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Abstract The wide and increasing availability of collected data in the form of trajecto-
ries has led to research advances in behavioral aspects of the monitored subjects (e.g., wild
animals, people, and vehicles). Using trajectory data harvested by devices, such as GPS,
RFID and mobile devices, complex pattern queries can be posed to select trajectories based
on specific events of interest. In this paper, we present a study on FPGA- and GPU-based
architectures processing complex patterns on streams of spatio-temporal data. Complex pat-
terns are described as regular expressions over a spatial alphabet that can be implicitly or
explicitly anchored to the time domain. More importantly, variables can be used to sub-
stantially enhance the flexibility and expressive power of pattern queries. Here we explore
the challenges in handling several constructs of the assumed pattern query language, with
a study on the trade-offs between expressiveness, scalability and matching accuracy. We
show an extensive performance evaluation where FPGA and GPU setups outperform the
current state-of-the-art (single-threaded) CPU-based approaches, by over three orders of
magnitude for FPGAs (for expressive queries) and up to two orders of magnitude for cer-
tain datasets on GPUs (and in some cases slowdown). Unlike software-based approaches,
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the performance of the proposed FPGA and GPU solutions is only minimally affected by
the increased pattern complexity.

Keywords Spatio-temporal - Spatial - Temporal - Database - FPGA - GPU -
Acceleration - Pattern - Matching

1 Introduction

Due to their relative ease of use, general purpose processors are commonly favored at the
heart of many computational platforms. These processors are deployed in environments
with varying requirements, ranging from personal electronics to game consoles, and up to
server-grade machines. General purpose CPUs follow the Von-Neumann model, which exe-
cutes instructions sequentially. Nevertheless, in this model performance does not always
linearly scale in multi-processor environments, mostly due to the challenges of data shar-
ing across cores. As it is non-trivial for these CPUs to satisfy the increasing time-critical
demands of several applications, they are often coupled with application- or domain-specific
parallel accelerators, such as Graphics Processing Units (GPUs) and Field Programmable
Gate Arrays (FPGAs), which strive given a certain class of instructions and memory access
patterns.

FPGAs consist of a fully configurable hardware platform, providing the flexibility of
software (e.g., programmability) and the performance benefits of hardware (e.g., paral-
lelism). The performance advantages of such platforms arise from their ability to execute
thousands of parallel computations, relieving the application at hand from the sequential
limitations of software execution on Von-Neumann based platforms. The processor “instruc-
tions” are now the logic functions processing the input data. Depending on the application,
one big advantage of FPGAs is the ability to process streaming data at wire speed, thus
resulting in a minimal memory footprint. The aforementioned advantages are shared with
Application Specific Integrated Circuits (ASIC). FPGAs, however, can be reconfigured and
are more adaptable to changes in applications and specifications, and hence exhibit a faster
time to market. This comes at a slight cost in performance and in area, where one functional
circuit would run faster on a tailored ASIC and require fewer gates.

For a long time GPUs were considered to be hardware devices specifically for
graphics-related computations. However recent advances in general-purpose GPU com-
puting (GPGPU) enabled application developers to use excessive computational power
of GPUs for ad-hoc processing. Although programming GPUs remains a software task,
the architecture of GPUs, being completely different from general-purpose central pro-
cessors, allows a programmer to achieve greater performance by leveraging very large
scale parallelism. This architecture, highly tailored towards parallelism, dictates a specific
programming approach and imposes some limitations, which should be addressed by the
application running on the GPU. Typically the performance achieved by using parallel GPU
architecture is inferior to the performance achieved on ASICs or FPGAs for a similar task.
However, unlike an FPGA-based solution, the program running on a GPU could be changed
in an online fashion, thus providing excellent adaptivity.

As traditional platforms are increasingly hitting limitations when processing large
volumes of streaming data, researchers have been investigating FPGAs for database appli-
cations. Recent work has focused on the adoption of FPGAs for data stream processing in
different scenarios. In [23] a stream filtering approach is presented for XML documents.
[37] investigated the speedup of the frequent item problem using FPGAs. In [40], the
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Fig. 1 Generic overview of various steps performed in spatio-temporal querying setups

FPGA is employed for complex event detection using regular expressions. [31] proposed
a predicate-based filtering on FPGAs where user profiles are expressed as a conjunctive
set of boolean filters. [21] describes an FPGA-based stream-mode decompression engine
targeting Golomb-Rice encoded inverted indexes.

Similar research has been conducted on using GPUs for accelerating typical database
operations. Some of them focus on improving performance of relational operators, e.g.,
selections and projections [3] and joins [12]. Recently, GPU architectures have been used
to implement tree index operations [4, 14], as well as filtering for XML Path/Twig queries
[1,20].

In this paper, we describe both FPGA- and GPU-based solutions for querying trajectory
data using patterns. Pattern matching allows users to query spatio-temporal databases in a
very powerful and intuitive way [8, 10, 26, 32, 38]. Figure 1 describes the setup. Streams of
trajectory data are harvested from devices, such as GPS and cellular devices. Coordinates
are then translated into semantic regions that partition the spatial domain; these regions can
be grid regions representing areas of interests (e.g., neighborhoods, school districts, cities).
Our work is based on the FlexTrack framework [38, 39], which allows users to query trajec-
tory databases using flexible patterns. A flexible pattern query is specified as a combination
of sequential spatio-temporal predicates, allowing the end user to search for specific parts of
interests in trajectory databases. For example, the pattern query “Find all taxi cabs (trajec-
tories) that first were in downtown Munich in the morning, later passed by the Olympiapark
around noon, and then were closest to the Munich airport” provides a combination of tem-
poral, range and Nearest-Neighbor (NN) predicates that have to be satisfied in the specific
order. Essentially, flexible patterns cover that part of the query spectrum between the sin-
gle spatio-temporal predicate queries, such as the range predicate covering certain time
instances of the trajectory life (e.g., “Find all trajectories that passed by the Deutsches
Museum area at 11pm”), and similarity/clustering based queries, such as extracting simi-
lar movement patterns from a trajectories that cover the entire life span of the trajectory
(e.g., “Find all trajectories that are similar to a given query trajectory according to some
similarity measure”).

The FlexTrack framework provides support for “variable” spatial predicates, which sub-
stantially enhances the flexibility and expressive power of the pattern queries. An example
of a variable-enhanced query is “Find all trajectories that started in a region @x, then
visited the downtown Munich, then at some later point returned to region @x”.

This paper serves as a proof-of-concept on the performance benefits of evaluating flexi-
ble pattern queries using FPGAs and GPUs. A preliminary version appeared in [24], where
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only the FPGA-based setup was considered. Our focus is on the challenges presented when
supporting hundreds (up to thousands) of variable-enhanced flexible patterns in a stream-
ing (fully-pipelined) fashion. Using both hardware platforms all pattern query predicates
are evaluated in parallel over sequential streams of trajectories, hence resulting in over three
orders of magnitude speedup over CPU-based approaches for FPGAs, and up to 2 times
for GPUs. This performance property also holds even when compared to CPU-based setups
where the pre-processing of trajectories is performed beforehand using specialized indexes.
To the best of our knowledge, this work is the first detailing FPGA and GPU support for
flexible pattern queries.

The remainder of this paper is organized as follows: related work is described in
Section 2; the FlexTrack query language is detailed in Section 3; the proposed FPGA-based
and GPU-based querying architecture is detailed in Section 4 and Section 5, respectively;
the experimental evaluation is provided in Section 6; and Section 7 concludes this paper.

2 Related work

Single predicate queries (e.g., Range and NN queries) for trajectory data have been widely
studied (e.g., [2, 28, 36]). In order to make the query evaluation process more efficient
[11], trajectories are first approximated using Minimum Bounding Regions (MBR) and
then indexed using hierarchical spatio-temporal indexing structures, like the MVR-tree [35].
However, these solutions are only efficient to evaluate single predicate queries. For moving
object data, patterns have been examined in the context of query language and modeling
issues [8, 19, 32], as well as query evaluation algorithms [10, 25].

