adj)’ column).  

6.8 PIVOT METRICS FOR WEEKLY MSP ASSIGNMENTS 

A pivot is when a student switches from one lab activity to another without 

completing (scoring 100%) the current one they are working on. Pivoting enables 

students to score additional points when stuck or even use another lab activity to help 

them solve the current problem they are facing. 

6.8.1 RESULTS 

Figure 6.8 displays our results. The total number of pivots are on the y-axis and 

the week number is on the x-axis. A total pivot average column and total pivot average 

adjusted column is added at the end of the chart to account for the midterm given in week 
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6. The pure C++ group data is shown on the left, dark-blue bars and the hybrid 

Coral/C++ group data is shown on the right, light-blue bars. Students that did not attempt 

any MSP lab activities for the given week were excluded from the calculations.  

 

Figure 6.8: Pivot results: The hybrid Coral/C++ group (avg. 2.4 / 2.2adj.) pivots more than the pure C++ 

group (avg. 1.3 / 1.5adj.) each week. 

Figure 6.8 shows that the hybrid Coral/C++ group (2.4) pivots more frequently 

each week than the pure C++ group (1.3). Even after removing week 6 from the 

calculations to account for the midterm, the hybrid Coral/C++ group (2.2) still pivots 

more than the pure C++ group (1.5). 

6.9 DISCUSSION 

This is the second time that we have taught CS1 via a hybrid coral-first approach 

combined with an MSP approach. The first time was in Fall 2019 and overall things went 

well but we had learned a lot from our experience. The first time we used a hybrid 

approach, we had taught Coral for the first 5 weeks of the 10-week quarter and then 

switched to C++ during the latter 5 weeks. Our major mistake was covering the entire 

CS1 content first in Coral (i.e. cramming 10 weeks of material in 5 weeks) and then 

covering the same content again in C++: input/output, variables, branches, loops, 

functions, and vectors. By the time students were learning C++ during the second half of 
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the quarter, they were exhausted as they were repeating the same content and had 

additional lab activities to complete. Students were still performing well, but we noticed a 

much smaller completion percentage of MSP assignments and class content during weeks 

5-10 compared with the other class sections using a pure C++ MSP approach. We also 

got lots of student feedback via surveys saying things like "It was a great way to 

introduce concepts but I wish we spent more time using C++" or "Pros: I learned faster 

for C++. Same concept so C++ similar to it were easy to understand. Con: Time 

constraint. I think C++ needs more time to study instead of just 5 weeks." Our students 

seemed to grasp the benefits Coral provided, however improvements needed to be made. 

As such, this led us to improve our approach and use Coral for the first 3 weeks only and 

then transition to C++ as described in Chapter 6. 

6.10 CONCLUSION 

In this work, we shared our experience using a hybrid Coral/C++ MSP approach 

in our CS1 class. We found that using a hybrid Coral/C++ approach did not harm student 

grade performance. We found that both groups spent a healthy amount of time working 

on lab activities. We saw that students in the hybrid group developed their code more and 

submitted their code less frequently than the pure C++ group. Both groups start working 

about 4 days before the deadline and both groups make good use of pivoting. This work 

is not meant to conclude that one teaching approach is better, but rather to show that both 

approaches work. Using a Coral/C++ approach to begin a CS1 class does not harm 

students but can offer benefits such as having an easier time teaching programming 
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fundamentals when the class begins. As such, we will likely continue using this approach 

in our CS1, and we encourage others to try this approach as well. 
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Chapter 7. CONCISE GRAPHICAL REPRESENTATIONS OF 

STUDENT EFFORT ON WEEKLY MANY SMALL PROGRAMS 

7.1 INTRODUCTION 

Beyond seeing final submissions, many instructors want insight into how students 

went about the process of writing their code -- when did they start, how often did they 

test, how correct was their code along the way, how much time did they spend overall, 

etc. As such, some now require students to use version control software like github, to at 

least see some versions of the code during development. However, program auto-graders 

provide a distinct opportunity for such insight, having grown tremendously in use in 

recent years, including new commercial tools like zyBooks [72], Gradescope [30], Mimir 

[41], Vocareum [66], CodeLab [65], and MyProgrammingLab [46]. Some of those also 

have development environments so that all a student's programming activity can be 

recorded: "develop" runs while the student is still developing and testing their code, and 

"submit" runs where they submit code for auto-grading. Non-commercial systems also 

record develop runs and/or submit runs, like Runestone [57] and BlueJ [12]. Such 

recording opens new possibilities for instructors to gain the desired insight in student 

coding.  

Meanwhile, hundreds of schools, including ours, have converted to an MSP 

approach (zyBooks alone reports over 200 schools; many more exist). Thus, not only do 

we want insight into our students' programming process, but we want that for multiple 

MSP lab activities per week -- to see which they started on, how they switched between 
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programs, and so on. A table of statistics is too hard for an instructor to process and loses 

too much information. Thus, in 2018, we began developing a script to process the log 

files from the popular auto-grader that we use and convert to a graphical representation 

that we call "programming workflow charts". We have found those charts provide 

instructors with tremendous insight, allowing a quick determination of how a class is 

doing (starting on time? spending sufficient time?), but also to quickly see a particular 

student's effort (such as when a student comes to office hours for help, or is requesting an 

extension) -- and even to detect some cheating cases. We even pull up the charts for the 

class and use them as a springboard to dive into a particular student's code (if they offer). 

Students find the workflow charts "cool", and we believe such charts, if used properly in 

a class, may even reduce some cheating in the future due to showing students that 

instructors can see their effort. 

Chapter 7 describes the goals of such a representation, the evolution of our 

representation to its current status, various design trade-offs, our current usage, and 

numerous possible future uses in CS1 classes. We plan to create a website for any 

instructor to upload such log files to gain insight on their own class' performance. 

7.2 METHODS 

7.2.1 DATA COLLECTION 

To collect the data required to generate our workflow charts, we obtained from 

zyBooks log files for all MSP assignments. The file was in csv format and contained all 

develop and submit runs for every lab activity in our class. A develop run is when a 

student tests their code in the built-in IDE without receiving a grade. A submit run is 
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when the student submits their code for grading. Each student activity entry contains 

metadata such as the title of the lab activity, the user ID, a timestamp, a link to the source 

code for that run, and for submit runs also contains a score, a max score, and a list of test 

cases including which were passed or failed.  

