[27th ASEE Annual Conference

June 21-24,2020 | Palais des congrés de Montréal | Montréal, Canada

Paper ID #29888

Analyzing Pivoting Among Weekly Many Small Programs in a CS1 Course

Joe Michael Allen, University of California, Riverside

Joe Michael Allen is a Ph.D. student in Computer Science at the University of California, Riverside. His
current research focuses on finding ways to improve CS education, specifically focusing on introductory
programming courses known as CS1. Joe Michael is actively researching the impact of using a many
small programs (MSP) teaching approach in CS1 courses. His other interests include educational games
for building skills for college-level computer science and mathematics.

Prof. Frank Vahid, University of California, Riverside

Frank Vahid is a Professor of Computer Science and Engineering at the Univ. of California, Riverside.
His research interests include embedded systems design, and engineering education. He is a co-founder
of zyBooks.com.

(©American Society for Engineering Education, 2020

Analyzing Pivoting Among Weekly Many Small Programs in a
CS1 Course

Abstract

In Fall 2018, our university fully switched from using a weekly one large program (OLP)
approach to using a many small programs (MSP) approach in our CS1 course, utilizing a
program auto-grader with immediate points feedback and partial credit possible. The switch led
to positive results such as an increase in student grade performance and a reduction of student
stress. We also saw students making good use of MSPs in their learning, such as spending
sufficient time programming each week, and starting earlier on programming assignments. A
unique benefit of MSPs is the ability for students to pivot, meaning to switch among programs if
they get stuck. This paper investigates such pivoting, and seeks to answer common questions
related to pivoting. We analyze how many students pivot and the number of pivots done each
week. Given a full-credit threshold (50 of 70 points on 7 programs worth 10 points each with
partial credit possible), we examine how students complete the subset of required points. We
compare pivot data between a class with a full-credit threshold and a class without. We examine
whether students who pivot eventually return to the program from which they pivoted, or if they
leave the program unsolved. Finally, we analyze student workflow to observe various pivot
patterns. By analyzing student pivot behavior, we hope the community can better understand the
pros and cons of pivoting, to help decide whether to adopt an MSP approach and possibly a
full-credit threshold.

1. Introduction

Having a positive experience in an introductory programming course, known as CS1, is critical
for student success. CS1 is crucial in keeping students in computer science (CS), training
non-major students who need some programming, and attracting students to CS. Unfortunately,
CS1 courses have many well-known issues: low grades, high stress, low retention, and high drop
rates. [1], [2]. A 2014 report by Watson and Li [3] showed that over the past 30 years, CS1
classes have had a rather-high non-passing rate of 30%. Similarly, in 2005, Beaubouef and
Mason [4] reported that drop rates between 30%-40% are common for CS programs. These
known issues have drawn the attention of education researchers to explore new ways to improve
CS1 courses.

One improvement approach makes use of modern program autograders like zyBooks [5], Mimir
[6], CodeLab [7], or MATLAB Grader [8]. These modern auto-graders allow for benefits such as
giving students immediate, fine-grained feedback, allowing for student resubmissions, and
overall saving instructor time on grading and assignment creation. For example, since zyBooks'

auto-grader was released in 2016, over 500 courses (mostly CS1) have started using an
auto-grader that did not before. With the benefits these auto-graders offer, many instructors are
creating and assigning many small programs (MSPs) per week, rather than the more common
one large program (OLP) per week. A previous work [9] summarized a study that showed how
MSPs led to happier, less-stressed students, while also improving programming scores on exams,
likely due to students having more practice on focused concepts. A later study [10] showed that
MSPs lead to students spending good time each week working on their programming
assignments, starting to work early on programming assignments, using more programs to study
for exams, and a few other benefits. Additionally, that same study also found that using an MSP
approach in CS1 did not harm student performance in CS2, in fact, the MSP students performed
slightly better in CS2 than OLP students. Since the publication of those studies, our university
has fully switched to using MSPs in all CS1 offerings. This paper's purpose is to answer various
questions related to the unique benefit that MSPs offer: the ability for students to pivot, meaning
to switch from one program to another if stuck.