The FlexTrack system [38, 39], on which our work is based, provides a general and pow-
erful query framework. In FlexTrack, queries can contain both fixed and variable regions,
as well as regular expression structures (e.g., repetitions, negations, optional structures) and
explicit ordering of the predicates along the temporal dimension. This system uses a hierar-
chical region alphabet, where the user has the ability to define queries with finer alphabet
granularity (zoom in) for the portions of greater interest, and higher granularity (zoom out)
elsewhere. In order to efficiently evaluate flexible pattern queries, FlexTrack employs two
lightweight index structures in the form of ordered lists in addition to the raw trajectory
data. Given these index structures four different algorithms for evaluating flexible pattern
queries are available, which are detailed in the next section.

The use of hardware platforms for pattern matching has been explored by many studies
[17, 18, 34, 40]. Most of these works focus on deep packet inspection and security as appli-
cations of interest. Speed-ups over CPU-based approaches of up to two orders of magnitude
have been reported using FPGAs: every cycle a new data element can be processed from
the stream. The works in [1, 20, 22, 23] present a novel dynamic programming, push down
automata approach, using FPGAs and GPUs, for matching XML Path and Twig patterns
in XML documents. Using the massively parallel solution running on parallel platforms,
up to three orders of magnitude speedup was achieved versus state-of-the-art CPU-based
approaches.

In [34] an NFA implementation of regular expressions on FPGAs is described. A pattern
matching approach, built on GPU-based NFA regular expression engine is reported in [5].
Generating hardware code from Perl Compatible Regular Expressions (PCRE) is proposed
in [18] . The work in [17] focuses on DFA implementations of regular expressions, while
merging commonalities among multiple DFAs. The use of regular expressions for the repre-
sentation of spatio-temporal queries is proposed in [40] where an FPGA implementation is
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detailed, allowing the sharing of query evaluation engines among several trajectories, with
a minor impact on performance. While simpler query matching engines are assumed (due
to less expressive queries), the mechanism of sharing engines for the purpose of frequently
updated trajectories can also be applied to the approach described in this paper (where
batch analytics are the main focus). The use of GPUs for the fast computation of proxim-
ity area views over streams of spatio-temporal data is investigated in [6]. Our work mainly
differs from all the above works from the perspective of the query language, described in
Section 3. Specifically, we describe an investigation of the FPGA- and GPU-based support
of variable-enhanced patterns.

3 The FlexTrack system

We now provide a brief description of the pattern query language syntax, as well as the key
elements in the FlexTrack framework (see [38] for more details).

3.1 Flexible pattern query language

The FlexTrack uses a set of non-overlapping regions %; that are derived from partitioning
the spatial domain into / regions. Such regions correspond to areas of interest (e.g. school
districts, airports) and form the alphabet language ¥ = U, ¥ ={A, B, C, ...}. The Flex-
Track query language defines a spatio-temporal predicate P by a triplet (op, R[, t]), where
R corresponds to a predefined spatial region in X or a variable in T' (R € {£ UTY}), op
describes the topological relationship (e.g. meet, overlap, inside) that the trajectory and the
spatial region R must satisfy over the (optional) time ¢ := (tfrom : ti0) | ts | tr ( fromtio:
time interval; f;: snapshot time; #,: relative time to a previous match time predicate). A
predefined spatial region is explicitly specified by the user in the query predicate (e.g.
“the downtown area of Munich”). In contrast, a variable denotes an arbitrary region using
the symbols in I' = {@x, @y, @z, ...}. Conceptually, variables work as placeholders for
explicit spatial regions and can be bound to a specific region during the query evaluation.

The FlexTrack language defines a pattern query @ = (S [U D]) as a combination of
a sequential pattern S and an optional set of constraints D. A trajectory matches Q if it
satisfies both S and D parts. The D part of Q allows us to describe general constraints. For
instance, constraints can be distance-based constraints among the variables in S and the
predefined regions in £. And S := S.S | P |'P | P*# | 2+ | 2* corresponds to a sequence of
spatio-temporal predicates, while D represents a collection of constraints that may contain
regions defined in S (“!” and “*” define negation and optional operators, respectively). The
wild-card ? is also considered a variable, however it refers to any region in X, and not
necessarily the same region if it occurs multiple times within a pattern S.

The use of the same set of variables in describing both the topological predicates and the
numerical conditions provides a very powerful language to query trajectories. To describe
a query in FlexTrack, the user can use fixed regions for the parts of the trajectory where
the behavior should satisfy known (strict) requirements, and variables for those sections
where the exact behavior is not known but can be described by variables and the constraints
between them.

In addition to the query language defined previously, we introduce the variable region
set constraint defined in D. A region set constraint (e.g., {@x : A, D, E}) is optional per
variable, and can be only applied to variable predicates, having the purpose of limiting the
region values that a given variable can take in X. Consider the following query pattern
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and region set over @x, Q = (S = {A.B.@x.C.?77.@x}, D = {@x : A, D, E}). Here,
@x is constrained by the regions {A, D, E}. In practice, a variable can be limited to the
neighboring regions of the fixed query predicates. Other constraints can be set by the user,
hence, limiting the number of matches of interest. From a performance perspective, the use
of variable region set constraints greatly simplifies hardware support for variable predicates
separated by wildcards 7t or 7*, as detailed in Section 4.

3.2 Flexible pattern query evaluation

The FlexTrack system employs two lightweight index structures in the form of ordered lists
that are stored in addition to the raw trajectory data. There is one region-list (R-list) per
region in X, and one frajectory-list (T-list) per trajectory in the database. The R-list L1 of
a given region Z € ¥ acts as an inverted index that contains all trajectories that passed by
region Z. Each entry in £7 contains a trajectory identifier 7;4, the time interval (¢s-entry:ts-
exit] during which the trajectory was inside Z (zs-entry included, ts-exit excluded), and a
pointer to the 7-list of T;;. Entries in a R-list are ordered first by T;4, and then by ts-entry.

The T-list is used to fast prune trajectories that do not satisfy pattern S. For each trajec-
tory T;4 in the database, the 7-/ist is its approximation represented by the regions it visited
in the partitioning space X. Each entry in the T-list of T;4 contains the region and the time
interval (¢s-entry:ts-exit] during which this region was visited by T;4, ordered by ts-entry. In
addition, entries in 7-/ist maintain pointers to the ts-entry part in the original trajectory data.
With the above described index structures, there are four different strategies for evaluating
flexible pattern queries:

1. Index Join Pattern (IJP): this method is based on a merge join operation performed
over the R-lists for every fixed predicate in S. The IJP uses the R-lists for pruning and
the T-lists for the variable binding. This method is the one chosen as comparison to
our proposed solution, since it usually achieves better performance for a wide range of
different types of queries;

2.  Dynamic Programming Pattern (DPP): this method performs a subsequence matching
between every predicate in S (including variables) and the trajectory approximations
stored as the T-lists. The DPP uses mainly the 7-lists for the subsequence matching and
performs an intersection-based filtering with the R-lists to find candidate trajectories
based on the fixed predicates in S;

3. Extended-KMP (E-KMP): this method is similar to DPP, but uses the Knuth-Morris-
Pratt algorithm [16] to find subsequence matches between the trajectory representations
and the query pattern;

4. Extended-NFA (E-NFA): this is an NFA-based approach to deal with all predicates of
our proposed language. This method also performs an intersection-based pruning on
the R-lists to fast prune trajectories that do not satisfy the fixed spatial predicates in S.