7.2.2 TIME SPENT CALCULATIONS 

An integral calculation for all workflow charts is the time spent by students on 

each lab activity. To calculate time spent, we gathered all student activity and calculated 

the difference between timestamps. Each difference was then summed together to yield a 

final calculation of the total time spent. Note, that if the difference between two 

timestamps exceeded 10-minutes, we excluded the time from our calculations to be 

conservative as the student likely took a break or went to work on something else. 

Furthermore, we cannot capture the time a student spent working before their first 

activity. As such, our data is likely an understatement.  

7.2.3 CONSTRUCTION OF PROGRAMMING WORKFLOW CHARTS 

To generate each programming workflow chart, we first gathered all student 

activity for the quarter. From the metadata, using a combination of userID, labID, time 

spent, and knowing the week each lab activity was assigned, we grouped student activity 

to do the necessary calculations. To determine time spent see process listed in Section 

7.2.2. To compute the number of develops and submits, we counted each activity and if 

there is a score associated with the activity, then the activity is counted as a submit, 

otherwise a develop. We calculate the percent scored by finding the highest submit score 

among all activities for that program. Finally, we separate activity by "workflow blocks," 
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indicating that the student switched working between lab activities or there was a 10-

minute gap observed between activity (10 minutes was chosen arbitrarily). 

7.3 THE EVOLUTION OF OUR WORKFLOW CHARTS 

Our motivation for creating these representations was to understand how students 

were interacting with the MSP assignments. Based on end-of-the-quarter grades, we had 

seen that students were earning good grades and doing well on exams, but we lacked 

insight on questions like: How much time are students working on MSP assignments 

each week? What days did they work? Were students working on MSP lab activities in 

the order we listed them, or were they jumping among them? How often were they 

developing versus submitting? 

We decided to pursue a graphical representation of the data to gain quick and 

concise insights into student effort on weekly MSP assignments. We used a Gantt chart 

as the initial motivation behind developing our workflow charts. A Gantt chart is a visual 

view of tasks scheduled over time [26]. Such a chart highlights important information 

like the start of a task, the end of a task, and the time spent per task in a single view.  

In these workflow charts, we are able to see the time students spend per lab 

activity, the total number of develops and submits per lab activity, the score earned per 

working session, a summary of all activity for the week, and the pivot patterns students 

displayed. 

Note that some figures in Section 7.3 that show the evolution of our charts may 

differ in example as we do not have records of all previously used iterations. 
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7.3.1 VERSION 1 -- CALENDAR VIEW 

Figure 7.1 shows Version 1 of our workflow chart. Our initial thought was to 

display the data using a weekly calendar view to see data on all weekly lab activities for 

each student each week.  

 

Figure 7.1: Version 1 of the workflow chart. An expanded calendar view with lab activities on the y-axis 

and days on the x-axis. Horizontal lines added to indicate when students worked. 

As we were using the MSP approach, we had assigned students 7 lab activities per 

week. On the workflow chart, the lab activities are listed on the y-axis in ascending order 

and dates for the week are listed on the x-axis in ascending order. Horizontal lines are 

added to indicate the times students spent working on each lab activity. Each chart has a 

title with the student ID (anonymized) and the week the chart was generated for.  

Unfortunately, upon initial inspection, the data is very hard to read and at a quick 

glance, it may even seem like the student did no work for the given week. In actuality, the 

data is present, but since the chart covers 7-days, the time increments in which the 

student worked are so small in comparison that they are almost not even visible on the 
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chart. Using the calendar view did not work as we intended, and we needed a better way 

to represent the data in a compressed way. 

7.3.2 VERSION 2 -- COMPRESSED CHART 

For Version 2, we needed a better way to represent the data for a given week. We 

compressed the chart by considering total time spent during the week instead of 

spreading out the data across the entire week as in Version 1. Lab activities are still 

shown on the y-axis, but the x-axis is now total time spent. Horizontal lines were still 

used to indicate time spent per each lab activity. Additionally, we put a percentage above 

each horizontal line to indicate the highest score a student earned after that session of 

working on that lab. Each chart has a title that summarizes data for the week, including 

the student's ID, the total time spent working on lab activities for the week, and the total 

number of develop runs (D) and submit runs (S). Each chart is read from left to right and 

from top to bottom. Figure 7.2 shows Version 2 of the workflow chart. 

 

Figure 7.2: Version 2 of the workflow chart. Compressed chart only considering total time spent 

represented by a black horizontal line per lab activity and a completion score above. 
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Version 2 of the workflow chart provided insight into a students' workflow (how 

they worked on each lab activity during the week), but we soon found ways to get more 

information onto the chart while maintaining readability. 

7.3.3 VERSION 3 -- COLOR / SCORE PER SUBMIT RUN / STATISTICS PER LAB ACTIVITY 

Version 3 of the workflow chart improved clarity and readability. We added color 

to distinguish data for each lab activity, so when looking at charts for multiple students, 

an instructor could get a quick sense of which lab took most time -- if seeing a lot of 

purple, an instructor might know that lab activity 2 was the most time consuming. Next, 

we added labels on the right of the chart to summarize data for each lab activity, 

including the lab activity's final score, the time spent, and the total number of develop 

and submit runs. We added a grid to enable more accurate readings. Finally, we made a 

change to the way we considered student work sessions throughout the week. This 

change is represented in the chart by some horizontal lines having multiple final score 

percentages listed above them. This is explained later in the following paragraphs. The 

title of each chart was changed for improved readability. Figure 7.3 shows Version 3 of 

the workflow charts. 
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Figure 7.3: Version 3 of the workflow chart, adding color, summary statistics on the right, gridlines, and 

more submit scores. 