Section 2 describes our methodology. Section 3 introduces our pivot analysis. Section 4
addresses "How many times do students pivot each week?" Section 5 addresses "What percent of
students pivot each week?" Section 6 addresses "What are some observed pivot patterns?"
Section 7 addresses "Do students pivot more or less given a full-credit threshold?" Section 8
addresses "Do students return to complete the original program they pivot from?" Section 9
briefly discusses student feedback. Section 10 discusses potential threats to validity. Section 11
concludes.

2. Methodology
2.1 Course

This study was conducted at our U.S. public research university, whose CS department typically
ranks in the top 60 by U.S. News and World Report. The university operates on the quarter
system. Each academic year is divided into three "regular" 10-week quarters (fall, winter, spring)
and one compressed 5-week summer session. Throughout the academic year, the CS1 course
serves around 300-500 students each quarter. The course is required for all computing majors
and for various engineering, science, and math majors, such that about half the students are
computing majors and half are non-computing majors. The course topics include basic
input/output, assignments, branches, loops, functions, and vectors. The weekly structure of the
course includes three hours of instructor-led lecture, three hours of TA-led labs, interactive
online readings, and auto-graded homework assignments. The course teaches C++ as the
programming language. The course has a midterm during week six and a final after week 10.
Each exam's points come half from multiple choice questions and half from free-response coding
questions. The course uses active learning and peer learning in lectures.

2.2 Data collection

We analyzed data from a Winter 2019 CS1 course section that used MSPs. In total, 78 students
were in the section used for this analysis. Our CS1 used an online textbook published by
zyBooks for all class readings, activities, and programming assignments. At the end of the
quarter, we collected all student develops and submits for every programming assignment from
the class zyBook. A develop is when a student runs their code through the zyBooks compiler for
testing without grading and a submit is when the student "turns in" their assignment for grading.
Note that all development was done in the built-in zyBooks coding windows; students were not
introduced to an external development environment. Each develop has metadata on the lab title, a
chapter section, a userID (anonymized and generated from zyBooks), and a timestamp. A submit
has the same metadata as a develop, with additional metadata on the score the student earned on
the submission and the max score possible for the lab. In total, we collected data from 78
students for 65 MSPs. We collected 34,316 develops and 14,774 submits for a total of 49,090.

3. Student MSP pivoting

With the MSP approach, students are assigned multiple programming assignments to complete
each week. For this class section, students were assigned 7 programs, each being worth 10
points, for a total of 70 possible points in a given week. Students were told that they only needed
to earn 50 points of 70 each week to earn full-credit. We refer to this 50 point cutoff as the
full-credit threshold. Since students are given a set of programs to complete, they have the
unique ability to pivot, or switch among programs while working.

A pivot is when a student partially completes a program (e.g., scores 8 of 10 points) and then
chooses to work on a different program. More specifically, a student submit/develop (referred to
as a student activity) is defined as a pivot if the activity meets all 5 of the following criteria.

1. The activity is not the student's first activity for the week

2. The activity is for a different program than the previous activity

3. The activity is for a program that has not been completed

4. The previous activity is for a program that has not been completed

5. The activity and previous activity are for programs assigned in the same week

4. How many times do students pivot each week?

Each week, students were assigned 7 programs to complete; each focusing on the topic taught
during that week. For example, week 3 teaches while-loops, so students were given 7 programs
that focused on loop creation, loop starting/ending conditions, etc. A key question is "How many
times do students pivot each week?"

4.1 Analysis and procedure

To answer this question, we first used the rules defined in Section 3 to count how many times
each student pivoted during each week of the course. To best understand pivot behavior, for each
week, we computed the average number of pivots, the minimum, the maximum, the value of the
Ist and 3rd quartiles, and the standard deviation. Finally, we computed an average across all
weeks to determine the average times students pivot each week. Only nine weeks were included
in our calculations since week 10 has no programming assignments. Students who did not
attempt any of the assigned programs for a given week were excluded from weekly calculations.