4 Proposed FPGA-based hardware implementation

In this section, pattern queries are evaluated in hardware on an FPGA device. As trajecto-
ries are compared against hundreds, and potentially thousands, of pattern queries, manually
developing custom hardware code becomes an extremely tedious (and error prone) task.
Unlike software querying platforms, where a single (or set of) generic kernel can be used for
the evaluation of any query pattern, hardware is at an advantage when each query pattern is
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mapped to a customized circuit. Customized circuitry has the benefits of only utilizing the
needed resources out of all (limited) on-chip resources. Furthermore, the throughput of the
query evaluation engines is limited by the operational frequency (hardware clock) which
can in-turn be optimized to maximize performance.

For this purpose, a software tool written in C++ was developed from scratch (more than
6,500 lines of code), taking as input a set of user-specified pattern queries Q, and automat-
ically generating a customized Hardware Description Language (HDL) circuit description
(see Fig. 2). A set of compiler options can be specified, such as the degree of matching
accuracy (reducing/eliminating false positives), and whether to make use of certain resource
utilization (common prefix) and performance (clustering) optimizations.

Utilizing a query compiler provides the flexibility of software (ease of expression
of queries from a user perspective), and the performance of hardware platforms (higher
throughput), while no compromises are introduced.

4.1 High level architecture overview

As depicted in Fig. 2, assuming an input stream of pairs (location, timestamp), the first
step consists of translating the location onto semantic data; specifically, the region-IDs are
of interest, using which the query patterns are expressed. The computational complexity of
translating locations to regions depends on the nature of the map, and is discussed below:

1. Regions defined by a grid map: in this case, simple arithmetic operations are per-
formed on the locations. These can be performed at wire speed (no stalling) on an
FPGA;

2. Polygon-shaped regions: in this case, there are several well-defined point-in-polygon
algorithms and their respective hardware implementations available (e.g., see [9, 13, 15,
33]). However, none of these can operate at wire speed when the number of polygons
is large. Here, the locations of vertices are stored off-chip in carefully designed data
structures. The latter are traversed to locate the minimal set of polygons against which
to test the presence of the locations.

As the design of an efficient location-to-region-ID block is orthogonal to pattern query
matching, in this work a grid map is assumed, and the location-to-region-ID conversion is
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abstracted away and computed offline. The input stream to the FPGA consists of (region-
ID, timestamp) pairs. A high level overview of the generated FPGA-based architecture is
depicted at the right-hand side of Fig. 2.

An event detector controller translates the (region-ID, timestamp) pairs to (region-ID, ts-
entry, ts-exit) tuples. The latter are then passed to decoders which transform the region-ID
into a one-hot signal (one wire per region ID, s.t. only one wire is high at a time), and eval-
uate comparisons on entry and exit timestamps as needed by pattern queries. Making use
of decoders greatly reduces resource utilization on the FPGA, as computations are central-
ized and redundancies are eliminated. Note that the decoder is only associated with regions
needed by the queries attached to it.

Next, a set of flexible pattern query evaluation engines are deployed, providing perfor-
mance benefits through the following two parallelization opportunities:

1. Inter-pattern parallelism: where the evaluation of all pattern queries is achieved in
parallel. This parallelism is available due to the embarrassingly parallel nature of the
pattern matching problem;

2. Intra-pattern parallelism: where the match states of all nodes within a pattern are
evaluated in parallel.

The throughput of pattern query matching engines is limited to one event per cycle. Given
the current assumed streaming mechanism, events are less frequent than region-IDs.

Lastly, once a trajectory is done being streamed into the FPGA, the match state of each
pattern query is stored in a separate buffer. This in turn allows the match states to be
streamed out of the FPGA from the buffer as a new trajectory is queried (streamed in),
hence, exploiting one more parallelism opportunity.

A description of the hardware query matching engines follows. While the discussion
focuses on predicate evaluation, timing constraints are evaluated in a similar manner in the
region-ID decoder, and are hence left-out of the discussion for brevity.

4.2 Evaluating patterns with no variables

We now describe the case of pattern queries with no variables. This approach is borrowed
from the NFA-based regular expression evaluation as proposed in [18, 34]. Figure 3a depicts
the matching engine respective to the pattern query A.B.?*.A, and Fig. 3b details the match-
ing steps of that query given a stream of region-ID events. Each query node is implemented
as:

1. A one-bit buffer, implemented using a flip-flop (Fig. 3b), indicating whether the pattern
has matched up to this node. All nodes are updated simultaneously, upon each region-1D
event detected at the input stream;

2. Logic preceding this buffer, to update the match state (buffer contents).

As each buffer indicates whether the pattern has matched up to that predicate, a query
node can be in a matched state if, and only if:

1. All previous (non-wildstars ?*) predicates up to itself have matched. Wildstars are an
exception since they can be skipped by definition (zero or more). To perform this check,
it suffices to check the match state of the first previous non-wildstar node (see the node
bypass in Fig. 3a);

2. The current event (as noted by the region-ID decoder) relates to the region of that
respective node. Wildcards are an exception, since by definition, they are not tied to a
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Pattern query

region-ID. Centralizing the comparisons and making use of a decoder helps consider-
ably reducing the FPGA resource utilization respective to this inter-node logic (see the
AND-gates in Fig. 3a). This is in contrast to reading the multi-bit encoded region-ID
and performing a comparison locally;

3. Itis a wildstar/wildplus (?*/27), and it was in a match state at some point earlier. Wild-
star and wildplus are aggregation nodes that, once matched, will hold that match state
(see the OR-gate prior to the ?* node in Fig. 3a).

Looking closer at Fig. 3b, each cell reflects the match state of a query node. All cells in
a column are updated in parallel upon an event at the input stream. A ‘1’ in a cell indicates
that the query has matched up to that node; for a query to be marked as matched, a ‘1’
should propagate from the first node (top row) to the last node (bottom row). As wildstar
(and wildplus) nodes act as aggregators, they hold a matched state once activated; hence, a
‘1’ can propagate “horizontally” only at wildstar (and wildplus) nodes. Grey cell contents
indicate matched states that did not contribute to the detected matched query state in red
color, but could contribute to later matches. The ‘1’ depicted in red color in Fig. 3b indicates
that the query was detected in the input stream.

4.3 Evaluating patterns with variables and without wildstar/wildplus

Supporting variables in pattern query matching requires an added level of memory saving.
The basic rule of variables is that all instances of a given variable need to match the same
region-ID for a variable to be in a match state. When no aggregator nodes ?7/?* are used,
the distance between these two region-IDs occurring is the number of nodes between the
variable instances in the query.

One possible way for software systems to handle this would be to store, at each vari-
able node (in a matched state), all the region-IDs encountered throughout the stream. A
post-processing step would carefully intersect, for each variable, all stored region-IDs vec-
tors. While that is a valid approach, storing region-IDs for each variable node of each
pattern query is problematic as streams are longer. Furthermore, this is not needed unless
aggregator nodes 71/?7* occur in between variable occurrences; these cases are detailed in
Sections 4.4 and 4.5. As FPGAs allow the deploying of custom matching engines for each
pattern, matching pattern queries at streaming (no-stall) mode can be achieved here, with
no post processing.

To handle variables in hardware, the first instance of a given variable in a pattern query
forwards the event detector’s output encoded (multi-bit) region-ID alongside the incoming
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match state (see the second node in Fig. 4a). Some cycles later (depending on the location of
variable instances in the pattern), every instance of that variable in the query would match
the event detector’s region-ID to the forwarded region-ID. If these match, then the region-
ID is again forwarded, and the variable instance indicates a matched state. Stated in other
terms, at a variable node (instance) in a query, a match state is indicated if the current region
was encountered earlier (given a fixed implied distance), and all match state propagation
checks in between were valid (implying the distance).

Note that an encoded region-ID is used since it is smaller in bit size than a decoded
ID, and any region can potentially satisfy the pattern query variable (i.e., variables are
essentially a subset of wildcards). Also note that non-variable predicates buffer the for-
warded region-ID, though no manipulation of the latter is required. Additionally, one set of
region-ID buffers is required per variable, starting from the first occurrence of that variable.

