

COMPI: Concolic Testing for MPI Applications

Hongbo Li, Sihuan Li, Zachary Benavides, Zizhong Chen, and Rajiv Gupta

May 24th, 2018

Testing in Industry

- Software bugs can be VERY costly
 - In 1998, the crash of NASA's Mars Climate Orbiter costs
 \$125 millions
 - In 2004, a software bug in the child support agency IT system in UK costs over \$1 billion

> Testing is widely used in industry to ensure code quality

HPC Also Needs Testing

- The study of practical systematic testing techniques is scarce in the field of HPC
- > HPC applications drives scientific discovery and technological innovation
- > The study of testing is a must in our field

Outline

UCR Outline Concolic Testing Challenges & Solutions Evaluation

main() { int x, y; mark_symbolic(x); *mark_symbolic*(y); // branch condition 0 if (x != 100) *OT:* work1(); else 0F: ABORT; x = x / 2;// branch condition 1 if (x + y > 200)*1T:* work2(); else 1F: work3(); }

Outline

Challenge (1)

- > Fail to tackle important MPI semantics
 - Multi-process execution
 - > Branch coverage using ONLY one process is not enough!
 - > How many processes should be used?
 - > MPI rank
 - > Which process should be the FOCUS process that is used for input generation (concolic testing)?

Challenge (1)

- > Fail to tackle important MPI semantics
 - > Multiple processes
 - > Branch coverage using ONLY one process is not enough!
 - > How many processes should be used?
 - > MPI rank
 - > Which process should be the FOCUS process that is used for input generation (concolic testing)?

- > Concolic testing with ONLY process 0
 - Fail to record branches 3F & 4T
 - > Fail to uncover branch 4F

Solution (1)

- > COMPI's Framework
 - > Record branch coverage based on ALL processes
 - > Dynamically vary the number of processes
 - > Dynamically vary the focus

- Concolic testing USING our Framework
 - > Help uncover: 3F & 4T
 - > Help uncover branch 4F

Challenge (2)

- > Too high testing cost hinders COMPI's practicality
 - > Too large input value
 - > Require long execution time
 - > Break testing platform's memory limit
 - > Crash a computer when too many processes are started

Execution time and coverage for HPL using different matrix sizes.

• Solution: input capping --- set an upper bound for input variables that dominate a program's execution time

Challenge (2)

- > Too high testing cost hinders COMPI's practicality
 - > Too large input value
 - > Heavy instrumentation

- One-way instrumentation
 - launch all processes including non-focus processes with the same heavily instrumented program
- Solution: two-way instrumentation
 - launch only the focus process with the heavily instrumented program and launch non-focus processes with lightly instrumented program

Challenge (2)

- > Too high testing cost hinders COMPI's practicality
 - > Too large inputs
 - > Heavy instrumentation
 - Redundant constraints in loops

 $\{x \mid x + i < 100 \text{ and } 0 < i < 100\} \subset \{x \mid x < 100\}$

Constraints reduction.

• Solution: constraints reduction --- Only record a constraint (a) at the first time a branch is encountered or (b) the branch's evaluated Boolean value changes

Constraints reduction.

• Solution: constraints reduction --- Only record a constraint (a) at the first time a branch is encountered or (b) the branch's evaluated Boolean value changes

Solution Summary

- Concolic testing framework targeting MPI programs
- Controlling testing cost
 - > Input capping
 - > Two-way instrumentation
 - Constraints reduction

Outline

Evaluation Setting

Denoted as N

- > Hardware platform
 - One single computer with two intel E5607 CPUs totaling 8 cores and 32 GB DRAM

> Programs

Programs	Lines of code	# Reachable branches	Selected variable	
SUSY-HMC	19,201	2,030	Lattice size	
HPL	15,699	3,754	Matrix width	
IMB-MPI1	7,092	1,290	# iterations	
			1	

Evaluation – Bugs

Evaluation – Controlling Testing Cost

> Input capping forms the basis of practical testing

Evaluation – Controlling Testing Cost UCR

> Two-way instrumentation saves up to 66% testing time cost

Program	N	Time cost (seconds)		Avg. log size (B)		
		1-way	2-way	Saving	1-way	2-way
SUSY-HMC	2	163	86	47.0%	104M	6.4K
	4	479	226	52.8%	337M	6.4K
HPL	300	92	35	62.0%	71.1M	4.5K
	600	382	127	66.8%	261.8M	4.5K
IMB-MPI1	100	7	7	0.0%	562.0K	1.9K
	400	16	14	12.5%	1.8M	1.9K
	1600	43	38	11.6%	5.5M	1.9K

One-way v.s. Two-way

Evaluation – Controlling Testing Cost UCR

With constraints reduction COMPI achieves 4.7-10.6% more branch coverage than without using it

Evaluation – COMPI Framework

- > COMPI (Fwk)
- > No_Fwk: concolic testing without COMPI's framework
- > Random: random input values generated for each test

Effectiveness of COMPI's framework.

Program ↓	COMPI (Fwk)		No_Fwk		Random	
	Avg.	Max.	Avg.	Max.	Avg.	Max.
SUSY-HMC	84.7%	86.1%	3.4%	3.5%	38.3%	38.3%
HPL	69.4%	71.6%	58.9%	59.1%	2.2%	2.2%
IMB-MPI1	69.0%	69.1%	64.2%	64.3%	1.8%	1.8%

Thank you!