4.2 Results

Figure 1's box-and-whisker plot summarizes the number of pivots students did each week.
Above each whisker are the average number of pivots and the standard deviation. The average
number of pivots across all weeks is shown in the top-right corner. The x-axis is the week
number and the y-axis is the average number of pivots.

Fig. 1. Box-and-whisker plot to show the pivots each week with a full-credit threshold. The
average pivots and standard deviation appear above each whisker (avg, stdev). Total average
pivots is 2.2 per week.

Total students (78) Avg: 2.2
35
(3.7, 4.5)

30
(2.7, 4.0)

25

(2.2, 3.8)
L (2.9, 3.3)

2.4, 2.6) (1.7, 2.5)

15

Pivots

(2.3, 2.6)

(
10 (1.7.1.7)
| mm J-
0
4 5 B

Week #

Figure 1 shows students pivoted an average of 2.2 times each week. Week 1 has a much lower
pivot rate, due to the programs being easy. Week 4 has the most pivots (3.7 on average), likely
due to students being taught while-loops for the first time, one of the most difficult concepts in
the course. The standard deviation is larger in weeks 2-4 when students learn expressions,
branches, and loops, and lower later when learning functions and vectors.

5. What percent of students pivot each week?

Section 4 analyzed the average pivots each week. Additionally, we wanted to analyze the
percentage of students that pivoted each week. A key question is "What percent of students pivot

each week?"

5.1 Analysis and procedure

To calculate the average percentage of students that pivoted each week, we first determined how
many students pivoted at least once for each week in the quarter. If the student pivoted at least
once, they were counted as pivoting for that week. Next, we computed the percentage of students
that pivoted each week. Finally, we averaged across all the weeks to calculate the average
percentage of students that pivoted during the entire quarter. Students that did not attempt any
labs for a given week were not included in the calculations for that week.

5.2 Results

Figure 2 summarizes the average percent of students that pivoted each week. The x-axis is the
week number and the y-axis is the percent of students.

Fig. 2. Percent of students that pivot each week.

Total Students (78)
100%

90%
80%
70%
60%
50%
40%
30%
20%

Avg: 65%

% Students

10%

0%
1 2 3 4 5 6 T 8 9 Avg

Week #

Figure 2 shows that on average, 65% of students pivoted at least once each week. Week 1 has the
lowest percent of students that pivoted, likely due to the labs for week 1 being quite easy --
students would complete each without getting stuck. Across the remainder of the term, the
percent of students that pivoted seems to be consistent. Across the quarter, 95% of the students in
the class (74) pivoted at least once on a program.

6. What are some observed pivot patterns?

Recognizing the ways in which students pivot is important to understand how students utilize the
ability to pivot among programs each week. To take a closer look at student pivot patterns, we
constructed visual diagrams to represent student workflow. In this section, we show multiple
workflow diagrams to visually represent how students worked on their programming
assignments during various weeks. A key question is "What are some observed pivot patterns?"

6.1 Analysis and procedure

To visually represent student workflow, we created GANTT charts for each student for every
week in the quarter. A GANTT chart shows activities displayed against time. Each activity is
represented by a bar; the position and length of the bar reflects the start date, duration and end
date of the activity [11]. We chose this representation since GANTT charts allow us to see lots of
information at a glance. We are able to see the time students spend per program, the total number
of develops and submits per program, the score earned per working session, a summary of all
activity for the week, and the pivot patterns students displayed. "Ticks" denoted on each line
represent a student activity. A tick located above the horizontal bar represents a submit and a tick
below the bar represents a develop.