The same solution is applicable to pattern queries containing variables with region sets.
Figure 4b shows the matching logic for the pattern A.@x.B.@x where @x is constrained
by the regions {C, D, E}. Here, instead of storing the encoded region-ID in the variable
buffers, the latter would hold, for each region in the set, a single bit. At the first occurrence of
a variable, the buffer holds a one-hot vector, because input stream events are relative to one
region only. Upon later instances of that variable, AND-ing the incoming region set buffer
with specific bits of the region-ID decoder output will help indicating for which regions (if
any) the pattern matches.

The above approach is similar to replicating the matching engine for each region in the
variable region set constraint. For instance, the query in Fig. 4b can be seen as three queries,
namely A.C.B.C, A.D.B.D and A.E.B.E. However, the above approach offers much bet-
ter scalability when multiple variables are used per pattern: replicating the pattern for each
combination of variable regions would result in an exponential increase in resource utiliza-
tion versus employing the aforementioned style of propagating buffers. Another advantage
of the propagating region set variable buffers, when dealing with wildstar/wildplus pattern
predicates, is described in the following.

We now describe an alternative “relaxed” implementation of the variable region set con-
straint, with the goal of saving considerable hardware resources, though at the expense of
introducing false positives. Instead of keeping a propagating buffer holding information on
each region in the set, the match state can be updated if any of the regions in the set are
decoded using a simple OR-gate. Figure 5a depicts the gate-level implementation of the
query A.@x.B.@x {@x : C, D, E}, such that the variable region set constraint is imple-
mented as an OR. Thus, history keeping is minimized, as no exact region information is kept
per variable. While this mechanism introduces false positives (as described in Fig. 5b), the

@ Springer



Geoinformatica

Input stream region ID events
e ——N

time

ABCDE R I
“—U > A [0|l1]|0]|O 0
Pattern query ué- @§)0)] 01100

match state g B |[oj]o|o[1]o0

E @ (0|0 | 0| 0 [T1

(a) (b)

Fig. 5 a Query matching engine respective to the pattern query A.@x.B.@x {@x : C, D, E}, such that
the variable region set constraint is implemented as a “relaxed” OR. b An event-by-event overview of the
matching of the query resulting in a false positive, due to the OR-based implementation of the variable region
set constraint

latter can be tolerable depending on the application. Otherwise, a post-processing software
step can be performed only on the patterns marked as matched by the FPGA hardware. This
approach, however, helps fitting substantially more query engines on the FPGA, a benefit
accentuated as the number of variables and the variable region sets’ size increase.

4.4 Evaluating patterns with a single variable and with wildstar/wildplus

The remainder of this discussion is applicable to both wildplus and wildstar query nodes.
As detailed earlier (Fig. 3a), wildplus nodes act as aggregator nodes. When no variables
are used, the only propagating information across nodes is a single bit value. In that case, a
simple OR gate would suffice for aggregation (state saving).

When a wildplus predicate is located in between two instances of a variable, all values
of the region-ID buffer should be stored, and forwarded to the next stages (nodes). Keeping
that history is required in order to not result in false negatives. However, due to performance
and resource utilization constraints, storing all that history is not desired. Using variable
region set constraints, this limitation can be overcome by simply OR-ing the propagating
buffer similarly to the match state buffer. This approach would store the information needed,
and no history is lost. No false positives are generated, thus pattern evaluation is achieved
at streaming mode.

4.5 Evaluating patterns with multiple variables and with wildstar/wildplus

When more than one variable predicate is used in a pattern query, and with wildplus nodes in
between instances of both these variables, the previous mechanism can lead to false positive
matches, as even more state should be saved than discussed earlier. Figure 6a shows an
event-by-event example of a pattern matching resulting in a false positive match. Each cell
in the grid holds the values stored inside each respective variable buffer. Buffers for the
variable @x are used at each pattern node, whereas buffers for the variable @y span from
the second pattern node (i.e. the first @y node), up to the last pattern node.

As described earlier, the wildplus node is the only node in the pattern query allowing
horizontal propagation of matched states. This is due to the nature of wildplus nodes which
hold a matched state. As the variable buffers are OR-ed at that wildplus node, they will store
the information of the union of all variable buffers encountered at that node. Looking at the
2% row in Fig. 6a, notice that the variable buffers for both @x and @y hold an increasing
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Fig. 6 Event-by-event matching of the pattern query @x.@y.?".@x.@y {@x : A, B,C, D} {@y :
A, B, C, D}. The resulting match in a is a false positive; whereas enough state is saved in b at the aggregator
node (?%) to eliminate that false positive

number of regions. That level of stored information is not sufficient, as it will be shortly
shown to result in a false positive.

Upon the D event, both variable buffers did not propagate to the second instance of @x.
That is because the @x variable buffer does not reflect that the previous instance of @x
held the value of D (yet). However, on the next event A, the variable buffers propagated,
and the @x variable buffer was masked with the event region. Hence, B was removed from
the @x variable buffer. The @y variable buffer remains unmodified, since the @x node is
not allowed to modify it.

Finally, at the last event C, focusing at the second instance of @y (i.e. the last pattern
predicate), a match is shown for @x=A and @ y=C. While @x and @y did hold these values
at some point, looking closer at the input stream, A and C were initially separated by B,
though the query requires that the distance between @x and @y is 1 (back-to-back regions
visited).

In order to not result in false positives, the level of history kept at the aggregator node
has to be increased. Instead of only storing the union of all variable buffers, the information
at the wildplus node should be the set of all variable buffers encountered. To reduce storage,
that solution can be simplified such that, for each @x variable value, a list of all corre-
sponding @y values are stored (as shown in Fig. 6b). Focusing on the aggregator row, every
value of @x is associated with a list of @y values. These can be deduced from the propa-
gating variable buffers into the wildplus node. Note that @x=A is associated with @y=B.
Therefore, the tuple @x=A, @y=C cannot result in a match, as is the case in Fig. 6a.

Nonetheless, implementing this solution in hardware is extremely costly in terms of
resource utilization (and impact on the critical path/performance), especially with larger
region sets and many variables per pattern. Furthermore, this solution does not scale with
many variables, and does not hold with more aggregator nodes.

Another approach to eliminate false positives in such cases is a brute-force implemen-
tation of each query using all variable region-set combinations. For instance, the query
S = @x.@y.7".@x.@y {@x : A, B}{@y : C, D} can be implemented as four sim-
pler queries, namely: S| = A.C.277.A.C; S, = A.D.77.A.D; S = B.C.?7".B.C; and
Sy = B.D.7".B.D.

This approach is encouraging when the number of variables and the size of the region
sets is relatively small. Otherwise, the implied resource utilization increases too much, even
though each query is built using simple matching engines (no propagating variable buffers).
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Nonetheless, the common prefix (among similar pattern queries) optimization helps with
the scalability.

In order to better evaluate the benefits of each of the above approaches, a study on the
resulting false positives versus resource utilization is performed in Section 6. In summary,
when pattern queries make use of two or more variables, and with an aggregator node in
between the occurrences of these variables, the proposed approaches are:

1. Making use of propagating variable buffers: this approach results in the least false
positives;

2. Implementing region set constraints as an OR: the number of false positives here
is a superset of the above case, and resource utilization is minimal. False positives are
a superset, since the condition (OR check) to allow a match to propagate through a
variable node is a superset of the first approach’s variable node conditions (propagating
buffers);

3. A brute-force mapping approach: this approach map each query as the combination
of all variable region-sets. It has no false positives, but does not scale well with more
variables and larger region sets.

5 Proposed GPU-based implementation

This section describes the mechanisms and optimizations used to effectively evaluate flex-
ible pattern queries on GPUs, based on the three aforementioned approaches: variable
as OR, propagating buffers, all combinations. The following study compares the effects
of several factors on the performance of GPU implementation, in contrast to its FPGA
counterpart.