Version 3 of the workflow chart required many design considerations. First, when 

thinking about how to clearly denote which data corresponded to each specific lab 

activity, we thought of using color, line styles, or a combination of both. Different line 

styles proved to yield a cluttered appearance, and some were hard to distinguish. They 

also didn't enable easily seeing the most/least time-consuming labs across multiple 

students. A tradeoff here relates to some people potentially having less ability to 

distinguish color, and loss of info when printed in black and white. A second design 

consideration was related to the grid. Adding the grid added more clarity to the chart, but 

in earlier iterations, the grid also decreased data visibility. We initially set the grid color 

to be too dark and also with a higher volume of tick marks that were unnecessary. After 

testing different color shades and tick mark frequencies, we chose a lighter color for the 

grid and reduced the tick marks to achieve the accuracy we wanted.  
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Finally, we changed the way we thought about how to represent students working 

on each lab activity, referred to as student work sessions. At first, we considered a student 

work session to end when the student began working on a different lab activity i.e. 

submitted code for lab activity 1 and then developed code for lab activity 2. Upon deeper 

analysis, we recognized a common scenario where students would begin working on a lab 

activity, leave to take a break, and then return to work on the same lab activity. We 

consider this scenario important to denote, so we considered a work session to also end if 

the time between two activities was more than a 10-minute threshold. We thus showed 

the score at the end of every session, which is why the figure above shows multiple 60% 

values on a single bar of lab activity 2, for example. This distinction does lead to some 

clutter if the student has many work sessions back-to-back (as can be seen in Figure 7.3 

for lab activity 7), but we felt the distinction helped instructors to better understand 

student workflow patterns. 

7.3.4 VERSION 4 -- MORE DEVELOP/SUBMIT DETAILS 

Version 3 provided the foundation for all the following updates of our workflow 

chart. As we used these charts for analysis in our teaching each quarter, we noticed a lack 

of insight on student behavior during each work session. Version 3 summarized data for 

each lab activity at the end of the week, but not during the week. As such, in Version 4, 

we wanted our chart to add further insight into student develop and submit runs during 

work sessions. To accomplish this, we added indicators on the time spent data lines for 

when a submit took place. These are indicated in a few different styles as seen in Figure 

7.4 and Figure 7.5. We also added text data on the number of develop and submit runs 
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during each work session underneath each time spent line. Finally, we made minor 

adjustments to the labels on the right of the chart such that each feature was on it's own 

line for additional clarity. 

 

Figure 7.4: Version 4a. Used large filled in points to indicate a submit run, added text to summarize student 

activity per work session, minor adjustments to chart labels. 

Version 4a shown in Figure 7.4 uses large filled in points to indicate submit runs. 

Using this indication style made it easy to see submit runs but added clutter due to the 

size of the points. Also, this indication did not show develop runs.  

Another approach we took, seen in Figure 7.5 Version 4b, uses a small point with 

a tail and a character label listed below to denote a develop or submit run. A develop run 

is indicated with the 'D' character and a submit run is indicated by the 'S' character. By 

reducing the size of the point and adding a character, the clutter was lessened and the 

distinction was clear. Unfortunately, with the additional markings, it became difficult to 

visually separate an 'S' from a 'D.' 
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Figure 7.5: Version 4b. Used small points with a 'S' label to indicate a submit run and a 'D' label to indicate 

a develop run. Other updates are similar to Figure 7.4. 

We also experimented using other shapes as indicators like squares, diamonds, 

stars, 'X's,' and open points, but none worked out. In both versions, the text indications 

for total develop and submit runs below the data lines were helpful. There were some 

situations where this data would overlap, making some content difficult to read, but this 

didn't happen very often. 

7.3.5 VERSION 5 -- TICK MARKS FOR DEVELOP AND SUBMIT RUNS 

In Version 5, we effectively displayed develop runs and submit runs during 

weekly work sessions. Instead of using points to indicate a develop run or a submit run, 

we used small tick marks: A tick below the line indicates a develop and a tick above the 

line indicates a submit run. This indication is simple and quickly understood. Even with a 

high density of student activity, the chart was still readable. Figure 7.6 shows Version 5. 

There was one other design consideration we tested for Version 5. Before putting 

straight tick marks above and below the data line, we used straight and diagonal tick 
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marks to indicate a develop run and submit run respectively. This worked when the 

density of activity was low but became difficult to differentiate a straight tick from a 

diagonal tick when the density was high. 

 

Figure 7.6: Version 5. Added tick marks below the time lines to indicate develop runs, and tick marks 

above the time lines to indicate submit runs. 

7.3.6 VERSION 6 -- PIVOT INDICATORS 

Version 6 introduces the ability to identify pivots. One unique benefit of the MSP 

approach is the ability to pivot, which is when a student switches from one lab activity to 

another before scoring 100% on the lab activity being worked on. If a student gets stuck 

on a lab activity, they can just move on to another, often coming back to finish the earlier 

lab activity (or having gotten help in the meantime). We added arrows on the workflow 

chart to indicate when pivoting occurs. Figure 7.7 shows Version 6 of our workflow 

chart. 
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Figure 7.7: Version 6. Added arrows to indicate pivots. 

In Figure 7.7, the first pivot can be seen on lab activity 1 since the student only 

scored 80% and then switched to work on lab activity 2. Pivoting arrows are useful if an 

instructor is interested in them, but adds a small amount of clutter. As such, we added a 

flag to control generation of these pivot arrows on the workflow chart. 

7.3.7 VERSION 7 -- DUAL TIME AND WEEKLY VIEW CHARTS / CLASSIFICATION 

FEATURES 

In Spring 2021, we updated our workflow charts to Version 7. Version 7 

combines a time-like view with a weekly-calendar view. Version 6 showed how long 

students were working on MSP lab activities but was missing information on when in the 

week students were working. Are students completing all 5-7 lab activities in one day or 

are they spreading them out over a couple days? Initially, we solved this issue by having 

two separate charts and we would compare them side-by-side. One chart displayed time 

on the x-axis as seen in Figure 7.7 and another would display weekly days on the x-axis 
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like Figure 7.1. Version 7 combines these two views to now see how long students are 

working and when students are working.  

Furthermore, we introduced simple classification features and also include them 

in the bottom half of the chart. Some other details that changed in Version 7 are now the 

charts only show the score when it either improves or at the end of a work session which 

improves clarity. For the bottom chart, the same colors are used between both charts to 

indicate which lab activities are shared between the views and a vertical dotted line is 

added on the weekly-view chart to indicate the deadline for the MSP assignment. 