To generate each GANTT chart, we first gathered all student activity for the quarter. From the
metadata, using a combination of userID, labID, time spent, and knowing the week each program
was assigned, we grouped student activity to do the necessary calculations. To determine time
spent, we looked at each timestamp and took the sum of differences to compute the total time
spent on each program To compute the number of develops and submits, we counted each
activity and if there is a score associated with the activity, then the activity is counted as a
submission, otherwise a develop. We calculate the percent scored by finding the highest
submission score among all activities for that program. Finally, we separate activity by
"workflow blocks," indicating that the student switched working between programs or there was
a 10-minute gap observed between activity (10 minutes was chosen arbitrarily). Note, that the
reported time spent is thus an understatement as zyBooks does not keep track of activity prior to
the first submit or develop, and we exclude time spent calculations if there is an observed 10
minute gap between activity; assuming the student took a break or went to work on something
else.

6.2 Results

This section presents three different GANTT charts that demonstrate various student workflow
patterns. Each graph summarizes the number of submits and develops, the total time spent, and
the total score earned. Analyzing a combination of details about each activity also provides

insight on student pivot patterns. Each line in the chart is color-coded to represent a different
program for the week. Since students were given 7 programs to complete each week, there are 7
different lines on each chart. The x-axis is the time spent in minutes and the y-axis is the lab
number. Note, the time reported in all the charts is an understatement as previously discussed.

6.2.1 Student pattern 1: 0 pivots

Figure 3 shows a student workflow chart from week 5. During week 5, students were being
taught for-loops. This student worked straight through all 7 programs, from P1 (program 1) to
P7. The student spent the least time on P1, and the most time working on P4. On average,
excluding P1, the student spent about 13 minutes working on each program. This student did not
pivot while working on this set of programming assignments.

Fig. 3. GANTT chart for a student during week 5.
Week 5 Workflow (82min 37sec; 87d; 10s)

100} 100%

11 1min 19sec
&d, s edev, lsub
100% 100%
2 —|'|'|'|—|'|-|'|-|'|'II 15min 15sec
104, 1s 16dev, 1sub
100% 100%
3 =1 11min 10sec
104, 35 10dev, 3sub
3 100%
o 4 ;
[
-l 1Ed, 15
100% 100%
5 TR 10min
19dew,
194,
100%
6 i
134, 1s
100% 100%
7 _I'|-||' 12min 41sec
1 5dev, lsub
0 20 40 60 80 100

Time (min)

6.2.2 Student pattern 2: 3 pivots

Figure 4 shows a student workflow chart from week 4. During week 4, students were being
taught while-loops. This student began working on P1 (program 1) and scored 100%. They
moved to P2 and scored 100% after almost 2 hours of working. Next, the student scored 80% on
P3 and decided to pivot away to P4. The student struggled with P4, only being able to earn 40%
of the points. The student then decided to pivot to P5, but scored 0% the first time around. The
student then pivoted and returned to P4 and improved their score from 40% to 100%. The
student then returned to P5 and improved their score from 0% to 100% after around 25 minutes

of working. They then completed P6 and returned to work on P3, improving their score from
80% to 100%. The student finally attempted P7, scoring 0 points, and stopped working entirely
after that. In total, this student pivoted 3 times; indicated by the arrows in the chart.

Fig. 4. GANTT chart for a student during week 4.
Week 4 Workflow (376min 7sec; 270d; 28s)

100 100%

1 I+ 4min 1ﬂ95ec
o, s bdew, 2sub
i Ko 100%
2 | e 10Bmin 19sec
od, 0= =7d, 2= 67dev, 2sub
0% E0% ln"/ D% 100%
3 FETTIT T et 127min 3sec
47d,147d, 25 110, 15 1TAEme 103dewv, 15sub
#* o 0% ‘ﬁ'fm 10
C 4 I I i 4 " i "
E 1d, Os 11am38s 20, 2 a4 v, 35UbD
o L Thi100% 100%
5 -m M'H'H' 34min 30sec
smEs 8o 025d, 4s 30dew, 4sub
100%
6
24d, 2s
0%
7 Omin Osec
Odev, Osub
0 50 100 150 200 250 300 350 400

Time (min)

6.2.3 Student pattern 3: 10 pivots

Figure 5 shows a student workflow chart from week 8. During week 8, students were being
taught vectors. This student spent around 3 hours in total working on programs for the week. To
summarize, this student spent most of their time working on P1 (program 1), P2, and P5. In total,
this student pivoted 10 times during this week's programs. Although the student pivoted and
switched many times among the programs, the student was still able to finish and score 100% on
most of the programs they attempted. Although the student scored 0% on many of their first
attempts, they were still able to pivot between each program and score the needed points to earn
100% for the week.