5.1 GPU solution overview

For the remainder of this study, we use of the Nvidia CUDA terminology [27]. In CUDA,
every GPU accelerated application consists of two main parts: the host code, which is exe-
cuted on the general-purpose CPU connected to the GPU via PCle; and the GPU kernel
code, multiple instances of which are executed in parallel on graphical processors. The
number of kernel instances, i.e., threads, is not limited to the physical number of computing
cores on the GPU.

Typical GPU architectures consist of a large number of (simple) compute cores, called
Streaming Processors (SPs). SPs are clustered into Streaming Multiprocessors (SMs). Each
SM is coupled with small and fast memory buffers used for caching read-only data or
intra-SP communication. Furthermore, every instruction fetched gets executed on each SP,
which enables GPU to process data in a SIMD (Single Instruction, Multiple Data) manner.
Finally all SMs are connected to a high-latency global memory, the latter being the point of
communication with the host CPU.

The user specifies the number of kernels to be grouped in thread blocks, such that all
threads in a thread block execute on a single SM (and can communicate through the shared
low-latency memory). In order to further maximize utilization, several thread blocks can be
executing simultaneously on the same SM, such that thread block scheduling is automated
by the CUDA framework.

In our GPU solution, the event detector (Fig. 2) is implemented as part of the host code,
converting streams of (location, timestamp) pairs into (region-ID, ts-entry, ts-exit) tuples.
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Three GPU kernels are implemented, each respective to one of the three query match-
ing approaches: variable as OR, propagating buffers, and all combinations. Kernels take
as input pattern query definitions along with compiler options (Section 4). These parame-
ters enable specific optimizations (e.g., common prefix, pattern minimization), as well as
manage performance specific characteristics (e.g., cluster size). Each kernel processes each
event from the stream passed from the host code.

Our GPU-based solution leverages thread scheduling and grouping techniques to attain
the same levels of parallelism as in the FPGA-based solution:

1. Inter-pattern parallelism: all pattern queries are evaluated in parallel, by scheduling
their thread blocks on different SMs, or sharing a single SM in a time multiplexed
manner;

2. Intra-pattern parallelism: individual predicates within a pattern are evaluated in
parallel on different SPs, when the thread block is executed.

In the following subsections we provide a detailed description of the proposed algorithms
implementation on GPUs, as well as the parameter encoding scheme and the applied GPU-
specific optimizations.

5.2 GPU kernel personality

One of the key benefits of the CUDA platform lies in its ability to scale: developer needs to
implement only a single GPU kernel, the execution framework will spawns multiple copies
of the kernel in parallel threads. Given the fact that the same kernel code is used to evaluate
every predicate in the pattern, all predicate-specific information should be passed to the
kernel as an input parameter. The configuration, referred to as personality, dictates all the
predicate’s properties, which are needed to carry out individual predicate matching.

The information encoded in this personality is depicted in Table 1. Some of the encoded
fields (e.g., type, timestamps) have the same meaning for every predicate. Field ID is
defined for each predicate, but its semantics depend on the predicate’s type. Finally, a
set of type-specific fields is used (e.g., isFirstOccurence for variables, prevPredicate and
prevPrevPredicate for wildcards, isLast and matchld for last predicates in the pattern).

Given an input query set (and optimization parameters), the host constructs all corre-
spondent personalities. Kernel personality information is compacted and then transferred,
before kernel execution, to the GPU’s global memory. Kernels then read their personalities

Table 1 GPU Kernel personality storage format

Field Description Size
type Predicate type: fixed, wildcard, wildplus, variable 2 bits
isLast true for last predicates in the pattern, false otherwise 1 bit
isFirstOccurence true for the first occurrence of variable, false otherwise 1 bit
timestamp from Beginning of predicate’s temporal interval 4 bytes
timestamp to End of predicate’s temporal interval 4 bytes
D ID of the region (for fixed predicates), or variableld 2 bytes
prevPredicate Pointer to the previous predicate in the pattern 2 bytes
prevPrevPredicate Pointer to the predicate in the pattern, before previous 2 bytes
matchld Unique match ID for the last predicate in the pattern 2 bytes
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once in the beginning of execution, and store the configuration for later usage to alleviate
GPU global memory fetching. Personality fields are placed in registers to insure the fastest
possible access.

Algorithm 1 Propagating Buffers Kernel

1: level < 0, prevCol <+ 0, matchNum < 0

2: for all region events in trajectory stream do

3 col «+ level % 2

4 if prevPredicate # null then

5: buffers[row][col].regions < buffers[prevPredicate][prevCol].regions
6.

7

8

if type = wildstar or type = wildplus then
if type = wildstar then
buffers[row][col].regions < buffers[prevPrevPredicate][prevCol].regions

9: buffers[row][col].regions < buffers[row][prevCol].regions
10: match < buffers[prevPredicate][prevCol]

11: switch type do

12: case fized:

13: match < match and (id = region.id)

14: case wildstar:

15: case wildplus:

16: match < match or buffers[row][prevCol].match

17: case variable:

18: varRegion < buffers[row][col].regions[id] N region.id
19: if varRegion = () then

20: match « false

21: else

22: if varRegion is not initialized then

23: buffers[row][col].regions[id] < region

24: else

25: if isFirstOccurence then

26: buffers[row][col].regions[id] <+ region

27: else

28: match < match and (buffers[row][col].regions[id] N region)
29: if isLast and match then

30: output[matchNum++] < matchld

31: prevCol < col

32: level++

5.3 Trajectory querying kernel

For the GPU kernel implementation, we use the same dynamic programming-based solution
described in Sections 4.2-4.5. Algorithm 1 represents a simplified version of the propa-
gating buffer query processing approach. Details of the GPU kernels for the other two
approaches (variable as OR and all combinations) are omitted for brevity, but can be sim-
ply derived from the aforementioned algorithm. Note that the variable termed row refers to
thread ID, which is unique within the block (in CUDA it is predefined as variable threadldx).
Similarly prevPredicate (and prevPrevPredicate) represents the ID of the thread, executing
the predicate’s prefix.

Algorithm 1 describes a sequence of operations, specific for a single predicate within
a query pattern, executed in a separate thread. To process a query pattern as a single unit,
individual threads should be grouped into thread blocks. Individual threads within a block
communicate through shared memory. For most use cases, all predicates of the pattern query
fit into a single thread block.

In our algorithm, the buffers array, residing in shared memory, is used to pass the match-
ing state between predicates. Each predicate saves its state in a buffers array entry, which
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includes the propagating buffer regions (used to save the variable’s state) and a boolean
value match (used to carry the match state from one predicate to another). In case of a vari-
able predicate coupled with a region set, its propagating buffer regions are pre-populated on
the host side.

Note that in the dynamic programming problem we are solving, only the most recent
buffers state is of interest to our purposes; hence, all previous states of the buffers array can
be overwritten with the new ones. As a result, the memory allocated for the buffers array is
bounded to two columns (one column for the current and one for the previous state) and N
rows, where N is the size of thread block. Each kernel loops through every region event in
the trajectory event stream and performs some computations on the current column. After
all computations are done, the current column is swapped between 0 and 1 (and from 1 to 0
on the next iteration) on line 3.

Lines 4-9 are copying and merging (in case of wildcard nodes) contents of propagating
buffers of the node’s parent with the propagating buffers of the current node. Lines 11-28
contain the main matching logic: initially the match is propagated from the node’s parent,
followed by node-specific matching restrictions. In the case of a fixed-region predicate (line
13), a match is propagated further only if the predicate’s region-ID is the same as the current
trajectory event region. If the pattern is a wildcard, a match can be propagated from the
same node as well as its parent (line 16).