Features currently included in this chart are:  

• Start: when the student begins working on more than 10% of their total 

activity [early, on time, late, day of] 

• End: when the student finishes working on more than 90% of their total 

activity [early, on time, late, day of] 

• Work type: if the student completes all their work during one day or spreads 

their work out over more than 2 days [sprint, marathon] 

• # Subs: the number of submits the student has compared to the rest of the 

class [low Q1, avg Q2, high Q3] 

• Time spent: the time spent working on the MSP assignment compared to the 

rest of the class [low Q1, avg Q2, high Q3] 

• Suspicious: if the student scores 100% of their points in under 15 minutes 

[true, false] 

Figure 7.8 shows Version 7 of our programming workflow charts. 
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Figure 7.8: Version 7. Time view combined with a weekly view and addition of workflow classification 

features. 

7.4 CURRENT USES AND DISCUSSION 

Version 6 (Version 7 as of Spring 2021) of the workflow charts has the 

information we desired, available at a quick glance. We can see summary data for the 

week, specific data for each lab activity, and can even see special information like pivots. 

Section 7.4 discusses our primary uses of these workflow charts. 

7.4.1 UNDERSTANDING STUDENT EFFORT 

From the beginning, our motivation was to create a visual representation of data 

to understand student effort on our MSP assignments. These workflow charts help us see 

lots of meaningful data quickly and accurately in a single location. We can pick any week 

of the quarter and any student and see why they may be struggling or even performing 
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better than other students in the class. For example, Figure 7.9 is what we consider a 

'healthy' workflow chart. The student spent a good amount of time working on the MSP 

assignments (94 minutes), they scored 71% of the total points (which is considered 100% 

score for the week using a 70% threshold), and they worked linearly through each MSP 

lab activity, starting on lab activity 1 and ending on lab activity 5.  

 

Figure 7.9: 'Healthy' programming workflow chart from a CS1 class. 

Figure 7.10 in contrast, shows a student that is likely struggling on MSP 

assignment 2, specifically on lab activity 2. The student spent 88 minutes (almost half the 

time) of the total 195 minutes solely working on lab activity 2 but still scored 0%, they 

pivoted multiple times while working and still did not improve their score, and they 

ended the week with a 57% instead of the required 70%.  
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Figure 7.10: Programming workflow chart showing a student likely struggling with lab activity 2. 

At our university, we primarily only use an MSP approach in CS1, however, some 

instructors include a few OLP assignments as well. Figure 7.11 shows that the workflow 

charts can also provide insight into OLP assignments too. We have already used these 

charts for many analyses regarding research, individual student considerations, and to 

generally improve our MSP lab activities and our CS1. 
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Figure 7.11: Programming workflow chart for an OLP assignment in a CS1 class. 

7.4.2 DETECTING UNALLOWED COLLABORATION 

In 2017, we began allowing our students to collaborate when working on lab 

activities. We allow students to collaborate only if they do a majority of the work and 

they indicate on their submissions who they worked with. We have a variety of ways to 

ensure each student is submitting ethical work, and among them are using these workflow 

charts to visually notice any irregularities. Figure 7.12 shows a potentially 'suspicious' 

programming workflow chart. This chart is suspicious because the student scored 71% 

(full credit with a 70% threshold) with only spending 5 minutes total on the given MSP 

assignment. It is possible that the student had previous experience and was actually able 

to complete the assignment very quickly, as this is from week 2 when lab activities are 

fairly simple, or they could have completed their coding outside of the zyBooks IDE and 

copied their solution in. Either way, instructors can quickly see which workflow charts 
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need attention and investigate as needed. Recently, we started showing students these 

generated charts and having them call out any charts that look 'weird' as a class exercise. 

 

Figure 7.12: Potentially 'suspicious' programming workflow chart in a CS1 class. 

7.4.3 STUDENT CLASSIFICATIONS 

One other way that we have begun using these charts is to create student 

classifications to help us identify students that may be struggling. In a 10-week quarter, 

we typically generate over 1,000 workflow charts. If we can use these charts to make 

meaningful and accurate classifications, then we can identify struggling students early 

and provide additional resources that will help them succeed. Some classifications that 

we currently use are when do students begin working, do students complete all lab 

activities in a single day or spread them out, and how much time do students take to 

complete all lab activities. 
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7.4.4 INTERACTIVE WEB PAGE 

We are creating a tool to generate a web page to share these workflow charts with 

our students and the community. Instructors can upload the auto-grader's log files for a 

week's lab activities, and the charts are automatically generated on an interactive web 

page. Although our university uses zyBooks' program auto-grader to produce csv log 

files, our tool can work with any auto-grader so long as it can produce a log file with the 

same format as needed by the tool. Figure 7.13 shows a high-level description of this 

process. 

 

Figure 7.13: High level description of the process to get a log file from a program auto-grader and use the 

file to automatically generate workflow charts on a web page using our tool. 

The current iteration of our website has sorting functionality so instructors can 

point out key features like students who spend the most amount of time working or 

students who complete the assignment with the least number of develops or submits. The 

website also has search functionality to find data for particular students quickly and 

supports a textual view for quick results and a visual view to see all workflow charts. In 
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the future, we may investigate integrations directly with the auto-grader so that no log file 

uploading is necessary. Figure 7.14 is a screenshot of the summary table at the top of the 

web page, Figure 7.15 is a screenshot of the textual view of the web page, and Figure 

7.16 is a screenshot of the visual view of the web page. Figure 7.17 is a small subsection 

of all the programming workflow charts shown on the web page to understand the vast 

number of charts we generate and display. The tool is still in beta and only accessible to 

us and a few instructors at our university.  

 

Figure 7.14: Screenshot of the current interactive programming workflow chart website: summary analysis 

table. 

 

Figure 7.15: Screenshot of the current interactive programming workflow chart website: textual view. 
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Figure 7.16: Screenshot of the current interactive programming workflow chart website: visual view. 

 

Figure 7.17: Screenshot of multiple programming workflow charts to see the vast number of charts we 

generate and display. 