Fig. 5. Gantt chart for a student during week 8.
Week 8 Workflow (174min 13sec; 182d; 20s)

wh ‘:"/ i3 E/ 100% 100%
1 pr—n =HrETrT1 s} 46min 56sec
240, 03 E“/ z"- 24d, 1= 40,25 52dev, 3sub
20% 0% 100% 100%:
pl —TiE T —i 42min 8sec
z0d, 15 134, 05 20, 15 36dewv, 2sub
0% 0% 70%
3 it E‘/ = E/ 10min Bsec
120, 45 40, 3s 16dev, 7sub
0% l:’/ 100%
g4 m
- an, 0s s, 15
i k’/ O 100%
5 —TT et 34min 18sec
33dev, 3sub
laad, Os 12anmes
6 T
lod, is 1d]106 D
100% 100%
7 4 1min Osec
24,25 2dev, Zsub
0 25 50 75 100 125 150 175 200
Time {min)

These figures provide insight into student behavior when working on programming assignments
for the week. These GANTT charts help us understand how students are interacting with the
material. Based on these charts, we see that some students do not need to pivot, and can work
through all the material straight through, and yet we also see other students make heavy use of
pivoting when working on their programs. Overall, we can see that a student may initially
struggle, but given time and the ability to pivot, they can learn from other programs and help
themselves improve when returning to previously attempted programs for the week.

7. Do students pivot more or less given a full-credit threshold?

The class section used in this analysis was given 7 programs to complete each week (each worth
10 points, 70 points for the week total), but they only needed to complete 70% of the points to
get full credit for the week. We refer to the 70% cutoff as the full-credit threshold.

During Winter 2019, two other sections of CS1 were taught without using a full-credit threshold.
The other two sections assigned students 7 programs each week, 5 required and 2 optional. Each
required program was worth 10 points (50 points total for the week), and the optional programs
were worth 0 points (no extra credit). A key question is "Does having a full-credit threshold
change pivot behavior?"

7.1 Analysis and procedure

To answer this question, we ran similar analyses as presented in Section 4 and Section 5, but for
the other two sections of CS1 offered during Winter 2019. We used these analyses to calculate
the average number of pivots each week and the percent of students that pivot when there is not a
full-credit threshold. For this analysis, we collected additional data from the other two class
sections being taught. In total, we collected an additional 50,655 submits and 91,774 develops
from 182 students over 47 MSPs.

Since we collected data from another class section, there are some potential threats to validity.
The other class sections did have a different instructor which could lead to instructor bias. Aside
from this, all other class variables were kept the same - they used the same online textbook, used
a subset of the same MSPs, followed the same course pacing, and took the same exams.

7.2 Results

Figure 8's box-and-whisker plot shows the number of pivots students did each week without a
full-credit threshold. Above each whisker are the average number of pivots and the standard
deviation. Students without a full-credit threshold pivot an average of 1.6 times each week
compared to an average of 2.2 pivots each week by the full-credit threshold students. The x-axis
is the week number and the y-axis is the average number of pivots.

Fig. 8. Box-and-whisker plot to show the pivots each week without a full-credit threshold. The
average pivots and standard deviation appear above each whisker (avg, stdev). Total average
pivots is 1.6 per week.