The variable predicate (lines 17-28) is the more interesting case. Depending on the
variable region set, a number of situations can occur:

— The region set is filled, but the current trajectory event region does not overlap with the
set (line 20). This will result in a failed pattern match;

— The region set is initially empty (line 23). In this case the current trajectory event region
should be recorded into the propagating buffer regions;

— The region set is filled, and the current trajectory event region overlaps with the set
(lines 25-28). If this is the first occurrence of a variable in the pattern, the trajectory
event region is recorded in the propagating buffer regions (line 26); otherwise, the
regions which caused the previous variable’s matches should be compared to the current
trajectory event region (line 28).

Finally, the match state of the whole pattern is reported on line 30.
5.4 Performance optimizations

We now describe optimizations applied to maximize the GPU utilization and to carefully
utilize the memory hierarchy, with the goal of boosting performance.

Due to architecture limitations not all the threads in a block are executed simultaneously.
Threads are executed in groups of 32, computing in a SIMD fashion. Each such group of
threads is referred to as a warp. Scheduling on SMs takes place at the warp level, rather
than the thread block level, which allows to co-allocate warps from different blocks on the
same multiprocessor. The GPU hardware has a limit on the number of warps that can be
supported without saturating all hardware resources. The ratio between the number of active
warps and this limit is called the GPU occupancy, which describes the load on the GPU-
cores. It is desirable to have high occupancy, because more active warps can better mask
memory access latency.

The number of the active warps depends on the amount of shared memory and the
number of registers consumed by a warp. Both shared memory and registers are allocated
on per-SM basis and shared between all warps, which are executing on this SM. Since a
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Fig.7 Propagating buffer compression on GPU: a with the sparse version, and b applying indexing to obtain
compressed buffer

particular kernel implementation dictates the number of registers used by a thread (hence
the warp) our first optimization aims at reducing the amount of shared memory used by a
single thread.

In Algorithm 1, only the buffers array is stored in the shared memory. The length of this
array is proportional to the number of threads in the block, the number of variables and the
size of propagating buffer. In the worst case, the length of the propagating buffer should be
the same as the number of unique regions in the trajectory event stream to be able to record
all of them.

In order to reduce shared memory contention, we have to eliminate sparse propagat-
ing buffers with a compressed version using the indexing technique depicted in Fig. 7. The
un-optimized version in (a) shows that the propagating buffer, indexed by region-ID, may
contain a lot of 0 entries, because the trajectory may span only a small part of the grid. To
overcome this, we introduce an additional thread block-specific region index, which indexes
only the regions visited by a trajectory (or used in region sets of variables), depicted in
Fig. 7b. Although the index itself is a sparse array, it is stored only once for all threads in
a block, as opposed to having a sparse un-indexed array per thread. Moreover, as a prop-
agating buffer is used to record whether a variable had a specific region value, it could be
compressed down to a single bit.

A similar technique is used to index variables. Since a propagating buffer needs to be
stored for each variable in a pattern, a naive way would be to store the variable’s propa-
gating buffer in an array, indexed by the block-specific variable ID. However propagating
buffers need to record matches of variables encountered only within a pattern. The num-
ber of variables in the pattern for all practical purposes is usually significantly smaller than
the total number of unique variables in the thread block. Thus we introduce an index that
assigns a pattern-unique ID to every variable in the cluster.

Note that these indexing optimizations incur additional preprocessing time and intro-
duce new parameters (indexes) passed to the GPU kernel. The described index needs to
be recalculated from scratch for each trajectory, since the maximum number of unique
regions (which determines the length of the index) is different for each trajectory event
list. Therefore, pattern querying on GPU could be done in streaming mode only within
a single trajectory. GPU implementation could be thought of as an intermediate approach
between the software version, which needs a dedicated index creation preprocessing step for
both trajectories and event regions, and the FPGA solution, which is capable of processing
everything in streaming mode.

Unlike the fast and small shared memory, used for intra-thread communication GPU, the
global memory is mainly used to transfer initial parameters to the GPU kernel, or to store

@ Springer



Geoinformatica

trajectory data. This feature comes at a certain price: latency of global memory is several
orders of magnitude higher, compared to shared memory. Although it is not possible to
eliminate all global memory accesses, we applied coalescing to retrieve/update data from/to
global memory. Reading/writing data in such manner means that individual reads/writes
from the threads within a warp could be combined into a single operation over a contiguous
memory block. To implement the coalescing optimization, multidimensional arrays, which
is a storing format for kernel parameters, are indexed in a way that uses threadldx as the
“outermost” index field.

6 Experimental evaluation

We now present an extensive experimental evaluation of both proposed FPGA- and GPU-
based solutions. We first describe the datasets used in the experiments, followed by the
experimental setup. We then detail a thorough design space exploration on the proposed
architecture, alongside with a study on matching accuracy. Finally, we show the perfor-
mance evaluation between hardware FPGA architecture, parallel GPU solution and the
CPU-based software approach.

While users typically make use of mixes of query characteristics (query length, num-
ber of variables, use of wildcards, etc), experiments are carried out on isolated query
characteristics in order to better study their respective effects.

6.1 Dataset description

In our experimental evaluation, we use four real trajectory datasets. The first two datasets are
the Trucks and Buses from [7]. Both datasets represent moving objects in the metropolitan
area of Athens, Greece. The Trucks dataset has 276 trajectories of 50 trucks where the
longest trajectory timestamp is 13,540 time units. The Buses dataset has 145 trajectories of
school buses with maximum timestamp 992. The third dataset, CabsSF, consists of GPS
coordinates of 483 taxi cabs operating in the San Francisco area [30] collected over a period
of almost a month. The fourth dataset, GeoLife, contains GPS trajectory data generated
from people that participated in the GeoLife project [41] during a period of over three years.
This dataset has 17,621 trajectories with total distance of 21.2 million Km and duration of
~48,000 hours.

6.2 Experimental setup

For simplicity of the experimental evaluation, we partition the spatial domain in uniform
grid sizes. These grid cells become the alphabet for our pattern queries. To generate relevant
pattern queries for each dataset, we randomly sample and fragment the original trajectories
using a custom trajectory query generator. The length and location of each fragment are ran-
domly chosen. These fragments are then concatenated to create a pattern query. We generate
up to 2,048 pattern queries with different number of predicates, variables, and wildcards.
The location of variable/wildcard in the query is randomly chosen.

Our FPGA platform consists of a Pico M-501 board connected to an Intel Xeon processor
via 8 lanes of PCI-e Gen. 2 [29]. We make use of one Xilinx Virtex 6 FPGA LX240T, a low
to mid-size FPGA relative to modern standards. The PCle hardware interface and software
drivers are provided as part of the Pico framework. The hardware engines communicate
with the input and output PCle interfaces through one stream each way, with dual-clock
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Fig. 8 a Resource utilization and b respective frequencies/throughput of the FPGA querying engines, such
that the number of queries is doubled, the query length is doubled

BRAM FIFOs in between our logic and the interfaces. Hence, the clock of the filtering
engine is independent of the global clock. The PCle interfaces incur an overhead of ~8% of
available FPGA resources. The RAM on the FPGA board is not residing in the same virtual
address space of the CPU RAM. Data is streamed from the CPU RAM to the FPGA. Since
the proposed solution does not require memory offloading, RAM on the FPGA board is not
used. Xilinx ISE 14 is used for synthesis and place-and-route. Default settings are set.

Our GPU workstation is equipped with a high-end Nvidia Tesla K20 graphic card which
has 13 SMs on the board, each consisting of 192 SPs (i.e., 2,496 compute cores in total).
The communication between the GPU RAM and main memory always goes through a PCle
interface.

CPU experiments were ran on an Intel Xeon processor running @3.3GHz, attached to
256GB of main memory.