7.4.5 FUTURE IMPROVEMENTS 

These workflow charts have evolved since 2018, but we are still working on 

further improvements. First, we would like to add an indication of when students began 

struggling with lab activities compared to their peers. This would make comparison 

analysis easier when looking at a single week for an entire class. Second, we would like 

to further develop and use the classification system for these charts. As of now, we are 

using basic classifications, but if they could be more robust and accurate, we could create 

impactful intervention techniques for struggling students. 
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7.5 CONCLUSION 

We described the evolution of a graphical representation, called "programming 

workflow charts", of student effort on weekly MSP assignments. We have used these 

charts in our teaching each quarter, to help provide insight into our class, get a quick feel 

for a particular student's effort when they come to office hours (for example), and even to 

help us decide to investigate potential cheating when a student's workflow chart shows 

almost no effort but high scores. Chapter 7 focuses on introducing the concept of such 

charts as a tool for instructors and showing the evolution of the design; that evolution 

may be of interest in itself, as more education-focused tools focus not necessarily on 

algorithms or traditional considerations but rather focus heavily on design considerations. 

We have found such charts quite useful in our teaching, but we encourage future work 

(and plan to conduct some ourselves) that demonstrate specific benefits, like detecting 

struggling students, or reducing cheating. 
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Chapter 8. ANALYZING PIVOTING AMONG WEEKLY MANY 

SMALL PROGRAMS IN A CS1 COURSE 

8.1 INTRODUCTION 

A unique benefit of the MSP approach is the ability for students to pivot, meaning 

to switch among lab activities if they get stuck. Chapter 8 investigates such pivoting and 

seeks to answer common questions related to pivoting. We analyze how many students 

pivot and the number of pivots done each week. Given a full-credit threshold (50 of 70 

points on 7 MSP lab activities worth 10 points each with partial credit possible), we 

examine how students complete the subset of required points. We compare pivot data 

between a class with a full-credit threshold and a class without. We examine whether 

students who pivot eventually return to the program from which they pivoted, or if they 

leave the program unsolved. Finally, we analyze student workflow to observe various 

pivot patterns. By analyzing student pivot behavior, we hope the community can better 

understand the pros and cons of pivoting, to help decide whether to adopt an MSP 

approach and possibly a full-credit threshold. 

8.2 METHODOLOGY 

8.2.1 COURSE 

This study was conducted at the University of California, Riverside, whose CS 

department typically ranks in the top 60 by U.S. News and World Report. The university 

operates on the quarter system. Each academic year is divided into three "regular" 10-

week quarters (fall, winter, spring) and one compressed 5-week summer session. 
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Throughout the academic year, the CS1 course serves around 300-500 students each 

quarter. The course is required for all computing majors and for various engineering, 

science, and math majors, such that about half the students are computing majors and half 

are non-computing majors. The course topics include basic input/output, assignments, 

branches, loops, functions, and vectors. The weekly structure of the course includes three 

hours of instructor-led lecture, three hours of TA-led labs, interactive online readings, 

and auto-graded homework assignments. The course teaches C++ as the programming 

language. The course has a midterm during week six and a final after week 10. Each 

exam's points come half from multiple choice questions and half from free-response 

coding questions. The course uses active learning and peer learning in lectures. 

8.2.2 DATA COLLECTION 

We analyzed data from a Winter 2019 CS1 course section that was taught using 

an MSP approach. In total, 78 students were in the section used for this analysis. Our CS1 

used an online textbook published by zyBooks for all class readings, activities, and 

programming assignments. At the end of the quarter, we collected all student develops 

and submits for every lab activity from the class zyBook. A develop is when a student 

runs their code through the zyBooks compiler for testing without grading and a submit is 

when the student "turns in" their assignment for grading. Note that all development was 

done in the built-in zyBooks coding windows; students were not introduced to an external 

development environment. Each develop has metadata on the lab title, a chapter section, a 

userID (anonymized and generated from zyBooks), and a timestamp. A submit has the 

same metadata as a develop, with additional metadata on the score the student earned on 
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the submit and the max score possible for the lab. In total, we collected data from 78 

students for 65 MSP lab activities. We collected 34,316 develops and 14,774 submits for 

a total of 49,090. 

8.3 MSP STUDENT PIVOTING 

With the MSP approach, students are assigned multiple lab activities to complete 

each week. For this class section, students were assigned 7 lab activities, each being 

worth 10 points, for a total of 70 possible points in a given week. Students were told that 

they only needed to earn 50 points of 70 each week to earn full credit. We refer to this 

50-point cutoff as the full-credit threshold. Since students are given a set of lab activities 

to complete, they have the unique ability to pivot, or switch among lab activities while 

working. 

A pivot is when a student partially completes a lab activity (e.g., scores 8 of 10 

points) and then chooses to work on a different lab activity. More specifically, an activity 

run (submit/develop) is defined as a pivot if the activity meets all 5 of the following 

criteria. 

• The activity is not the student's first activity for the week 

• The activity is for a different lab activity than the previous activity 

• The activity is for a lab activity that has not been completed 

• The previous activity is for a lab activity that has not been completed 

• The activity and previous activity are for lab activities assigned in the 

same week 
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8.4 HOW MANY TIMES DO STUDENTS PIVOT EACH WEEK? 

Each week, students were assigned 7 lab activities to complete; each focusing on 

the topic taught during that week. For example, week 3 teaches while-loops, so students 

were given 7 lab activities that focused on loop creation, loop starting/ending conditions, 

etc. A key question is "How many times do students pivot each week?" 

8.4.1 ANALYSIS AND PROCEDURE 

To answer this question, we first used the rules defined in Section 8.3 to count 

how many times each student pivoted during each week of the course. To best understand 

pivot behavior, for each week, we computed the average number of pivots, the minimum, 

the maximum, the value of the 1st and 3rd quartiles, and the standard deviation. Finally, 

we computed an average across all weeks to determine the average times students pivot 

each week. Only nine weeks were included in our calculations since week 10 has no MSP 

assignments. Students who did not attempt any of the lab activities for a given week were 

excluded from weekly calculations. 