Total Students (182) Avg: 1.6
SH]
(2.8, 4.3)

30 (3.1, 3.8)

. (0.9, 2.4) (2.5, 3.2)
i 18 (1.3,2.3)
S
2 5 (1.0, 2.1)
I+

Figure 9 shows the average percent of students that pivoted each week in a class without a
full-credit threshold. The x-axis is the week number and the y-axis is the percent of students. On
average, 48% of students without a full-credit threshold pivot each week compared with an
average of 65% seen by students with a full-credit threshold.

Fig. 9. Average percent of students that pivot each week without full-credit threshold.

Total Students (182)
100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Avg: 48%

% Students

1 2 3 4 5 6 7 8 9 Avg
Week #

Although both groups had the option to complete 7 programs each week, Figure 8 and Figure 9
show that more students pivot, and pivot more frequently when given a full-credit threshold. On
first thought, this is likely due to the fact that without a full-credit threshold, students know they
need to complete all required programs eventually, so they work through all programs until
completion, but more analysis must be done to confirm. One question for further research is
"Does giving students a full-credit threshold increase student agency?"

8. Do students return to complete the original problem they pivot from?

One common critique we hear when sharing data on pivoting is that allowing students to pivot
could encourage behavior such that students complete the "easy" points of each program, pivot
away, and skip the "difficult" parts, thus allowing students to not fully learn programming. To

see if this concern is true, one key question is "Do students typically return to the original

program they switch from?"

8.1 Analysis and procedure

To address this question, we first define some terminology to categorize student pivot behavior.

- Pivot none (N): student did not pivot from the program

- Pivot away (P): student pivoted from the program and did not return

- Pivot return (PR): student pivoted, returned to the program, but made no improvement in
score

- Pivot improve (PI): student pivoted, returned to the program, and improved their previous
score

- Pivot complete (PC): student pivoted, returned to the program, and completed the
program fully (scored 100%)

We keep track of all student activity for each program, and then once all activity is completed,
we can look at all student activities as a whole to apply the mentioned categories. We isolate the
students who pivoted, what they did after pivoting, and if they worked again once they returned.
By doing so, we are able to better understand specific pivot behavior.

8.2 Results

In total, students completed 4,596 programs over the quarter. Of those total programs completed,
students pivoted on 20% of them. Figure 10 is a pie chart that summarizes pivot categories for
the subset of programs that were pivoted from.

Fig. 10. Pie chart summarizing student pivot categories.

Pivot Away

Pivot Complete

Pivot Return

Pivot Improve

To summarize, students returned to 11.7% of programs, returned and improved on 9.4% of
programs, and returned to complete 42.4% of programs. Overall, students pivoted from, but
never returned to 36.6% of programs. Based on Figure 10, for a majority of pivoted programs,
(~65%), students come back to at least submit once more on the program they pivoted from.

Since students return to a majority of attempted programming assignments, this finding shows
that students do use pivoting in helpful ways, not harmful to avoid the "hard" parts in a problem.
Likely, students use pivoting when stuck to either get ahead on other problems, or they are able
to self-enlighten themselves by learning from other programs and then return to work on the
programs they were previously stuck on.

9. Student feedback

We surveyed students during week 5 (midway through the quarter) to gather their thoughts on
the ability to pivot between programs. Using a 4-point Lickert scale (4 is "Strongly agree", 3 is
"Slightly agree, 2 is "Slightly disagree, and 1 is "Strongly disagree") we asked students "I find
the ability to jump between programming assignments helpful." The average response was 3.23,
indicating that students on average were between "Slightly agree" and "Strongly agree."

10. Threats to validity
10.1 Different instructors

In Section 7, we look at the other sections of CS1 being taught without using a full-credit
threshold to compare pivoting behavior between students. Since we collected data from other
class sections, there could be an instructor bias as the instructor who taught the full-credit
threshold group was different from the instructor who taught the other sections. Although there
could be a threat to validity, we note that both instructors are very similar in personality, teaching
style, previous evaluations, etc. Both have been teaching for many years together and typically
have weekly meetings to share and ensure the class is being run in virtually the same way.
Furthermore, all other class variables were kept the same - all sections used the same online
textbook, the same programming assignments, followed the same course pacing, and took the

same €xams.