6.3 Design space exploration
6.3.1 FPGA-based approach results

Here we discuss resource utilization and performance (throughput) achieved by FPGA-
based querying engines. Figure 8a shows resource utilization. Figure 8b depicts the
respective frequencies of the hardware engines while varying (1) the number of queries
(32, 64, 128, ... 2,048 queries), (2) the query length (4 and 8 predicates), and (3) the number
of variables in a pattern query (0 and 1 variable, with a variable region set of 5 regions).

As the query compiler applies the common prefix optimization, and further resource
sharing techniques are exercised by the synthesis/place-and-route tools, resource utilization
does not double as the number of queries is doubled. Rather, a penalty of approximately 70%
occurs. Similarly, as the query length is doubled, an average increase of 80% in resources is
found. However, adding one variable to each query results in, on average, doubling resource
utilization. Note that the propagating buffer approach is employed for variable matching,
and that these buffers propagate from the first occurrence of the variable to the last. Overall,
up to several thousands of query matching engines can fit on the target Xilinx V6LX240T
FPGA, a mid- to low-size FPGA.
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Fig. 9 GPU core throughput for variable query length and number of variables as a function of a number of
queries and b average trajectory length

While the aforementioned numbers address FPGA scalability of the proposed matching
engines, Fig. 8b details the respective achievable performance in terms of:

1. Operational frequency (MHz): measured as a function of the critical path, i.e., the
longest wire connection of the FPGA circuit. This number is obtained post the place-
and-route process of the FPGA tools;

2. Throughput (GB/s): as the query matching engines process one (region-ID, times-
tamp) pair per hardware cycle, the FPGA throughput can be deduced from the circuit’s
operational frequency, given that the size of each input pair is 8 Bytes (2 integers).
Nonetheless, this computed throughput is respective to the FPGA circuitry, and might
not reflect the end-to-end (CPU-FPGA and back) performance, which is platform
dependent. The end-to-end measurements are discussed in the sequence.

As the number of queries increases, frequency/throughput is initially around the
250MHz/2GBs mark. Fluctuations are due to the heuristic-based nature of the FPGA tools,
though generally a trend is deduced. As the number of queries becomes too large, frequency
drops considerably for queries with variables. The drop is not as steep for queries with no
variables; the reason being that queries with variables can be thought of as longer queries
(due to the propagating buffers). This drop in frequency occurs because of the large fan-
out from the region-ID decoder to the many sinks, being the query nodes and propagating
buffers.

Replicating the region-ID decoder (and event detector) helps reducing fan-out, and will
potentially eliminate it. Each region-ID decoder is then connected to a set of queries. We
refer to a region-ID decoder and its connected queries as a cluster. Note that each query
belongs to exactly one cluster. The query compiler is developed to take as input parameter
the cluster size, as a function of query nodes. Thorough experimentation shows that clusters
need not hold less than 1,024 or even 512 query nodes (data omitted due to lack of space).
Larger clusters result in performance deterioration; smaller clusters do not offer any benefits
in performance, rather present an increase in resource utilization (due to the replication of
the region-ID decoder and event detector per cluster).

6.3.2 GPU-based approach results
Performance results achieved with our GPU-based implementation are depicted on Fig. 9.

The set of queries used in this experiment is a superset to the FPGA counterpart: we also
include patterns of length 4 and 8 with 2 variables. Figure 9a shows that the GPU matching
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throughput for queries without variables is almost constant, which signals that the GPU
is underutilized. Doubling the query length (without variables) causes the throughput to
decrease less than twice, due to the common prefix optimization. Query length has the same
effect on GPU throughput as it has on FPGA resource utilization.

There is also a huge performance gap between the queries with no variables and queries
with at least 1 variable; this is the penalty paid for storing propagating buffers in the GPU
shared memory. This penalty is prominent when adding the first variable. Adding more vari-
ables to the queries increases the propagating buffer size by only a constant value, hence the
throughput is decreased less. This also shows the effectiveness of the indexing optimization
applied to reduce the shared memory contention.

When considering queries with at least 1 variable, we observe a “breaking point” where
the throughput drops rapidly (as the number of queries increases; in this figure the number
of queries keeps doubling from 32 to 2048). For example, for queries with 2 variables the
breaking point appears between 512 and 1024 queries. This point, indicates that all available
GPU computing cores have been used. After that the GPU becomes over-utilized instead
of been underutilized, and any further increase in the number of queries will result in their
linear execution. Long queries with considerable number of variables tend to use more GPU
resources, hence “breaking point” appears “earlier” in the graph.

We also experimented with other structural characteristics of the queries, namely, the
wildcard predicate probability and the size of the variable’s region set (experiments not
shown due to lack of space). Changing the wildcard predicate probability did not have any
observable effect on the GPU throughput. We observed that GPU throughput for queries
with an empty variable region set is on average 2 times lower than queries containing vari-
ables with non-empty region sets (irrespectively of the set size). This is because, for a
variable predicate without any region constraints we need to record all possible matches in
its own propagating buffer; this incurs additional memory loads. In contrast, for variables
with non-empty region sets the propagating buffer already contains the fixed-sized region
set.

Figure 9b GPU explores throughput as a function of average length, calculated for syn-
thetically generated datasets. Peak throughput can be achieved only for the trajectories with
average length roughly between 64 and 128 regions. For smaller regions execution time is
nominated by GPU kernel launch overhead. Average lengths of the real life datasets, used
later in performance evaluation, in shown on the same figure.

The GPU implementation also uses a notion of cluster like the FPGA counterpart. How-
ever, since all region detection happens on the host side, the GPU cluster is essentially
defined as a set of patterns, evaluated together in parallel, i.e. a thread block. To determine
the optimal block size we carried out a series of experiments measuring the performance for
different block sizes. For these experiments, we used queries of length 5 with 2 variables
and variable region set of size 10. The block size ranged from 32 to 1,024 threads, which is
the maximum block size along one dimension in the CUDA architecture. Figure 10 depicts
that thread block of size 128 yields the best performance.

6.4 Query engine implementations and false positives

As described in previous sections, a query holding variables can be evaluated in one of three
ways, namely:

1. Variable as OR: implementing the region set constraints as ORs (resulting in most
false positives);
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2. Propagating buffer: making use of propagating buffers (false positives arise only
when using multiple variables alongside wildstar/wildplus nodes);

3. All combinations: brute-force mapping of each query as the combination of all variable
region sets (no false positives).

Figure 11 shows the experiment, in which the number of false positive matches for
each of the three previously discussed query engine implementations was evaluated.
In this study the matching accuracy is recorded for each implementation of 100 long
queries, over three datasets, namely Trucks, Buses and CabsSF (the results for the
GeolLife dataset follow the same pattern). The matching accuracy is measured as
(100 — (percentage of false positives)) over all trajectories in each respective dataset, where
higher reflects better accuracy. Queries are generated using our query generator tool, where
each query contains two variables, as well as one or more aggregator (?*/?7) nodes. Note
that the Propagating buffers approach does not result in any false positives, unless multiple
variables are used alongside aggregators.

As expected, the All combinations approach results in no false positives. However, while
the Variable as OR technique results in the most false positives (as expected), the matching

§ %0 § 80.9

B " e O
E Zz § § mAll combinatibons

:::3 5 § § 488

Trucks Buses CabsSF

Fig. 11 Matching accuracy of 100 long queries, measured as (100 — (percentage of false positives)) over
all trajectories in each respective dataset. Higher reflects a better accuracy
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Fig. 12 Scalability of the FPGA-based solution for the three implementations over 100 queries of length 6
with variables

accuracy varies from high (93.2%), to a somewhat low (48.8%). On the other hand, match-
ing accuracy is close to perfect (> 99.8%) for the Propagating buffers implementation,
even as false positives increase as a result of the Variable as OR implementation. No false
positives are recorded on the Trucks dataset when making use of the propagating buffers.

6.4.1 FPGA-based engine implementation scalability

The following study presents scalability of each of three aforementioned approaches as the
number of variables and the region set size are increased. Figure 12 illustrates the FPGA
resource utilization of 100 queries of length 6 holding variables, implemented in each of
the aforementioned three approaches. The varied factors are the number of variables in each
pattern query, and the respective region set size.