8.4.2 RESULTS 

Figure 8.1 is a box-and-whisker plot that summarizes the number of pivots 

students did each week. Above each whisker are the average number of pivots and the 

standard deviation. The average number of pivots across all weeks is shown in the top-

right corner. The x-axis is the week number and the y-axis is the average number of 

pivots. 
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Figure 8.1: Box-and-whisker plot to show the pivots each week with a full-credit threshold. The average 

pivots and standard deviation appear above each whisker (avg, stdev). Total average pivots is 2.2 per week. 

Figure 8.1 shows students pivoted an average of 2.2 times each week. Week 1 has 

a much lower pivot rate, due to the lab activities being easier. Week 4 has the most pivots 

(3.7 on average), likely due to students being taught while-loops for the first time, one of 

the most difficult concepts in the course. The standard deviation is larger in weeks 2-4 

when students learn expressions, branches, and loops, and lower later when learning 

functions and vectors. 

8.5 WHAT PERCENT OF STUDENTS PIVOT EACH WEEK? 

Section 8.4 analyzed the average pivots each week. Additionally, we wanted to 

analyze the percentage of students that pivoted each week. A key question is "What 

percent of students pivot each week?" 

8.5.1 ANALYSIS AND PROCEDURE 

To calculate the average percentage of students that pivoted each week, we first 

determined how many students pivoted at least once for each week in the quarter. If the 
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student pivoted at least once, they were counted as pivoting for that week. Next, we 

computed the percentage of students that pivoted each week. Finally, we averaged across 

all the weeks to calculate the average percentage of students that pivoted during the entire 

quarter. Students that did not attempt any lab activities for a given week were not 

included in the calculations for that week. 

8.5.2 RESULTS 

Figure 8.2 summarizes the average percent of students that pivoted each week. 

The x-axis is the week number and the y-axis is the percent of students.  

 

Figure 8.2: Percent of students that pivot each week. 

Figure 2 shows that on average, 65% of students pivoted at least once each week. 

Week 1 has the lowest percent of students that pivoted, likely due to the lab activities for 

week 1 being quite easy -- students would complete each without getting stuck. Across 

the remainder of the term, the percent of students that pivoted seems to be consistent. 

Across the quarter, 95% of the students in the class (74) pivoted at least once on a 

program. 
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8.6 WHAT ARE SOME OBSERVED PIVOT PATTERNS? 

Recognizing the ways in which students pivot is important to understand how 

students utilize the ability to pivot among lab activities each week. To take a closer look 

at student pivot patterns, we use programming workflow charts to visibly see how 

students worked on weekly MSP assignments. In Section 8.6, we show multiple 

programming charts to visually represent how students worked on their MSP assignments 

during various weeks. A key question is "What are some observed pivot patterns?" 

8.6.1 ANALYSIS AND PROCEDURE 

See Section 7.2.3 to see how each programming workflow chart is constructed. 

8.6.2 RESULTS 

Section 8.6.2 presents three different workflow charts that demonstrate various 

student workflow patterns. Each chart summarizes the number of submits and develops, 

the total time spent, and the total score earned. Analyzing a combination of details about 

each activity also provides insight on student pivot patterns. Each line in the chart is 

color-coded to represent a different lab activity for the week. Since students were given 7 

lab activities to complete each week, there are 7 different lines on each chart. The x-axis 

is the time spent in minutes and the y-axis is the lab activity number. Note, the time 

reported in all the charts is an understatement as previously discussed. 

8.6.2.1 STUDENT PATTERN 1: 0 PIVOTS 

Figure 8.3 shows a student workflow chart from week 5. During week 5, students 

were being taught for-loops. This student worked straight through all 7 lab activities, 

from LA1 (lab activity 1) to LA7. The student spent the least time on LA1, and the most 
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time working on LA4. On average, excluding LA1, the student spent about 13 minutes 

working on each lab activity. This student did not pivot while working on this MSP 

assignment. 

 

Figure 8.3: Programming workflow chart for a student during week 5. 

8.6.2.2 STUDENT PATTERN 2: 3 PIVOTS 

Figure 8.4 shows a student workflow chart from week 4. During week 4, students 

were being taught while-loops. This student began working on LA1 (lab activity 1) and 

scored 100%. They moved to LA2 and scored 100% after almost 2 hours of working. 

Next, the student scored 80% on LA3 and decided to pivot away to LA4. The student 

struggled with LA4, only being able to earn 40% of the points. The student then decided 

to pivot to LA5, but scored 0% the first time around. The student then pivoted and 

returned to LA4 and improved their score from 40% to 100%. The student then returned 

to LA5 and improved their score from 0% to 100% after around 25 minutes of working. 

They then completed LA6 and returned to work on LA3, improving their score from 80% 
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to 100%. The student finally attempted LA7, scoring 0 points, and stopped working 

entirely after that. In total, this student pivoted 3 times; indicated by the arrows in the 

chart. 

 

Figure 8.4: Programming workflow chart for a student during week 4. 

8.6.2.3 STUDENT PATTERN 3: 10 PIVOTS 

Figure 8.5 shows a student workflow chart from week 8. During week 8, students 

were being taught vectors. This student spent around 3 hours in total working on lab 

activities for the week. To summarize, this student spent most of their time working on 

LA1 (lab activity 1), LA2, and LA5. In total, this student pivoted 10 times on this week's 

MSP assignment. Although the student scored 0% on many of their first attempts, they 

were still able to pivot between each lab activity and score the needed points to earn 

100% for the week. 



   111 

 

Figure 8.5: Programming workflow chart for a student during week 8. 

These workflow charts provide insight into student behavior when working on 

weekly MSP assignments. Based on these charts, we see that some students do not need 

to pivot, and can work through all the material straight through, and yet we also see other 

students make heavy use of pivoting when working on their lab activities. Overall, we 

can see that a student may initially struggle, but given time and the ability to pivot, they 

can learn from other lab activities and help themselves improve when returning to 

previously attempted lab activities for the week. 

8.7 DO STUDENTS PIVOT MORE OR LESS GIVEN A FULL-CREDIT 

THRESHOLD? 

The class section used in this analysis was given 7 lab activities to complete each 

week (each worth 10 points, 70 points for the week total), but they only needed to 

complete 70% of the points to get full credit for the week. We refer to the 70% cutoff as 

the full-credit threshold. 
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During Winter 2019, two other sections of CS1 were taught without using a full-

credit threshold. The other two sections assigned students 7 lab activities each week, 5 

required and 2 optional. Each required lab activity was worth 10 points (50 points total 

for the week), and the optional lab activities were worth 0 points (no extra credit). A key 

question is "Does having a full-credit threshold change pivot behavior?" 

