
Hongbo Li , Sihuan Li, Zachary Benavides, 
Zizhong Chen, and Rajiv Gupta

May 24th, 2018

COMPI: Concolic Testing for MPI 
Applications



Testing in Industry
Software bugs can be VERY costly

In 1998, the crash of  NASA’s Mars Climate Orbiter costs 
$125 millions
In 2004, a software bug in the child support agency IT system 
in UK costs over $1 billion

Testing is widely used in industry to ensure code quality



HPC Also Needs Testing
The study of  practical systematic testing techniques is 
scarce in the field of  HPC

HPC applications drives scientific discovery and
technological innovation

The study of  testing is a must in our field



Outline

Concolic Testing

Challenges & Solutions

Evaluation



Outline

Concolic Testing

Challenges & Solutions

Evaluation



Concolic Testing



Concolic Testing



Concolic Testing



Concolic Testing



Concolic Testing



Concolic Testing



Concolic Testing



Concolic Testing



Outline

Concolic Testing

Challenges & Solutions

Evaluation



Challenge (1)
Fail to tackle important MPI semantics
Multi-process execution
Branch coverage using ONLY one process is not enough!
How many processes should be used?

MPI rank
Which process should be the FOCUS process that is used for input
generation (concolic testing)?



Challenge (1)
Fail to tackle important MPI semantics
Multiple processes
Branch coverage using ONLY one process is not enough!
How many processes should be used?

MPI rank
Which process should be the FOCUS process that is used for input
generation (concolic testing)?



Concolic testing with ONLY process 0
Fail to record branches 3F & 4T
Fail to uncover branch 4F

Executed
process i
(! ≠ 0)

Executed by 
process 0

Not executed



Solution (1)
COMPI’s Framework

Record branch coverage based on ALL processes
Dynamically vary the number of  processes
Dynamically vary the focus



Concolic testing USING our Framework
Help uncover: 3F & 4T
Help uncover branch 4F



Challenge (2)
Too high testing cost hinders COMPI’s practicality

Too large input value
Require long execution time
Break testing platform’s memory limit
Crash a computer when too many processes are started



• Solution: input capping --- set an upper bound for input
variables that dominate a program’s execution time

Execution time and coverage for HPL using different matrix sizes.



Challenge (2)
Too high testing cost hinders COMPI’s practicality

Too large input value
Heavy instrumentation



• One-way instrumentation 
• launch all processes including non-focus processes  with the same 

heavily instrumented program

• Solution: two-way instrumentation
• launch only the focus process with the heavily instrumented program 

and launch non-focus processes with lightly instrumented program

Two-way instrumentation incurs less I/O.



Challenge (2)
Too high testing cost hinders COMPI’s practicality

Too large inputs
Heavy instrumentation
Redundant constraints in loops



• Solution: constraints reduction --- only record a constraint
(a) at the first time a branch is encountered or (b) the branch’s
evaluated Boolean value changes

Constraints reduction.

{" | " + % < 100 and 0 < % < 100} ⊂ " " < 100}



• Solution: constraints reduction --- only record a constraint
(a) at the first time a branch is encountered or (b) the branch’s
evaluated Boolean value changes

Constraints reduction.



Solution Summary
Concolic testing framework targeting MPI programs

Controlling testing cost
Input capping
Two-way instrumentation
Constraints reduction



Outline

Concolic Testing

Challenges & Solutions

Evaluation



Evaluation Setting
Hardware platform

One single computer with two intel E5607 CPUs totaling 8 
cores and 32 GB DRAM

Programs

Programs Lines of code # Reachable
branches

Selected 
variable

SUSY-HMC 19,201 2,030 Lattice size
HPL 15,699 3,754 Matrix width
IMB-MPI1 7,092 1,290 # iterations

Denoted as !



Evaluation – Bugs 

2 or 4 Processes fail the test! 

1 or 3 processes succeed!



Evaluation – Controlling Testing Cost
Input capping forms the basis of  practical testing



Evaluation – Controlling Testing Cost
Two-way instrumentation saves up to 66% testing 
time cost

One-way v.s. Two-way



Evaluation – Controlling Testing Cost
With constraints reduction COMPI achieves 4.7-
10.6% more branch coverage than without using it

High Reduction Efficiency: A few
thousands or even millions to a few
hundreds



Evaluation – COMPI Framework
COMPI (Fwk)
No_Fwk: concolic testing without COMPI’s framework
Random: random input values generated for each test

Effectiveness of  COMPI’s framework.



Thank you!