When implementing a variable as OR, each variable node is replaced with a simpler OR
node. Thus, as expected (see Fig. 12), increasing the number of variables has almost no
effect on resource utilization. The same applies to increasing the region set size. On the
other hand, the propagating buffer technique starts off as utilizing slightly less than double
the resources of the variable as the OR approach. Furthermore, doubling the region set size
results in a 50% area penalty. Doubling the number of variables per pattern query exhibits
similar behavior.

Finally, when transforming a query into a set of queries based on all combinations of the
region sets, resource utilization starts off as more than double that of the propagating buffer
technique. Doubling the number of variables naturally has a steeper effect than doubling the
region set size on resource utilization. Note that the common prefix optimization helps with
the scalability of this approach. Nonetheless, when using two variables with region set size
of 15, the resulting circuitry did not fit on the FPGA. Practically, it is best to make use of
this approach for critical pattern queries where false positives are not tolerated.

While the mileage of the Variable as OR implementation may vary, its scalability is key.
Even when false positives are not tolerable, query matching engines can employ this tech-
nique, where the FPGA would be used as a pre-processing step with the goal of reducing the
query set. The same applies for the propagating buffers implementation technique, where
the query set would be reduced the most. Since the performance of CPU-based software
approaches scales linearly with the number of pattern queries, reducing the query set has
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desirable advantages, especially that the time required for this pre-processing FPGA step is
negligible.

6.4.2 GPU-based engine implementation scalability

Figure 13 depicts the results from the scalability experiments carried out on the GPU. Here
the considered measure is throughput. All experiments were using 128 queries between 1 or
2 variables, while the variable region set size was growing from 5 to 15. For both variable
as OR and propagating buffers approaches, the number of variables does not significantly
affect performance. This could be explained by the fact that the “breaking point” has not yet
been reached. On the contrary, the throughput of all combinations shows a significant drop
as the variable region set size and the number of variables grow, since the overwhelming
number of generated queries quickly occupies all available GPU computing cores.

6.5 Performance evaluation

In the last set of experiments, we compare the performance evaluation between proposed
parallel FPGA- and GPU-based solutions and the CPU-based software approach. Figure 14
shows the end-to-end (CPU-RAM to FPGA and back) FPGA throughput of length 4 queries
with 1 variable. Throughput is lower from the FPGA filtering core for smaller trajectory
files since steady state is not reached, and communication setup penalty is not hidden. For

Y FPGA core throughput

o 2

e

-

: g

2 NTrucks
. @ Buses
°

,,-E, B CabsSF
- O Geolife
c

9

2

o

o

w

A LTIt

128 256 512 1K
Number of queries

Fig. 14 End-to-end (CPU-RAM to FPGA and back) throughput of queries of length 4 with 1 variable. The
throughput of the FPGA filtering core is drawn in red line
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larger files, throughput is closer to the FPGA core’s, given the physical limitations. Note
that the throughput of the FPGA setup is independent of the trajectory file contents, as well
as query structure (given a certain operational circuit frequency).

Figure 15 shows GPU core and end-to-end throughput for queries of length 4 with
1 variable. We observed previously (Fig. 9a) that such complex queries eventually will
occupy all available GPU computational cores. We see a similar behavior here. The core
throughput begins decreasing roughly by a factor of 2 when more than 512 (Trucks dataset)
or 1024 (Buses and Geolife) queries are submitted, which means that the GPU through-
put reached the “breaking point”. Note all datasets, except for GeoLife, have the same peak
GPU core throughput. As it was showed earlier in Fig. 9b, the GeoLife dataset on aver-
age has very short trajectories, which prevents GPU from achieving peak core throughput.
End-to-end throughput has much more variance across datasets, and that is due to the pre-
processing step taking place on the host CPU. The pre-processing step is susceptible to
dataset properties such as the number of trajectories (further exploration into optimizing the
pre-processing step is omitted for brevity).

Figure 16 depicts the FlexTrack (software) IJP throughput (MB/s) resulting from match-
ing for 2,048 queries with varying properties on the Fig. 16a Trucks, Fig. 16b GeolLife
and Fig. 16c Buses datasets. Pre-processing (index building) time is excluded. The cur-
rent implementation of (CPU-based) FlexTrack is a single-threaded one. One can assume
ideal performance scaling with multi-threading enabled; though that assumption is to some
extent unrealistic (due to sw threading overhead, NUMA architectures, application not
being easily massively parallelizable, etc), it provides an upper bound on the CPU-based
performance.

When considering simple queries, throughput is initially higher for the larger dataset
(Geolife), where processing steady-state is reached. Throughput drops rapidly as more vari-
ables and wildcards are used. Note that software throughput is greatly affected by the query
complexity and dataset contents, because intermediate results produced during join oper-
ations grow rapidly. On the other hand, both FPGA- and GPU-based implementations are
not that sensible to query structure. These implementations are able to achieve considerable
speedup (though the GPU sometimes attains slowdown). Over three orders of magnitude
is achieved by the FPGA implementation on average; here, speedup is minimal and over
one order of magnitude for simple queries, followed by a steep speedup increase as the
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query complexity (number of variables, wildcard usage) increases. The GPU implementa-
tion results in to two orders magnitude speedup (Buses dataset), while slowdown is also
shown (especially for less expressive queries).

7 Conclusions

The wide availability of applications that combine cellular and GPS technologies has created
large trajectory depositories. Complex pattern queries provide an intuitive way to access
relevant data as they can select trajectories based on specific events of interest. However,
as the complexity of the posed pattern queries increases, so do computational requirements,
which are not easily met using traditional CPU-based software platforms.

In this paper, we present the first proof-of-concept study on FPGA- and GPU-based
solutions for parallel matching of variable-enhanced complex patterns, with a focus
on stream-mode (single pass) filtering. We describe a tool for automatically generat-
ing hardware constructs using a set of pattern queries, abstracting away ramifications
of hardware code development and deployment. We also present a GPU implementa-
tion of the same matching algorithms, used for hardware solution. A thorough design
space exploration of the parallel architectures shows that the proposed approach offers
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good scalability, fitting thousands of pattern query matching engines both on a Xilinx
V6LX240T FPGA and on Nvidia K20 GPU. For FPGAs, increasing the number of
variables and wildcards is shown to have linear effect on the resulting circuit size
and negligible effect on performance. The same effect could be seen for the through-
put of GPU-based implementation, prior to a “breaking point”. However this behavior
does not happen in CPU-based solutions, since performance is greatly affected from
such pattern query characteristics. We show an extensive performance evaluation where
FPGA and GPU setups outperform the current state-of-the-art (single-threaded) CPU-
based approaches, by over three orders of magnitude for FPGAs (for expressive queries)
and up to two orders of magnitude for certain datasets on GPUs (and in some cases
slowdown).

When handling pattern queries with (a) no variables, (b) one variable, or (c) no wildcards
with two or more variables, both proposed parallel implementations are able to process
the trajectory data in a single pass. When two or more variables occur in a pattern query
alongside wildcards, the proposed solution may have the drawback of resulting in false
positive matches (though these are minimal in practice). Nonetheless, a no-false-positive
solution is proposed, though being limited in scalability.

As part of our future research, we are working on enhancing the proposed FPGA-
based solution to allow online pattern query updates. In this way, the deployed
generic pattern query engines will support any pattern query structure and node values.
A stream of bits forwarded to the FPGA will program the connections between
deployed pattern query nodes. It should be noticed that this approach is different to the
Dynamic Partial Reconfiguration (DPR), where the bit configuration of the FPGA itself
is updated. For the GPU-based approach we are planning to leverage intra-trajectory
parallelism, by executing different GPU matching kernels concurrently on the same
graphical card.
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