8.7.1 ANALYSIS AND PROCEDURE 

To answer this question, we ran similar analyses as presented in Section 8.4 and 

Section 8.5, but for the other two sections of CS1 offered during Winter 2019. We used 

these analyses to calculate the average number of pivots each week and the percent of 

students that pivot when there is not a full-credit threshold. For this analysis, we collected 

data from the other two class sections being taught. In total, we collected an additional 

50,655 submits and 91,774 develops from 182 students over 47 MSP lab activities. 

Since we collected data from another class section, there are some potential 

threats to validity. The other class sections did have a different instructor which could 

lead to instructor bias. Aside from this, all other class variables were kept the same - they 

used the same online textbook, used a subset of the same MSP lab activities, followed the 

same course pacing, and took the same exams. 

8.7.2 RESULTS 

Figure 8.6 is a box-and-whisker plot that shows the number of pivots students did 

each week without a full-credit threshold. Above each whisker are the average number of 

pivots and the standard deviation. Students without a full-credit threshold pivot an 

average of 1.6 times each week compared to an average of 2.2 pivots each week by the 
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full-credit threshold students. The x-axis is the week number and the y-axis is the average 

number of pivots. 

 

Figure 8.6: Box-and-whisker plot to show the pivots each week without a full-credit threshold. The average 

pivots and standard deviation appear above each whisker (avg, stdev). Total average pivots is 1.6 per week. 

Figure 8.7 shows the average percent of students that pivoted each week in a class 

without a full-credit threshold. The x-axis is the week number and the y-axis is the 

percent of students. On average, 48% of students without a full-credit threshold pivot 

each week compared with an average of 65% by students with a full-credit threshold. 

 

Figure 8.7: Average percent of students that pivot each week without full-credit threshold. 
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Although both groups had the option to complete 7 lab activities each week, 

Figure 8.2 compared with Figure 8.7 show that more students pivot when given a full-

credit threshold (65% vs. 48%) while Figure 8.1 and Figure 8.6 show that students pivot 

more frequently when given a full-credit threshold (2.2 vs. 1.6). On first thought, this is 

likely due to the fact that without a full-credit threshold, students know they need to 

complete all required lab activities eventually, so they work through all lab activities until 

completion, but more analysis must be done to confirm. One question for further research 

is "Does giving students a full-credit threshold increase student agency?" 

8.8 DO STUDENTS RETURN TO COMPLETE THE ORIGINAL LAB ACTIVITY 

THEY PIVOT FROM? 

One common critique we hear when sharing data on pivoting is that allowing 

students to pivot could encourage behavior such that students complete the "easy" points 

of each lab activity, pivot away, and skip the "difficult" parts, thus allowing students to 

not fully learn programming. To see if this concern is true, one key question is "Do 

students typically return to the original lab activity they switch from?" 

8.8.1 ANALYSIS AND PROCEDURE 

To address this question, we first define some terminology to categorize student 

pivot behavior. 

• Pivot none (N): student did not pivot from the lab activity 

• Pivot away (P): student pivoted from the lab activity and did not return 

• Pivot return (PR): student pivoted, returned to the lab activity, but made 

no improvement in score 
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• Pivot improve (PI): student pivoted, returned to the lab activity, and 

improved their previous score 

• Pivot complete (PC): student pivoted, returned to the lab activity, and 

completed the lab activity fully (scored 100%) 

We keep track of all activity runs for each lab activity, and then once all activity 

runs are completed, we can look at all activity runs as a whole to apply the mentioned 

categories. We isolate the students who pivoted, what they did after pivoting, and if they 

worked again once they returned. By doing so, we are able to better understand specific 

pivot behavior. 

8.8.2 RESULTS 

In total, students completed 4,596 lab activities over the quarter. Of those total lab 

activities completed, students pivoted on 20% of them. Figure 8.8 is a pie chart that 

summarizes pivot categories for the subset of lab activities that were pivoted from. 

 

Figure 8.8: Pie chart summarizing student pivot categories. 

To summarize, students returned to 11.7% of lab activities, returned and improved 

on 9.4% of lab activities, and returned to complete 42.4% of lab activities. Overall, 
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students pivoted away from 36.6% of lab activities and never returned. Figure 8.8 shows 

that students come back to work on 63.4% of lab activities and improve their score for 

51.6% of lab activities. Since students return to a majority of attempted lab activities, this 

finding shows that students do use pivoting in helpful ways, not harmful to avoid the 

"hard" parts in a lab activity. Likely, students use pivoting when stuck to either get ahead 

on other problems, or they are able to self-enlighten themselves by learning from other 

lab activities and then return to work on the lab activities they were previously stuck on. 

8.9 STUDENT FEEDBACK 

We surveyed students during week 5 (midway through the quarter) to gather their 

thoughts on the ability to pivot between lab activities. Using a 4-point Lickert scale (4 is 

"Strongly agree", 3 is "Slightly agree, 2 is "Slightly disagree, and 1 is "Strongly 

disagree") we asked students "I find the ability to jump between programming 

assignments helpful." The average response was 3.23, indicating that students on average 

were between "Slightly agree" and "Strongly agree." 

8.10 THREATS TO VALIDITY 

8.10.1 DIFFERENT INSTRUCTORS 

In Section 8.7, we look at the other class sections of CS1 being taught without 

using a full-credit threshold to compare pivoting behavior between students. Since we 

collected data from other class sections, there could be an instructor bias as the instructor 

who taught the full-credit threshold group was different from the instructor who taught 

the other sections. Although there could be a threat to validity, we note that both 

instructors are very similar in personality, teaching style, previous evaluations, etc. Both 
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have been teaching for many years together and typically have weekly meetings to share 

and ensure the class is being run in virtually the same way. Furthermore, all other class 

variables were kept the same - all sections used the same online textbook, the same lab 

activities, followed the same course pacing, and took the same exams. 