10.2 Different style of MSPs

In Section 7, we look at the other sections of CS1 being taught during Fall 2019. The other class
sections used a slightly different style of MSPs, such that instead of assigning students 7
programs and allowing them to choose which ones to complete for their weekly points, the other
class section assigned 7 programs with 5 being required, offering the other 2 for additional
practice (but no extra credit). Although these two methods are slightly different, we do not
believe this to have much impact on the results of our experiment.

10.3 Outside code development

Although our students were only introduced to the zyBooks in-book IDE, this doesn't mean that
students could not use their own IDEs to develop their code outside of zyBooks. If this were the

case, we would be missing some important data on student activity as we would have no way to
track their develops and submissions. Knowing this, it is possible that some of our analysis
numbers are slightly off. However, since this is an introductory CS1 course, and most students
who take this class are new to programming, it's likely that most students did use the zyBooks'
in-book IDE primarily to code. Even if this wasn't true, our numbers would be an understatement
and we would expect most of our numbers to increase (i.e. more activities could lead to more
pivots, time spent, etc.)

11. Conclusion

One way we have tried to improve our CS1 course is the use of MSPs. A unique benefit of MSPs
is that students can pivot, meaning to switch among programs when stuck. Since all assigned
programming assignments relate to a core topic each week, pivoting is a unique benefit that
allows students to gain insight from other programs and then apply that knowledge to solving the
previous problems they were stuck on. This paper addressed many common questions about
pivoting. We found that students on average pivot 2.2 times each week with a majority of
students (65%) making use of pivoting when working on programs each week. We explored
various pivoting patterns and saw that students can use pivots to solve problems they previously
could not. We showed that students, given a full-credit threshold, do pivot more than students not
given a full-credit threshold. Finally, we showed that when a student pivots away from a
program, they usually return to work on the program again. There is still much more analysis to
be done on the ability to pivot using MSPs, but this work has shown that students are making
good use of the benefits that MSPs and pivoting have to offer.

References

[1] P.Kinnunen and L. Malmi, "Why students drop out CS1 course?," in Proceedings of the
second international workshop on Computing education research (ICER '06). ACM, New
York, NY, USA, 97-108, 2006.

[2] A. Petersen, M. Craig, J. Campbell, and A. Tafliovich, "Revisiting why students drop
CS1," in Proceedings of the 16th Koli Calling International Conference on Computing
Education Research (Koli Calling '16). ACM, New York, NY, USA, 71-80, 2016.

[3] C.Watson and F. W. B. Li, "Failure rates in introductory programming revisited," in
Proceedings of the 2014 conference on Innovation & technology in computer science
education (ITiCSE '14). ACM, New York, NY, USA, 39-44, 2014.

[4] T. Beaubouefand J. Mason, "Why the high attrition rate for computer science students:
some thoughts and observations," in SIGCSE Bull. 37, 2 (June 2005), 103-106, 2005.

[5] zyBooks. https://www.zybooks.com/catalog/zylabs- programming/. Accessed: March,
2019.

[6] Mimir. https://www.mimirhq.com/. Accessed: March, 2019.

[7] Turing's Craft: CodeLab. https://www.turingscraft.com/. Accessed: March, 2019.

[8] MATLAB Grader. https://grader.mathworks.com/ Accessed: March, 2019.

[91 J. M. Allen, F. Vahid, K. Downey, and A. Edgcomb, "Weekly Programs in a CS1 Class:
Experiences with Auto-graded Many-small Programs (MSP)," in Proceedings of ASEE
Annual Conference, 2018.

[10] J. M. Allen, F. Vahid, A. Edgcomb, K. Downey, and K. Miller, "An Analysis of Using
Many Small Programs in CS1," in ACM SIGCSE Technical Symposium on Computer
Science Education, 2019.

[11] Gannt.com https://www.gantt.com/ . Accessed: August, 2019.