8.10.2 DIFFERENT STYLE OF AN MSP APPROACH 

In Section 8.7, we look at the other sections of CS1 being taught during Fall 2019. 

The other class sections used a slightly different style of an MSP approach, such that 

instead of assigning students 7 lab activities and allowing them to choose which ones to 

complete for their weekly points, the other class section assigned 7 lab activities with 5 

being required, offering the other 2 for additional practice (but no extra credit). Although 

these two methods are slightly different, we do not believe this to have much impact on 

the results of our experiment. 

8.10.3 OUTSIDE CODE DEVELOPMENT 

Although our students were only introduced to the zyBooks in-book IDE, this 

doesn't mean that students could not use their own IDEs to develop their code outside of 

zyBooks. If this were the case, we would be missing some important data on activity runs 

as we would have no way to track their develops. Knowing this, it is possible that some 

of our analysis numbers are slightly off. However, since this is an introductory CS1 

course, and most students who take this class are new to programming, it's likely that 

most students did use the zyBooks' in-book IDE primarily to code. Even if this wasn't 

true, our numbers would be an understatement and we would expect most of our numbers 

to increase (i.e. more activities could lead to more pivots, time spent, etc.) 
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8.11 CONCLUSION 

One way we have tried to improve our CS1 course is the use of an MSP approach. 

A unique benefit of using an MSP approach is that students can pivot, meaning to switch 

among lab activities when stuck. Since all MSP assignments relate to a core topic each 

week, pivoting is a unique benefit that allows students to gain insight from other lab 

activities and then apply that knowledge to solving the previous problems they were 

stuck on. This paper addressed many common questions about pivoting. We found that 

students on average pivot 2.2 times each week with most students (65%) making use of 

pivoting when working on lab activities each week. We explored various pivoting 

patterns and saw that students can use pivots to solve problems they previously could not. 

We showed that students, given a full-credit threshold, do pivot more than students not 

given a full-credit threshold. Finally, we showed that when a student pivots away from a 

lab activity, they usually return to work on the lab activity again. There is still much more 

analysis to be done on the ability to pivot using an MSP approach, but this work has 

shown that students are making good use of the benefits that an MSP approach and 

pivoting have to offer. 
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Chapter 9. CONTRIBUTIONS 

We introduced a many small programs (MSP) teaching approach for the first time 

in Spring 2017 with a goal to improve the students' experience in our CS1 without 

harming grade performance. Four years later, our university only teaches CS1 via an 

MSP approach and we've gotten positive feedback from instructors, teaching assistants, 

and most importantly the students. 

Over the past 4 years, we have implemented, studied, and improved the way we 

use an MSP approach in our CS1 classes. Compared to an OLP approach, we have seen 

that an MSP approach can be used to increase student satisfaction in CS1 and reduce 

student stress without worsening their grade performance in class. In fact, we have seen 

that an MSP approach can also yield overall better grade performance, mainly on coding 

assessments like the midterm and final exams. Furthermore, we have seen students make 

good use of weekly MSP assignments in regards to their learning. When using an MSP 

approach, students spend a healthy amount of time working on programming each week, 

students begin working on their weekly assignments earlier in the week, students 

purposefully complete additional MSP lab activities when given a full-credit threshold 

even though no extra credit is given, students use MSP lab activities to prepare for 

exams, and most importantly MSP-trained students still perform well in a CS2 that 

assigns large programming assignments under an OLP approach. Through our research, 

we have seen that an MSP approach can be used across universities and across 

programming languages with equal success. Finally, we have experimented and can 
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conclude that an MSP approach can yield positive results when used in conjunction with 

a Coral-first approach in a CS1 class. 

Since implementing our MSP approach, we have designed, created, and 

maintained over 100 unique C++ MSP programming assignments. With the increased 

usage of an MSP approach at our university and the growing usage of an MSP approach 

at other universities across the nation (over 250 that we know about as reported by 

zyBooks in 2020), we built tools to help analyze and understand how students interact 

with MSP content. One of the most helpful tools we created is used to generate 

programming workflow charts to gain a visual understanding of how students work 

through weekly MSP assignments. Given a log file provided by zyBooks (or any other 

program auto-grader), we can quickly and automatically generate thousands of workflow 

charts -- one for every student for every weekly MSP assignment. These tools are readily 

available to us, but we hope to make them available to all instructors to use to better 

understand their students and their classes. As such, we are expanding the workflow chart 

generation tool to create an interactive web page for instructors to upload their own log 

files to generate and display their classes' programming workflow charts. The web page 

has search functionality, sorting functionality, and comes with two data views: a textual 

view that quickly summarizes the data in a table and a visual view to see all workflow 

charts. This tool is currently in beta and is being worked on by other students. We hope 

that a stable version will be completed by the end of this year. Currently, the tool can be 

used by instructors at our university and some others by invitation, but we plan to make it 

broadly available to all instructors soon.  
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Our initial goal of improving student experience in CS1 has been made possible 

due to this MSP approach. Instructors, teaching assistants, and students have all provided 

good feedback on using this approach in their classrooms. As of 2020, we are aware of 

hundreds of CS1 classes that have adopted an MSP approach to weekly programming 

assignments. Since 2017, our university has switched all CS1 classes to an MSP approach 

and there is no sign of going back to a traditional OLP approach.  

On a final note, we compare our CS1 DFW rates when teaching via an OLP 

approach and via an MSP approach. We collected CS1 DFW data from Fall 2007 - Fall 

2019. Comparing DFW rates between a CS1 OLP approach (Fall 2007 - Spring 2017) to 

a CS1 MSP approach (Spring 2017 - Fall 2019) we see a statistically significant decrease 

from 15% to 8.4% (p<0.001) when using an MSP approach. As Fall 2007 was over 10 

years ago and our CS1 has generally improved over the years, we do a similar 

comparison only including CS1 OLP approach data from Fall 2014 - Spring 2017 (same 

number of CS1 MSP approach quarters analyzed). With a more recent comparison, we 

still see a reduced DFW rate from 9.6% to 8.4% (p=0.35), although not significant. Based 

on the success we have had in our own CS1 class and based on all the benefits we have 

seen an MSP approach offer, we encourage CS1 instructors to try incorporating an MSP 

approach in their CS1 as well.  
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